/* * (C) Copyright 2004 * Texas Instruments, <www.ti.com> * Richard Woodruff <r-woodruff2@ti.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <asm/arch/omap2420.h> #include <asm/io.h> #include <asm/arch/bits.h> #include <asm/arch/mux.h> #include <asm/arch/mem.h> #include <asm/arch/clocks.h> #include <asm/arch/sys_proto.h> #include <asm/arch/sys_info.h> /************************************************************ * sdelay() - simple spin loop. Will be constant time as * its generally used in 12MHz bypass conditions only. This * is necessary until timers are accessible. * * not inline to increase chances its in cache when called *************************************************************/ void sdelay (unsigned long loops) { __asm__ volatile ("1:\n" "subs %0, %1, #1\n" "bne 1b":"=r" (loops):"0" (loops)); } /********************************************************************************* * prcm_init() - inits clocks for PRCM as defined in clocks.h (config II default). * -- called from SRAM, or Flash (using temp SRAM stack). *********************************************************************************/ void prcm_init(void) { u32 div; void (*f_lock_pll) (u32, u32, u32, u32); extern void *_end_vect, *_start; f_lock_pll = (void *)((u32)&_end_vect - (u32)&_start + SRAM_VECT_CODE); __raw_writel(0, CM_FCLKEN1_CORE); /* stop all clocks to reduce ringing */ __raw_writel(0, CM_FCLKEN2_CORE); /* may not be necessary */ __raw_writel(0, CM_ICLKEN1_CORE); __raw_writel(0, CM_ICLKEN2_CORE); __raw_writel(DPLL_OUT, CM_CLKSEL2_PLL); /* set DPLL out */ __raw_writel(MPU_DIV, CM_CLKSEL_MPU); /* set MPU divider */ __raw_writel(DSP_DIV, CM_CLKSEL_DSP); /* set dsp and iva dividers */ __raw_writel(GFX_DIV, CM_CLKSEL_GFX); /* set gfx dividers */ div = BUS_DIV; __raw_writel(div, CM_CLKSEL1_CORE);/* set L3/L4/USB/Display/Vlnc/SSi dividers */ sdelay(1000); if(running_in_sram()){ /* If running fully from SRAM this is OK. The Flash bus drops out for just a little. * but then comes back. If running from Flash this sequence kills you, thus you need * to run it using CONFIG_PARTIAL_SRAM. */ __raw_writel(MODE_BYPASS_FAST, CM_CLKEN_PLL); /* go to bypass, fast relock */ wait_on_value(BIT0|BIT1, BIT0, CM_IDLEST_CKGEN, LDELAY); /* wait till in bypass */ sdelay(1000); /* set clock selection and dpll dividers. */ __raw_writel(DPLL_VAL, CM_CLKSEL1_PLL); /* set pll for target rate */ __raw_writel(COMMIT_DIVIDERS, PRCM_CLKCFG_CTRL); /* commit dividers */ sdelay(10000); __raw_writel(DPLL_LOCK, CM_CLKEN_PLL); /* enable dpll */ sdelay(10000); wait_on_value(BIT0|BIT1, BIT1, CM_IDLEST_CKGEN, LDELAY); /*wait for dpll lock */ }else if(running_in_flash()){ /* if running from flash, need to jump to small relocated code area in SRAM. * This is the only safe spot to do configurations from. */ (*f_lock_pll)(PRCM_CLKCFG_CTRL, CM_CLKEN_PLL, DPLL_LOCK, CM_IDLEST_CKGEN); } __raw_writel(DPLL_LOCK|APLL_LOCK, CM_CLKEN_PLL); /* enable apll */ wait_on_value(BIT8, BIT8, CM_IDLEST_CKGEN, LDELAY); /* wait for apll lock */ sdelay(1000); } /************************************************************************** * make_cs1_contiguous() - for es2 and above remap