/* * NAND Flash Controller Device Driver * Copyright (C) 2013 Altera Corporation * Copyright © 2009-2010, Intel Corporation and its suppliers. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #include #include #include #include #include "denali_nand.h" /* We define a module parameter that allows the user to override * the hardware and decide what timing mode should be used. */ #define NAND_DEFAULT_TIMINGS -1 static struct denali_nand_info denali; static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; /* We define a macro here that combines all interrupts this driver uses into * a single constant value, for convenience. */ #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ INTR_STATUS__ECC_TRANSACTION_DONE | \ INTR_STATUS__ECC_ERR | \ INTR_STATUS__PROGRAM_FAIL | \ INTR_STATUS__LOAD_COMP | \ INTR_STATUS__PROGRAM_COMP | \ INTR_STATUS__TIME_OUT | \ INTR_STATUS__ERASE_FAIL | \ INTR_STATUS__RST_COMP | \ INTR_STATUS__ERASE_COMP | \ INTR_STATUS__ECC_UNCOR_ERR | \ INTR_STATUS__INT_ACT | \ INTR_STATUS__LOCKED_BLK) /* indicates whether or not the internal value for the flash bank is * valid or not */ #define CHIP_SELECT_INVALID -1 #define SUPPORT_8BITECC 1 /* This macro divides two integers and rounds fractional values up * to the nearest integer value. */ #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) /* These constants are defined by the driver to enable common driver * configuration options. */ #define SPARE_ACCESS 0x41 #define MAIN_ACCESS 0x42 #define MAIN_SPARE_ACCESS 0x43 #define DENALI_UNLOCK_START 0x10 #define DENALI_UNLOCK_END 0x11 #define DENALI_LOCK 0x21 #define DENALI_LOCK_TIGHT 0x31 #define DENALI_BUFFER_LOAD 0x60 #define DENALI_BUFFER_WRITE 0x62 #define DENALI_READ 0 #define DENALI_WRITE 0x100 /* types of device accesses. We can issue commands and get status */ #define COMMAND_CYCLE 0 #define ADDR_CYCLE 1 #define STATUS_CYCLE 2 /* this is a helper macro that allows us to * format the bank into the proper bits for the controller */ #define BANK(x) ((x) << 24) /* Interrupts are cleared by writing a 1 to the appropriate status bit */ static inline void clear_interrupt(uint32_t irq_mask) { uint32_t intr_status_reg = 0; intr_status_reg = INTR_STATUS(denali.flash_bank); __raw_writel(irq_mask, denali.flash_reg + intr_status_reg); } static uint32_t read_interrupt_status(void) { uint32_t intr_status_reg = 0; intr_status_reg = INTR_STATUS(denali.flash_bank); return __raw_readl(denali.flash_reg + intr_status_reg); } static void clear_interrupts(void) { uint32_t status = 0x0; status = read_interrupt_status(); clear_interrupt(status); denali.irq_status = 0x0; } static void denali_irq_enable(uint32_t int_mask) { int i; for (i = 0; i < denali.max_banks; ++i) __raw_writel(int_mask, denali.flash_reg + INTR_EN(i)); } static uint32_t wait_for_irq(uint32_t irq_mask) { unsigned long comp_res = 1000; uint32_t intr_status = 0; do { intr_status = read_interrupt_status() & DENALI_IRQ_ALL; if (intr_status & irq_mask) { denali.irq_status &= ~irq_mask; /* our interrupt was detected */ break; } udelay(1); comp_res--; } while (comp_res != 0); if (comp_res == 0) { /* timeout */ printf("Denali timeout with interrupt status %08x\n", read_interrupt_status()); intr_status = 0; } return intr_status; } /* Certain operations for the denali NAND controller use * an indexed mode to read/write data. The operation is * performed by writing the address value of the command * to the device memory followed by the data. This function * abstracts this common operation. */ static void index_addr(uint32_t address, uint32_t data) { __raw_writel(address, denali.flash_mem); __raw_writel(data, denali.flash_mem + 0x10); } /* Perform an indexed read of the device */ static void index_addr_read_data(uint32_t address, uint32_t *pdata) { __raw_writel(address, denali.flash_mem); *pdata = __raw_readl(denali.flash_mem + 0x10); } /* We need to buffer some data for some of the NAND core routines. * The operations manage buffering that data. */ static void reset_buf(void) { denali.buf.head = denali.buf.tail = 0; } static void write_byte_to_buf(uint8_t byte) { BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf)); denali.buf.buf[denali.buf.tail++] = byte; } /* resets a specific device connected to the core */ static void reset_bank(void) { uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT; clear_interrupts(); __raw_writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET); irq_status = wait_for_irq(irq_mask); if (irq_status & INTR_STATUS__TIME_OUT) debug(KERN_ERR "reset bank failed.\n"); } /* Reset the flash controller */ static uint16_t denali_nand_reset(void) { uint32_t i; for (i = 0 ; i < denali.max_banks; i++) __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, denali.flash_reg + INTR_STATUS(i)); for (i = 0 ; i < denali.max_banks; i++) { __raw_writel(1 << i, denali.flash_reg + DEVICE_RESET); while (!(__raw_readl(denali.flash_reg + INTR_STATUS(i)) & (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) if (__raw_readl(denali.flash_reg + INTR_STATUS(i)) & INTR_STATUS__TIME_OUT) debug(KERN_DEBUG "NAND Reset operation " "timed out on bank %d\n", i); } for (i = 0; i < denali.max_banks; i++) __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, denali.flash_reg + INTR_STATUS(i)); return PASS; } /* this routine calculates the ONFI timing values for a given mode and * programs the clocking register accordingly. The mode is determined by * the get_onfi_nand_para routine. */ static void nand_onfi_timing_set(uint16_t mode) { uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; uint16_t TclsRising = 1; uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; uint16_t dv_window = 0; uint16_t en_lo, en_hi; uint16_t acc_clks; uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; en_lo = CEIL_DIV(Trp[mode], CLK_X); en_hi = CEIL_DIV(Treh[mode], CLK_X); #if ONFI_BLOOM_TIME if ((en_hi * CLK_X) < (Treh[mode] + 2)) en_hi++; #endif if ((en_lo + en_hi) * CLK_X < Trc[mode]) en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); if ((en_lo + en_hi) < CLK_MULTI) en_lo += CLK_MULTI - en_lo - en_hi; while (dv_window < 8) { data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; data_invalid = data_invalid_rhoh < data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; dv_window = data_invalid - Trea[mode]; if (dv_window < 8) en_lo++; } acc_clks = CEIL_DIV(Trea[mode], CLK_X); while (((acc_clks * CLK_X) - Trea[mode]) < 3) acc_clks++; if ((data_invalid - acc_clks * CLK_X) < 2) debug(KERN_WARNING "%s, Line %d: Warning!\n", __FILE__, __LINE__); addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); re_2_we = CEIL_DIV(Trhw[mode], CLK_X); re_2_re = CEIL_DIV(Trhz[mode], CLK_X); we_2_re = CEIL_DIV(Twhr[mode], CLK_X); cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); if (!TclsRising) cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); if (cs_cnt == 0) cs_cnt = 1; if (Tcea[mode]) { while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) cs_cnt++; } #if MODE5_WORKAROUND if (mode == 5) acc_clks = 5; #endif /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ if ((__raw_readl(denali.flash_reg + MANUFACTURER_ID) == 0) && (__raw_readl(denali.flash_reg + DEVICE_ID) == 0x88)) acc_clks = 6; __raw_writel(acc_clks, denali.flash_reg + ACC_CLKS); __raw_writel(re_2_we, denali.flash_reg + RE_2_WE); __raw_writel(re_2_re, denali.flash_reg + RE_2_RE); __raw_writel(we_2_re, denali.flash_reg + WE_2_RE); __raw_writel(addr_2_data, denali.flash_reg + ADDR_2_DATA); __raw_writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT); __raw_writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT); __raw_writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT); } /* queries the NAND device to see what ONFI modes it supports. */ static uint16_t get_onfi_nand_para(void) { int i; /* we needn't to do a reset here because driver has already * reset all the banks before * */ if (!