/* * Timing and Organization details of the Elpida parts used in OMAP4 * SDPs and Panda * * (C) Copyright 2010 * Texas Instruments, <www.ti.com> * * Aneesh V <aneesh@ti.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <asm/emif.h> #include <asm/arch/sys_proto.h> /* * This file provides details of the LPDDR2 SDRAM parts used on OMAP4430 * SDP and Panda. Since the parts used and geometry are identical for * SDP and Panda for a given OMAP4 revision, this information is kept * here instead of being in board directory. However the key functions * exported are weakly linked so that they can be over-ridden in the board * directory if there is a OMAP4 board in the future that uses a different * memory device or geometry. * * For any new board with different memory devices over-ride one or more * of the following functions as per the CONFIG flags you intend to enable: * - emif_get_reg_dump() * - emif_get_dmm_regs() * - emif_get_device_details() * - emif_get_device_timings() */ #ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS const struct emif_regs emif_regs_elpida_200_mhz_2cs = { .sdram_config_init = 0x80000eb9, .sdram_config = 0x80001ab9, .ref_ctrl = 0x0000030c, .sdram_tim1 = 0x08648311, .sdram_tim2 = 0x101b06ca, .sdram_tim3 = 0x0048a19f, .read_idle_ctrl = 0x000501ff, .zq_config = 0x500b3214, .temp_alert_config = 0xd8016893, .emif_ddr_phy_ctlr_1_init = 0x049ffff5, .emif_ddr_phy_ctlr_1 = 0x049ff808 }; const struct emif_regs emif_regs_elpida_380_mhz_1cs = { .sdram_config_init = 0x80000eb1, .sdram_config = 0x80001ab1, .ref_ctrl = 0x000005cd, .sdram_tim1 = 0x10cb0622, .sdram_tim2 = 0x20350d52, .sdram_tim3 = 0x00b1431f, .read_idle_ctrl = 0x000501ff, .zq_config = 0x500b3214, .temp_alert_config = 0x58016893, .emif_ddr_phy_ctlr_1_init = 0x049ffff5, .emif_ddr_phy_ctlr_1 = 0x049ff418 }; const struct emif_regs emif_regs_elpida_400_mhz_1cs = { .sdram_config_init = 0x80800eb2, .sdram_config = 0x80801ab2, .ref_ctrl = 0x00000618, .sdram_tim1 = 0x10eb0662, .sdram_tim2 = 0x20370dd2, .sdram_tim3 = 0x00b1c33f, .read_idle_ctrl = 0x000501ff, .zq_config = 0x500b3215, .temp_alert_config = 0x58016893, .emif_ddr_phy_ctlr_1_init = 0x049ffff5, .emif_ddr_phy_ctlr_1 = 0x049ff418 }; const struct emif_regs emif_regs_elpida_400_mhz_2cs = { .sdram_config_init = 0x80000eb9, .sdram_config = 0x80001ab9, .ref_ctrl = 0x00000618, .sdram_tim1 = 0x10eb0662, .sdram_tim2 = 0x20370dd2, .sdram_tim3 = 0x00b1c33f, .read_idle_ctrl = 0x000501ff, .zq_config = 0xd00b3214, .temp_alert_config = 0xd8016893, .emif_ddr_phy_ctlr_1_init = 0x049ffff5, .emif_ddr_phy_ctlr_1 = 0x049ff418 }; const struct dmm_lisa_map_regs lisa_map_2G_x_1_x_2 = { .dmm_lisa_map_0 = 0xFF020100, .dmm_lisa_map_1 = 0, .dmm_lisa_map_2 = 0, .dmm_lisa_map_3 = 0x80540300, .is_ma_present = 0x0 }; const struct dmm_lisa_map_regs lisa_map_2G_x_2_x_2 = { .dmm_lisa_map_0 = 0xFF020100, .dmm_lisa_map_1 = 0, .dmm_lisa_map_2 = 0, .dmm_lisa_map_3 = 0x80640300, .is_ma_present = 0x0 }; const struct dmm_lisa_map_regs ma_lisa_map_2G_x_2_x_2 = { .dmm_lisa_map_0 = 0xFF020100, .dmm_lisa_map_1 = 0, .dmm_lisa_map_2 = 0, .dmm_lisa_map_3 = 0x80640300, .is_ma_present = 0x1 }; static void emif_get_reg_dump_sdp(u32 emif_nr, const struct emif_regs **regs) { u32 omap4_rev = omap_revision(); /* Same devices and geometry on both EMIFs */ if (omap4_rev == OMAP4430_ES1_0) *regs = &emif_regs_elpida_380_mhz_1cs; else if (omap4_rev == OMAP4430_ES2_0) *regs = &emif_regs_elpida_200_mhz_2cs; else if (omap4_rev == OMAP4430_ES2_3) *regs = &emif_regs_elpida_400_mhz_1cs; else if (omap4_rev < OMAP4470_ES1_0) *regs = &emif_regs_elpida_400_mhz_2cs; else *regs = &emif_regs_elpida_400_mhz_1cs; } void emif_get_reg_dump(u32 emif_nr, const struct emif_regs **regs) __attribute__((weak, alias("emif_get_reg_dump_sdp"))); static void emif_get_dmm_regs_sdp(const struct dmm_lisa_map_regs **dmm_lisa_regs) { u32 omap_rev = omap_revision(); if (omap_rev == OMAP4430_ES1_0) *dmm_lisa_regs = &lisa_map_2G_x_1_x_2; else if (omap_rev == OMAP4430_ES2_3) *dmm_lisa_regs = &lisa_map_2G_x_2_x_2; else if (omap_rev < OMAP4460_ES1_0) *dmm_lisa_regs = &lisa_map_2G_x_2_x_2; else *dmm_lisa_regs = &ma_lisa_map_2G_x_2_x_2; } void emif_get_dmm_regs(const struct dmm_lisa_map_regs **dmm_lisa_regs) __attribute__((weak, alias("emif_get_dmm_regs_sdp"))); #else static const struct lpddr2_device_details elpida_2G_S4_details = { .type = LPDDR2_TYPE_S4, .density = LPDDR2_DENSITY_2Gb, .io_width = LPDDR2_IO_WIDTH_32, .manufacturer = LPDDR2_MANUFACTURER_ELPIDA }; static const struct lpddr2_device_details elpida_4G_S4_details = { .type = LPDDR2_TYPE_S4, .density = LPDDR2_DENSITY_4Gb, .io_width = LPDDR2_IO_WIDTH_32, .manufacturer = LPDDR2_MANUFACTURER_ELPIDA }; struct lpddr2_device_details *emif_get_device_details_sdp(u32 emif_nr, u8 cs, struct lpddr2_device_details *lpddr2_dev_details) { u32 omap_rev = omap_revision(); /* EMIF1 & EMIF2 have identical configuration */ if (((omap_rev == OMAP4430_ES1_0) || (omap_rev == OMAP4470_ES1_0)) && (cs == CS1)) { /* Nothing connected on CS1 for 4430/4470 ES1.0 */ return NULL; } else if (omap_rev < OMAP4470_ES1_0) { /* In all other 4430/4460 cases Elpida 2G device */ *lpddr2_dev_details = elpida_2G_S4_details; } else { /* 4470: 4G device */ *lpddr2_dev_details = elpida_4G_S4_details; } return lpddr2_dev_details; } struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs, struct lpddr2_device_details *lpddr2_dev_details) __attribute__((weak, alias("emif_get_device_details_sdp"))); #endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ #ifndef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS static const struct lpddr2_ac_timings timings_elpida_400_mhz = { .max_freq = 400000000, .RL = 6, .tRPab = 21, .tRCD = 18, .tWR = 15, .tRASmin = 42, .tRRD = 10, .tWTRx2 = 15, .tXSR = 140, .tXPx2 = 15, .tRFCab = 130, .tRTPx2 = 15, .tCKE = 3, .tCKESR = 15, .tZQCS = 90, .tZQCL = 360, .tZQINIT = 1000, .tDQSCKMAXx2 = 11, .tRASmax = 70, .tFAW = 50 }; static const struct lpddr2_ac_timings timings_elpida_333_mhz = { .max_freq = 333000000, .RL = 5, .tRPab = 21, .tRCD = 18, .tWR = 15, .tRASmin = 42, .tRRD = 10, .tWTRx2 = 15, .tXSR = 140, .tXPx2 = 15, .tRFCab = 130, .tRTPx2 = 15, .tCKE = 3, .tCKESR = 15, .tZQCS = 90, .tZQCL = 360, .tZQINIT = 1000, .tDQSCKMAXx2 = 11, .tRASmax = 70, .tFAW = 50 }; static const struct lpddr2_ac_timings timings_elpida_200_mhz = { .max_freq = 200000000, .RL = 3, .tRPab = 21, .tRCD = 18, .tWR = 15, .tRASmin = 42, .tRRD = 10, .tWTRx2 = 20, .tXSR = 140, .tXPx2 = 15, .tRFCab = 130, .tRTPx2 = 15, .tCKE = 3, .tCKESR = 15, .tZQCS = 90, .tZQCL = 360, .tZQINIT = 1000, .tDQSCKMAXx2 = 11, .tRASmax = 70, .tFAW = 50 }; static const struct lpddr2_min_tck min_tck_elpida = { .tRL = 3, .tRP_AB = 3, .tRCD = 3, .tWR = 3, .tRAS_MIN = 3, .tRRD = 2, .tWTR = 2, .tXP = 2, .tRTP = 2, .tCKE = 3, .tCKESR = 3, .tFAW = 8 }; static const struct lpddr2_ac_timings *elpida_ac_timings[MAX_NUM_SPEEDBINS] = { &timings_elpida_200_mhz, &timings_elpida_333_mhz, &timings_elpida_400_mhz }; static const struct lpddr2_device_timings elpida_2G_S4_timings = { .ac_timings = elpida_ac_timings, .min_tck = &min_tck_elpida, }; void emif_get_device_timings_sdp(u32 emif_nr, const struct lpddr2_device_timings **cs0_device_timings, const struct lpddr2_device_timings **cs1_device_timings) { u32 omap_rev = omap_revision(); /* Identical devices on EMIF1 & EMIF2 */ *cs0_device_timings = &elpida_2G_S4_timings; if ((omap_rev == OMAP4430_ES1_0) || (omap_rev == OMAP4470_ES1_0)) *cs1_device_timings = NULL; else *cs1_device_timings = &elpida_2G_S4_timings; } void emif_get_device_timings(u32 emif_nr, const struct lpddr2_device_timings **cs0_device_timings, const struct lpddr2_device_timings **cs1_device_timings) __attribute__((weak, alias("emif_get_device_timings_sdp"))); #endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */ const struct lpddr2_mr_regs mr_regs = { .mr1 = MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3, .mr2 = 0x4, .mr3 = -1, .mr10 = MR10_ZQ_ZQINIT, .mr16 = MR16_REF_FULL_ARRAY }; void get_lpddr2_mr_regs(const struct lpddr2_mr_regs **regs) { *regs = &mr_regs; } __weak const struct read_write_regs *get_bug_regs(u32 *iterations) { return 0; }