cs1 behind cs0 to allow * command line mem=xyz use all memory with out discontigious support * compiled in. Could do it at the ATAG, but there really is two banks... * Called as part of 2nd phase DDR init. **************************************************************************/ void make_cs1_contiguous(void) { u32 size, a_add_low, a_add_high; size = get_sdr_cs_size(SDRC_CS0_OSET); size /= SZ_32M; /* find size to offset CS1 */ a_add_high = (size & 3) << 8; /* set up low field */ a_add_low = (size & 0x3C) >> 2; /* set up high field */ __raw_writel((a_add_high|a_add_low),SDRC_CS_CFG); } /******************************************************** * mem_ok() - test used to see if timings are correct * for a part. Helps in gussing which part * we are currently using. *******************************************************/ u32 mem_ok(void) { u32 val1, val2; u32 pattern = 0x12345678; __raw_writel(0x0,OMAP2420_SDRC_CS0+0x400); /* clear pos A */ __raw_writel(pattern, OMAP2420_SDRC_CS0); /* pattern to pos B */ __raw_writel(0x0,OMAP2420_SDRC_CS0+4); /* remove pattern off the bus */ val1 = __raw_readl(OMAP2420_SDRC_CS0+0x400); /* get pos A value */ val2 = __raw_readl(OMAP2420_SDRC_CS0); /* get val2 */ if ((val1 != 0) || (val2 != pattern)) /* see if pos A value changed*/ return(0); else return(1); } /******************************************************** * sdrc_init() - init the sdrc chip selects CS0 and CS1 * - early init routines, called from flash or * SRAM. *******************************************************/ void sdrc_init(void) { #define EARLY_INIT 1 do_sdrc_init(SDRC_CS0_OSET, EARLY_INIT); /* only init up first bank here */ } /************************************************************************* * do_sdrc_init(): initialize the SDRAM for use. * -called from low level code with stack only. * -code sets up SDRAM timing and muxing for 2422 or 2420. * -optimal settings can be placed here, or redone after i2c * inspection of board info * * This is a bit ugly, but should handle all memory moduels * used with the H4. The first time though this code from s_init() * we configure the first chip select. Later on we come back and * will configure the 2nd chip select if it exists. * **************************************************************************/ void do_sdrc_init(u32 offset, u32 early) { u32 cpu, dllen=0, rev, common=0, cs0=0, pmask=0, pass_type, mtype; sdrc_data_t *sdata; /* do not change type */ u32 a, b, r; static const sdrc_data_t sdrc_2422 = { H4_2422_SDRC_SHARING, H4_2422_SDRC_MDCFG_0_DDR, 0 , H4_2422_SDRC_ACTIM_CTRLA_0, H4_2422_SDRC_ACTIM_CTRLB_0, H4_2422_SDRC_RFR_CTRL, H4_2422_SDRC_MR_0_DDR, 0, H4_2422_SDRC_DLLAB_CTRL }; static const sdrc_data_t sdrc_2420 = { H4_2420_SDRC_SHARING, H4_2420_SDRC_MDCFG_0_DDR, H4_2420_SDRC_MDCFG_0_SDR, H4_2420_SDRC_ACTIM_CTRLA_0, H4_2420_SDRC_ACTIM_CTRLB_0, H4_2420_SDRC_RFR_CTRL, H4_2420_SDRC_MR_0_DDR, H4_2420_SDRC_MR_0_SDR, H4_2420_SDRC_DLLAB_CTRL }; if (offset == SDRC_CS0_OSET) cs0 = common = 1; /* int regs shared between both chip select */ cpu = get_cpu_type(); rev = get_cpu_rev(); /* warning generated, though code generation is correct. this may bite