(__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) & ONFI_TIMING_MODE__VALUE)) return FAIL; for (i = 5; i > 0; i--) { if (__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) & (0x01 << i)) break; } nand_onfi_timing_set(i); /* By now, all the ONFI devices we know support the page cache */ /* rw feature. So here we enable the pipeline_rw_ahead feature */ /* __raw_writel(1, denali.flash_reg + CACHE_WRITE_ENABLE); */ /* __raw_writel(1, denali.flash_reg + CACHE_READ_ENABLE); */ return PASS; } static void get_samsung_nand_para(uint8_t device_id) { if (device_id == 0xd3) { /* Samsung K9WAG08U1A */ /* Set timing register values according to datasheet */ __raw_writel(5, denali.flash_reg + ACC_CLKS); __raw_writel(20, denali.flash_reg + RE_2_WE); __raw_writel(12, denali.flash_reg + WE_2_RE); __raw_writel(14, denali.flash_reg + ADDR_2_DATA); __raw_writel(3, denali.flash_reg + RDWR_EN_LO_CNT); __raw_writel(2, denali.flash_reg + RDWR_EN_HI_CNT); __raw_writel(2, denali.flash_reg + CS_SETUP_CNT); } } static void get_toshiba_nand_para(void) { uint32_t tmp; /* Workaround to fix a controller bug which reports a wrong */ /* spare area size for some kind of Toshiba NAND device */ if ((__raw_readl(denali.flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) && (__raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)){ __raw_writel(216, denali.flash_reg + DEVICE_SPARE_AREA_SIZE); tmp = __raw_readl(denali.flash_reg + DEVICES_CONNECTED) * __raw_readl(denali.flash_reg + DEVICE_SPARE_AREA_SIZE); __raw_writel(tmp, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE); #if SUPPORT_15BITECC __raw_writel(15, denali.flash_reg + ECC_CORRECTION); #elif SUPPORT_8BITECC __raw_writel(8, denali.flash_reg + ECC_CORRECTION); #endif } } static void get_hynix_nand_para(uint8_t device_id) { uint32_t main_size, spare_size; switch (device_id) { case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */ case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */ __raw_writel(128, denali.flash_reg + PAGES_PER_BLOCK); __raw_writel(4096, denali.flash_reg + DEVICE_MAIN_AREA_SIZE); __raw_writel(224, denali.flash_reg + DEVICE_SPARE_AREA_SIZE); main_size = 4096 * __raw_readl(denali.flash_reg + DEVICES_CONNECTED); spare_size = 224 * __raw_readl(denali.flash_reg + DEVICES_CONNECTED); __raw_writel(main_size, denali.flash_reg + LOGICAL_PAGE_DATA_SIZE); __raw_writel(spare_size, denali.flash_reg + LOGICAL_PAGE_SPARE_SIZE); __raw_writel(0, denali.flash_reg + DEVICE_WIDTH); #if SUPPORT_15BITECC __raw_writel(15, denali.flash_reg + ECC_CORRECTION); #elif SUPPORT_8BITECC __raw_writel(8, denali.flash_reg + ECC_CORRECTION); #endif break; default: debug(KERN_WARNING "Spectra: Unknown Hynix NAND (Device ID: 0x%x)." "Will use default parameter values instead.\n", device_id); } } /* determines how many NAND chips are connected to the controller. Note for * Intel CE4100 devices we don't support more than one device. */ static void find_valid_banks(void) { uint32_t id[denali.max_banks]; int i; denali.total_used_banks = 1; for (i = 0; i < denali.max_banks; i++) { index_addr((uint32_t)(MODE_11 | (i << 24) | 0), 0x90); index_addr((uint32_t)(MODE_11 | (i << 24) | 1), 0); index_addr_read_data((uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); if (i == 0) { if (!