later, * but is ok for now. there is only so much C code you can do on stack only * operation. */ if (cpu == CPU_2422){ sdata = (sdrc_data_t *)&sdrc_2422; pass_type = STACKED; } else{ sdata = (sdrc_data_t *)&sdrc_2420; pass_type = IP_DDR; } __asm__ __volatile__("": : :"memory"); /* limit compiler scope */ /* u-boot is compiled to run in DDR or SRAM at 8xxxxxxx or 4xxxxxxx. * If we are running in flash prior to relocation and we use data * here which is not pc relative we need to get the address correct. * We need to find the current flash mapping to dress up the initial * pointer load. As long as this is const data we should be ok. */ if((early) && running_in_flash()){ sdata = (sdrc_data_t *)(((u32)sdata & 0x0003FFFF) | get_gpmc0_base()); /* NOR internal boot offset is 0x4000 from xloader signature */ if(running_from_internal_boot()) sdata = (sdrc_data_t *)((u32)sdata + 0x4000); } if (!early && (((mtype = get_mem_type()) == DDR_COMBO)||(mtype == DDR_STACKED))) { if(mtype == DDR_COMBO){ pmask = BIT2;/* combo part has a shared CKE signal, can't use feature */ pass_type = COMBO_DDR; /* CS1 config */ __raw_writel((__raw_readl(SDRC_POWER)) & ~pmask, SDRC_POWER); } if(rev != CPU_2420_2422_ES1) /* for es2 and above smooth things out */ make_cs1_contiguous(); } next_mem_type: if (common) { /* do a SDRC reset between types to clear regs*/ __raw_writel(SOFTRESET, SDRC_SYSCONFIG); /* reset sdrc */ wait_on_value(BIT0, BIT0, SDRC_STATUS, 12000000);/* wait till reset done set */ __raw_writel(0, SDRC_SYSCONFIG); /* clear soft reset */ __raw_writel(sdata->sdrc_sharing, SDRC_SHARING); #ifdef POWER_SAVE __raw_writel(__raw_readl(SMS_SYSCONFIG)|SMART_IDLE, SMS_SYSCONFIG); __raw_writel(sdata->sdrc_sharing|SMART_IDLE, SDRC_SHARING); __raw_writel((__raw_readl(SDRC_POWER)|BIT6), SDRC_POWER); #endif } if ((pass_type == IP_DDR) || (pass_type == STACKED)) /* (IP ddr-CS0),(2422-CS0/CS1) */ __raw_writel(sdata->sdrc_mdcfg_0_ddr, SDRC_MCFG_0+offset); else if (pass_type == COMBO_DDR){ /* (combo-CS0/CS1) */ __raw_writel(H4_2420_COMBO_MDCFG_0_DDR,SDRC_MCFG_0+offset); } else if (pass_type == IP_SDR){ /* ip sdr-CS0 */ __raw_writel(sdata->sdrc_mdcfg_0_sdr, SDRC_MCFG_0+offset); } a = sdata->sdrc_actim_ctrla_0; b = sdata->sdrc_actim_ctrlb_0; r = sdata->sdrc_dllab_ctrl; /* work around ES1 DDR issues */ if((pass_type != IP_SDR) && (rev == CPU_2420_2422_ES1)){ a = H4_242x_SDRC_ACTIM_CTRLA_0_ES1; b = H4_242x_SDRC_ACTIM_CTRLB_0_ES1; r = H4_242x_SDRC_RFR_CTRL_ES1; } if (cs0) { __raw_writel(a, SDRC_ACTIM_CTRLA_0); __raw_writel(b, SDRC_ACTIM_CTRLB_0); } else { __raw_writel(a, SDRC_ACTIM_CTRLA_1); __raw_writel(b, SDRC_ACTIM_CTRLB_1); } __raw_writel(r, SDRC_RFR_CTRL+offset); /* init sequence for mDDR/mSDR using manual commands (DDR is a bit different) */ __raw_writel(CMD_NOP, SDRC_MANUAL_0+offset); sdelay(5000); /* susposed to be 100us per design spec for mddr/msdr */ __raw_writel(CMD_PRECHARGE, SDRC_MANUAL_0+offset); __raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0+offset); __raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0+offset); /* * CSx SDRC Mode Register * Burst length = (4 - DDR) (2-SDR) * Serial mode * CAS latency = x */ if(pass_type == IP_SDR) __raw_writel(sdata->sdrc_mr_0_sdr, SDRC_MR_0+offset); else __raw_writel(sdata->sdrc_mr_0_ddr, SDRC_MR_0+offset); /* NOTE: ES1 242x _BUG_ DLL + External Bandwidth fix*/ if (rev == CPU_2420_2422_ES1){ dllen = (BIT0|BIT3); /* es1 clear both bit0 and bit3 */ __raw_writel((__raw_readl(SMS_CLASS_ARB0)|BURSTCOMPLETE_GROUP7) ,SMS_CLASS_ARB0);/* enable bust complete for lcd */ } else dllen = BIT0|BIT1; /* es2, clear bit0, and 1 (set phase to 72) */ /* enable & load up DLL with good value for 75MHz, and set phase to 90 * ES1 recommends 90 phase, ES2 recommends 72 phase. */ if (common && (pass_type != IP_SDR)) { __raw_writel(sdata->sdrc_dllab_ctrl, SDRC_DLLA_CTRL); __raw_writel(sdata->sdrc_dllab_ctrl & ~(BIT2|dllen), SDRC_DLLA_CTRL); __raw_writel(sdata->sdrc_dllab_ctrl, SDRC_DLLB_CTRL); __raw_writel(sdata->sdrc_dllab_ctrl & ~(BIT2|dllen) , SDRC_DLLB_CTRL); } sdelay(90000); if(mem_ok()) return; /* STACKED, other configued type */ ++pass_type; /* IPDDR->COMBODDR->IPSDR for CS0 */ goto next_mem_type; } /***************************************************** * gpmc_init(): init gpmc bus * Init GPMC for x16, MuxMode (SDRAM in x32). * This code can only be executed from SRAM or SDRAM. *****************************************************/ void gpmc_init(void) { u32 mux=0, mtype, mwidth, rev, tval; rev = get_cpu_rev(); if (rev == CPU_2420_2422_ES1) tval = 1; else tval = 0; /* disable bit switched meaning */ /* global settings */ __raw_writel(0x10, GPMC_SYSCONFIG); /* smart idle */ __raw_writel(0x0, GPMC_IRQENABLE); /* isr's sources masked */ __raw_writel(tval, GPMC_TIMEOUT_CONTROL);/* timeout disable */ #ifdef CONFIG_SYS_NAND_BOOT __raw_writel(0x001, GPMC_CONFIG); /* set nWP, disable limited addr */ #else __raw_writel(0x111, GPMC_CONFIG); /* set nWP, disable limited addr */ #endif /* discover bus connection from sysboot */ if (is_gpmc_muxed() == GPMC_MUXED) mux = BIT9; mtype = get_gpmc0_type(); mwidth = get_gpmc0_width(); /* setup cs0 */ __raw_writel(0x0, GPMC_CONFIG7_0); /* disable current map */ sdelay(1000); #ifdef CONFIG_SYS_NAND_BOOT __raw_writel(H4_24XX_GPMC_CONFIG1_0|mtype|mwidth, GPMC_CONFIG1_0); #else __raw_writel(H4_24XX_GPMC_CONFIG1_0|mux|mtype|mwidth, GPMC_CONFIG1_0); #endif #ifdef PRCM_CONFIG_III __raw_writel(H4_24XX_GPMC_CONFIG2_0, GPMC_CONFIG2_0); #endif __raw_writel(H4_24XX_GPMC_CONFIG3_0, GPMC_CONFIG3_0); __raw_writel(H4_24XX_GPMC_CONFIG4_0, GPMC_CONFIG4_0); #ifdef PRCM_CONFIG_III __raw_writel(H4_24XX_GPMC_CONFIG5_0, GPMC_CONFIG5_0); __raw_writel(H4_24XX_GPMC_CONFIG6_0, GPMC_CONFIG6_0); #endif __raw_writel(H4_24XX_GPMC_CONFIG7_0, GPMC_CONFIG7_0);/* enable new mapping */ sdelay(2000); /* setup cs1 */ __raw_writel(0, GPMC_CONFIG7_1); /* disable any mapping */ sdelay(1000); __raw_writel(H4_24XX_GPMC_CONFIG1_1|mux, GPMC_CONFIG1_1); __raw_writel(H4_24XX_GPMC_CONFIG2_1, GPMC_CONFIG2_1); __raw_writel(H4_24XX_GPMC_CONFIG3_1, GPMC_CONFIG3_1); __raw_writel(H4_24XX_GPMC_CONFIG4_1, GPMC_CONFIG4_1); __raw_writel(H4_24XX_GPMC_CONFIG5_1, GPMC_CONFIG5_1); __raw_writel(H4_24XX_GPMC_CONFIG6_1, GPMC_CONFIG6_1); __raw_writel(H4_24XX_GPMC_CONFIG7_1, GPMC_CONFIG7_1); /* enable mapping */ sdelay(2000); }