(id[i] & 0x0ff)) break; /* WTF? */ } else { if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) denali.total_used_banks++; else break; } } } /* * Use the configuration feature register to determine the maximum number of * banks that the hardware supports. */ static void detect_max_banks(void) { uint32_t features = __raw_readl(denali.flash_reg + FEATURES); denali.max_banks = 2 << (features & FEATURES__N_BANKS); } static void detect_partition_feature(void) { /* For MRST platform, denali.fwblks represent the * number of blocks firmware is taken, * FW is in protect partition and MTD driver has no * permission to access it. So let driver know how many * blocks it can't touch. * */ if (__raw_readl(denali.flash_reg + FEATURES) & FEATURES__PARTITION) { if ((__raw_readl(denali.flash_reg + PERM_SRC_ID(1)) & PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { denali.fwblks = ((__raw_readl(denali.flash_reg + MIN_MAX_BANK(1)) & MIN_MAX_BANK__MIN_VALUE) * denali.blksperchip) + (__raw_readl(denali.flash_reg + MIN_BLK_ADDR(1)) & MIN_BLK_ADDR__VALUE); } else denali.fwblks = SPECTRA_START_BLOCK; } else denali.fwblks = SPECTRA_START_BLOCK; } static uint16_t denali_nand_timing_set(void) { uint16_t status = PASS; uint32_t id_bytes[5], addr; uint8_t i, maf_id, device_id; /* Use read id method to get device ID and other * params. For some NAND chips, controller can't * report the correct device ID by reading from * DEVICE_ID register * */ addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); index_addr((uint32_t)addr | 0, 0x90); index_addr((uint32_t)addr | 1, 0); for (i = 0; i < 5; i++) index_addr_read_data(addr | 2, &id_bytes[i]); maf_id = id_bytes[0]; device_id = id_bytes[1]; if (__raw_readl(denali.flash_reg + ONFI_DEVICE_NO_OF_LUNS) & ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */ if (FAIL == get_onfi_nand_para()) return FAIL; } else if (maf_id == 0xEC) { /* Samsung NAND */ get_samsung_nand_para(device_id); } else if (maf_id == 0x98) { /* Toshiba NAND */ get_toshiba_nand_para(); } else if (maf_id == 0xAD) { /* Hynix NAND */ get_hynix_nand_para(device_id); } find_valid_banks(); detect_partition_feature(); /* If the user specified to override the default timings * with a specific ONFI mode, we apply those changes here. */ if (onfi_timing_mode != NAND_DEFAULT_TIMINGS) nand_onfi_timing_set(onfi_timing_mode); return status; } static void denali_set_intr_modes(uint16_t INT_ENABLE) { if (INT_ENABLE) __raw_writel(1, denali.flash_reg + GLOBAL_INT_ENABLE); else __raw_writel(0, denali.flash_reg + GLOBAL_INT_ENABLE); } /* validation function to verify that the controlling software is making * a valid request */ static inline bool is_flash_bank_valid(int flash_bank) { return (flash_bank >= 0 && flash_bank < 4); } static void denali_irq_init(void) { uint32_t int_mask = 0; int i; /* Disable global interrupts */ denali_set_intr_modes(false); int_mask = DENALI_IRQ_ALL; /* Clear all status bits */ for (i = 0; i < denali.max_banks; ++i) __raw_writel(0xFFFF, denali.flash_reg + INTR_STATUS(i)); denali_irq_enable(int_mask); } /* This helper function setups the registers for ECC and whether or not * the spare area will be transferred. */ static void setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) { int ecc_en_flag = 0, transfer_spare_flag = 0; /* set ECC, transfer spare bits if needed */ ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; /* Enable spare area/ECC per user's request. */ __raw_writel(ecc_en_flag, denali.flash_reg + ECC_ENABLE); /* applicable for MAP01 only */ __raw_writel(transfer_spare_flag, denali.flash_reg + TRANSFER_SPARE_REG); } /* sends a pipeline command operation to the controller. See the Denali NAND * controller's user guide for more information (section 4.2.3.6). */ static int denali_send_pipeline_cmd(bool ecc_en, bool transfer_spare, int access_type, int op) { uint32_t addr = 0x0, cmd = 0x0, irq_status = 0, irq_mask = 0; uint32_t page_count = 1; /* always read a page */ if (op == DENALI_READ) irq_mask = INTR_STATUS__LOAD_COMP; else if (op == DENALI_WRITE) irq_mask = INTR_STATUS__PROGRAM_COMP | INTR_STATUS__PROGRAM_FAIL; else BUG(); /* clear interrupts */ clear_interrupts(); /* setup ECC and transfer spare reg */ setup_ecc_for_xfer(ecc_en, transfer_spare); addr = BANK(denali.flash_bank) | denali.page; /* setup the acccess type */ cmd = MODE_10 | addr; index_addr((uint32_t)cmd, access_type); /* setup the pipeline command */ if (access_type == SPARE_ACCESS && op == DENALI_WRITE) index_addr((uint32_t)cmd, DENALI_BUFFER_WRITE); else if (access_type == SPARE_ACCESS && op == DENALI_READ) index_addr((uint32_t)cmd, DENALI_BUFFER_LOAD); else index_addr((uint32_t)cmd, 0x2000 | op | page_count); /* wait for command to be accepted */ irq_status = wait_for_irq(irq_mask); if ((irq_status & irq_mask) != irq_mask) return FAIL; if (access_type != SPARE_ACCESS) { cmd = MODE_01 | addr; __raw_writel(cmd, denali.flash_mem); } return PASS; } /* helper function that simply writes a buffer to the flash */ static int write_data_to_flash_mem(const uint8_t *buf, int len) { uint32_t i = 0, *buf32; /* verify that the len is a multiple of 4. see comment in * read_data_from_flash_mem() */ BUG_ON((len % 4) != 0); /* write the data to the flash memory */ buf32 = (uint32_t *)buf; for (i = 0; i < len / 4; i++) __raw_writel(*buf32++, denali.flash_mem + 0x10); return i*4; /* intent is to return the number of bytes read */ } static void denali_mode_main_access(void) { uint32_t addr, cmd; addr = BANK(denali.flash_bank) | denali.page; cmd = MODE_10 | addr; index_addr((uint32_t)cmd, MAIN_ACCESS); } static void denali_mode_main_spare_access(void) { uint32_t addr, cmd; addr = BANK(denali.flash_bank) | denali.page; cmd = MODE_10 | addr; index_addr((uint32_t)cmd, MAIN_SPARE_ACCESS); } /* Writes OOB data to the device. * This code unused under normal U-Boot console as normally page write raw * to be used for write oob data with main data. */ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) { uint32_t cmd; denali.page = page; debug("* write_oob_data *\n"); /* We need to write to buffer first through MAP00 command */ cmd = MODE_00 | BANK(denali.flash_bank); __raw_writel(cmd, denali.flash_mem); /* send the data into flash buffer */ write_data_to_flash_mem(buf, mtd->oobsize); /* activate the write through MAP10 commands */ if (denali_send_pipeline_cmd(false, false, SPARE_ACCESS, DENALI_WRITE) != PASS) return -EIO; return 0; } /* this function examines buffers to see if they contain data that * indicate that the buffer is part of an erased region of flash. */ bool is_erased(uint8_t *buf, int len) { int i = 0; for (i = 0; i < len; i++) if (buf[i] != 0xFF) return false; return true; } /* programs the controller to either enable/disable DMA transfers */ static void denali_enable_dma(bool en) { uint32_t reg_val = 0x0; if (en) reg_val = DMA_ENABLE__FLAG; __raw_writel(reg_val, denali.flash_reg + DMA_ENABLE); __raw_readl(denali.flash_reg + DMA_ENABLE); } /* setups the HW to perform the data DMA */ static void denali_setup_dma_sequence(int op) { const int page_count = 1; uint32_t mode; uint32_t addr = (uint32_t)denali.buf.dma_buf; mode = MODE_10 | BANK(denali.flash_bank); /* DMA is a four step process */ /* 1. setup transfer type and # of pages */ index_addr(mode | denali.page, 0x2000 | op | page_count); /* 2. set memory high address bits 23:8 */ index_addr(mode | ((uint16_t)(addr >> 16) << 8), 0x2200); /* 3. set memory low address bits 23:8 */ index_addr(mode | ((uint16_t)addr << 8), 0x2300); /* 4. interrupt when complete, burst len = 64 bytes*/ index_addr(mode | 0x14000, 0x2400); } /* Common DMA function */ static uint32_t denali_dma_configuration(uint32_t ops, bool raw_xfer, uint32_t irq_mask) { uint32_t irq_status = 0; /* * setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) * for raw_xfer, disable ECC and enable spare transfer * for !raw_xfer, enable ECC and disable spare transfer */ setup_ecc_for_xfer(!raw_xfer, raw_xfer); /* clear any previous interrupt flags */ clear_interrupts(); /* enable the DMA */ denali_enable_dma(true); /* setup the DMA */ denali_setup_dma_sequence(ops); /* wait for operation to complete */ irq_status = wait_for_irq(irq_mask); /* if ECC fault happen, seems we need delay before turning off DMA. * If not, the controller will go into non responsive condition */ if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) udelay(100); /* disable the DMA */ denali_enable_dma(false); return irq_status; } static void write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, bool raw_xfer) { uint32_t irq_status = 0; uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP; denali.status = PASS; /* copy buffer into DMA buffer */ memcpy((void *)denali.buf.dma_buf, buf, mtd->writesize); /* need extra memcpoy for raw transfer */ if (raw_xfer) memcpy((void *)denali.buf.dma_buf + mtd->writesize, chip->oob_poi, mtd->oobsize); /* setting up DMA */ irq_status = denali_dma_configuration(DENALI_WRITE, raw_xfer, irq_mask); /* if timeout happen, error out */ if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { debug("DMA timeout for denali write_page\n"); denali.status = NAND_STATUS_FAIL; } if (irq_status & INTR_STATUS__LOCKED_BLK) { debug("Failed as write to locked block\n"); denali.status = NAND_STATUS_FAIL; } } /* NAND core entry points */ /* * this is the callback that the NAND core calls to write a page. Since * writing a page with ECC or without is similar, all the work is done * by write_page above. */ static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { /* * for regular page writes, we let HW handle all the ECC * data written to the device. */ debug("denali_write_page at page %08x\n", denali.page); /* switch to main access only */ denali_mode_main_access(); write_page(mtd, chip, buf, false); } /* * This is the callback that the NAND core calls to write a page without ECC. * raw access is similar to ECC page writes, so all the work is done in the * write_page() function above. */ static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { /* * for raw page writes, we want to disable ECC and simply write * whatever data is in the buffer. */ debug("denali_write_page_raw at page %08x\n", denali.page); /* switch to main + spare access */ denali_mode_main_spare_access(); write_page(mtd, chip, buf, true); } static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { return write_oob_data(mtd, chip->oob_poi, page); } /* raw include ECC value and all the spare area */ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; debug("denali_read_page_raw at page %08x\n", page); if (denali.page != page) { debug("Missing NAND_CMD_READ0 command\n"); return -EIO; } /* switch to main + spare access */ denali_mode_main_spare_access(); /* setting up the DMA where ecc_enable is false */ irq_status = denali_dma_configuration(DENALI_READ, true, irq_mask); /* if timeout happen, error out */ if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) { debug("DMA timeout for denali_read_page_raw\n"); return -EIO; } /* splitting the content to destination buffer holder */ memcpy(chip->oob_poi, (const void *)(denali.buf.dma_buf + mtd->writesize), mtd->oobsize); memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); debug("buf %02x %02x\n", buf[0], buf[1]); debug("chip->oob_poi %02x %02x\n", chip->oob_poi[0], chip->oob_poi[1]); return 0; } static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP; debug("denali_read_page at page %08x\n", page); if (denali.page != page) { debug("Missing NAND_CMD_READ0 command\n"); return -EIO; } /* switch to main access only */ denali_mode_main_access(); /* setting up the DMA where ecc_enable is true */ irq_status = denali_dma_configuration(DENALI_READ, false, irq_mask); memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); debug("buf %02x %02x\n", buf[0], buf[1]); /* check whether any ECC error */ if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) { /* is the ECC cause by erase page, check using read_page_raw */ debug(" Uncorrected ECC detected\n"); denali_read_page_raw(mtd, chip, buf, denali.page); if (is_erased(buf, mtd->writesize) == true && is_erased(chip->oob_poi, mtd->oobsize) == true) { debug(" ECC error cause by erased block\n"); /* false alarm, return the 0xFF */ } else return -EIO; } memcpy(buf, (const void *)denali.buf.dma_buf, mtd->writesize); return 0; } static uint8_t denali_read_byte(struct mtd_info *mtd) { uint32_t addr, result; addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); index_addr_read_data((uint32_t)addr | 2, &result); return (uint8_t)result & 0xFF; } static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { debug("denali_read_oob at page %08x\n", page); denali.page = page; return denali_read_page_raw(mtd, chip, denali.buf.buf, page); } static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { uint32_t i, addr, result; /* delay for tR (data transfer from Flash array to data register) */ udelay(25); /* ensure device completed else additional delay and polling */ wait_for_irq(INTR_STATUS__INT_ACT); addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); for (i = 0; i < len; i++) { index_addr_read_data((uint32_t)addr | 2, &result); write_byte_to_buf(result); } memcpy(buf, denali.buf.buf, len); } static void denali_select_chip(struct mtd_info *mtd, int chip) { denali.flash_bank = chip; } static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) { int status = denali.status; denali.status = 0; return status; } static void denali_erase(struct mtd_info *mtd, int page) { uint32_t cmd = 0x0, irq_status = 0; debug("denali_erase at page %08x\n", page); /* clear interrupts */ clear_interrupts(); /* setup page read request for access type */ cmd = MODE_10 | BANK(denali.flash_bank) | page; index_addr((uint32_t)cmd, 0x1); /* wait for erase to complete or failure to occur */ irq_status = wait_for_irq(INTR_STATUS__ERASE_COMP | INTR_STATUS__ERASE_FAIL); if (irq_status & INTR_STATUS__ERASE_FAIL || irq_status & INTR_STATUS__LOCKED_BLK) denali.status = NAND_STATUS_FAIL; else denali.status = PASS; } static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, int page) { uint32_t addr; switch (cmd) { case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); index_addr((uint32_t)addr | 0, cmd); break; case NAND_CMD_PARAM: clear_interrupts(); case NAND_CMD_READID: reset_buf(); /* sometimes ManufactureId read from register is not right * e.g. some of Micron MT29F32G08QAA MLC NAND chips * So here we send READID cmd to NAND insteand * */ addr = (uint32_t)MODE_11 | BANK(denali.flash_bank); index_addr((uint32_t)addr | 0, cmd); index_addr((uint32_t)addr | 1, col & 0xFF); break; case NAND_CMD_READ0: case NAND_CMD_SEQIN: denali.page = page; break; case NAND_CMD_RESET: reset_bank(); break; case NAND_CMD_READOOB: /* TODO: Read OOB data */ break; case NAND_CMD_ERASE1: /* * supporting block erase only, not multiblock erase as * it will cross plane and software need complex calculation * to identify the block count for the cross plane */ denali_erase(mtd, page); break; case NAND_CMD_ERASE2: /* nothing to do here as it was done during NAND_CMD_ERASE1 */ break; case NAND_CMD_UNLOCK1: addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page; index_addr((uint32_t)addr | 0, DENALI_UNLOCK_START); break; case NAND_CMD_UNLOCK2: addr = (uint32_t)MODE_10 | BANK(denali.flash_bank) | page; index_addr((uint32_t)addr | 0, DENALI_UNLOCK_END); break; case NAND_CMD_LOCK: addr = (uint32_t)MODE_10 | BANK(denali.flash_bank); index_addr((uint32_t)addr | 0, DENALI_LOCK); break; case NAND_CMD_LOCK_TIGHT: addr = (uint32_t)MODE_10 | BANK(denali.flash_bank); index_addr((uint32_t)addr | 0, DENALI_LOCK_TIGHT); break; default: printf(": unsupported command received 0x%x\n", cmd); break; } } /* stubs for ECC functions not used by the NAND core */ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc_code) { debug("Should not be called as ECC handled by hardware\n"); BUG(); return -EIO; } static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, uint8_t *read_ecc, uint8_t *calc_ecc) { debug("Should not be called as ECC handled by hardware\n"); BUG(); return -EIO; } static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) { debug("Should not be called as ECC handled by hardware\n"); BUG(); } /* end NAND core entry points */ /* Initialization code to bring the device up to a known good state */ static void denali_hw_init(void) { /* * tell driver how many bit controller will skip before writing * ECC code in OOB. This is normally used for bad block marker */ __raw_writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES, denali.flash_reg + SPARE_AREA_SKIP_BYTES); detect_max_banks(); denali_nand_reset(); __raw_writel(0x0F, denali.flash_reg + RB_PIN_ENABLED); __raw_writel(CHIP_EN_DONT_CARE__FLAG, denali.flash_reg + CHIP_ENABLE_DONT_CARE); __raw_writel(0xffff, denali.flash_reg + SPARE_AREA_MARKER); /* Should set value for these registers when init */ __raw_writel(0, denali.flash_reg + TWO_ROW_ADDR_CYCLES); __raw_writel(1, denali.flash_reg + ECC_ENABLE); denali_nand_timing_set(); denali_irq_init(); } /* * Although controller spec said SLC ECC is forceb to be 4bit, but denali * controller in MRST only support 15bit and 8bit ECC correction */ #ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST #define ECC_15BITS 26 static struct nand_ecclayout nand_15bit_oob = { .eccbytes = ECC_15BITS, }; #else #define ECC_8BITS 14 static struct nand_ecclayout nand_8bit_oob = { .eccbytes = ECC_8BITS, }; #endif /* CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST */ void denali_nand_init(struct nand_chip *nand) { denali.flash_reg = (void __iomem *)CONFIG_SYS_NAND_REGS_BASE; denali.flash_mem = (void __iomem *)CONFIG_SYS_NAND_DATA_BASE; nand->chip_delay = 0; #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT /* check whether flash got BBT table (located at end of flash). As we * use NAND_USE_FLASH_BBT_NO_OOB, the BBT page will start with * bbt_pattern. We will have mirror pattern too */ nand->options |= NAND_USE_FLASH_BBT; /* * We are using main + spare with ECC support. As BBT need ECC support, * we need to ensure BBT code don't write to OOB for the BBT pattern. * All BBT info will be stored into data area with ECC support. */ nand->options |= NAND_USE_FLASH_BBT_NO_OOB; #endif nand->ecc.mode = NAND_ECC_HW; nand->ecc.size = CONFIG_NAND_DENALI_ECC_SIZE; nand->ecc.read_oob = denali_read_oob; nand->ecc.write_oob = denali_write_oob; nand->ecc.read_page = denali_read_page; nand->ecc.read_page_raw = denali_read_page_raw; nand->ecc.write_page = denali_write_page; nand->ecc.write_page_raw = denali_write_page_raw; #ifdef CONFIG_SYS_NAND_15BIT_HW_ECC_OOBFIRST /* 15bit ECC */ nand->ecc.bytes = 26; nand->ecc.layout = &nand_15bit_oob; #else /* 8bit ECC */ nand->ecc.bytes = 14; nand->ecc.layout = &nand_8bit_oob; #endif nand->ecc.calculate = denali_ecc_calculate; nand->ecc.correct = denali_ecc_correct; nand->ecc.hwctl = denali_ecc_hwctl; /* Set address of hardware control function */ nand->cmdfunc = denali_cmdfunc; nand->read_byte = denali_read_byte; nand->read_buf = denali_read_buf; nand->select_chip = denali_select_chip; nand->waitfunc = denali_waitfunc; denali_hw_init(); } int board_nand_init(struct nand_chip *chip) { puts("NAND: Denali NAND controller\n"); denali_nand_init(chip); return 0; }