/* * NVIDIA Tegra SPI-SLINK controller * * Copyright (c) 2010-2013 NVIDIA Corporation * * See file CREDITS for list of people who contributed to this * project. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <malloc.h> #include <asm/io.h> #include <asm/gpio.h> #include <asm/arch/clock.h> #include <asm/arch-tegra/clk_rst.h> #include <asm/arch-tegra20/tegra20_slink.h> #include <spi.h> #include <fdtdec.h> DECLARE_GLOBAL_DATA_PTR; /* COMMAND */ #define SLINK_CMD_ENB (1 << 31) #define SLINK_CMD_GO (1 << 30) #define SLINK_CMD_M_S (1 << 28) #define SLINK_CMD_CK_SDA (1 << 21) #define SLINK_CMD_CS_POL (1 << 13) #define SLINK_CMD_CS_VAL (1 << 12) #define SLINK_CMD_CS_SOFT (1 << 11) #define SLINK_CMD_BIT_LENGTH (1 << 4) #define SLINK_CMD_BIT_LENGTH_MASK 0x0000001F /* COMMAND2 */ #define SLINK_CMD2_TXEN (1 << 30) #define SLINK_CMD2_RXEN (1 << 31) #define SLINK_CMD2_SS_EN (1 << 18) #define SLINK_CMD2_SS_EN_SHIFT 18 #define SLINK_CMD2_SS_EN_MASK 0x000C0000 #define SLINK_CMD2_CS_ACTIVE_BETWEEN (1 << 17) /* STATUS */ #define SLINK_STAT_BSY (1 << 31) #define SLINK_STAT_RDY (1 << 30) #define SLINK_STAT_ERR (1 << 29) #define SLINK_STAT_RXF_FLUSH (1 << 27) #define SLINK_STAT_TXF_FLUSH (1 << 26) #define SLINK_STAT_RXF_OVF (1 << 25) #define SLINK_STAT_TXF_UNR (1 << 24) #define SLINK_STAT_RXF_EMPTY (1 << 23) #define SLINK_STAT_RXF_FULL (1 << 22) #define SLINK_STAT_TXF_EMPTY (1 << 21) #define SLINK_STAT_TXF_FULL (1 << 20) #define SLINK_STAT_TXF_OVF (1 << 19) #define SLINK_STAT_RXF_UNR (1 << 18) #define SLINK_STAT_CUR_BLKCNT (1 << 15) /* STATUS2 */ #define SLINK_STAT2_RXF_FULL_CNT (1 << 16) #define SLINK_STAT2_TXF_FULL_CNT (1 << 0) #define SPI_TIMEOUT 1000 #define TEGRA_SPI_MAX_FREQ 52000000 struct spi_regs { u32 command; /* SLINK_COMMAND_0 register */ u32 command2; /* SLINK_COMMAND2_0 reg */ u32 status; /* SLINK_STATUS_0 register */ u32 reserved; /* Reserved offset 0C */ u32 mas_data; /* SLINK_MAS_DATA_0 reg */ u32 slav_data; /* SLINK_SLAVE_DATA_0 reg */ u32 dma_ctl; /* SLINK_DMA_CTL_0 register */ u32 status2; /* SLINK_STATUS2_0 reg */ u32 rsvd[56]; /* 0x20 to 0xFF reserved */ u32 tx_fifo; /* SLINK_TX_FIFO_0 reg off 100h */ u32 rsvd2[31]; /* 0x104 to 0x17F reserved */ u32 rx_fifo; /* SLINK_RX_FIFO_0 reg off 180h */ }; struct tegra_spi_ctrl { struct spi_regs *regs; unsigned int freq; unsigned int mode; int periph_id; int valid; }; struct tegra_spi_slave { struct spi_slave slave; struct tegra_spi_ctrl *ctrl; }; static struct tegra_spi_ctrl spi_ctrls[CONFIG_TEGRA_SLINK_CTRLS]; static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave) { return container_of(slave, struct tegra_spi_slave, slave); } int tegra30_spi_cs_is_valid(unsigned int bus, unsigned int cs) { if (bus >= CONFIG_TEGRA_SLINK_CTRLS || cs > 3 || !spi_ctrls[bus].valid) return 0; else return 1; } struct spi_slave *tegra30_spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct tegra_spi_slave *spi; debug("%s: bus: %u, cs: %u, max_hz: %u, mode: %u\n", __func__, bus, cs, max_hz, mode); if (!spi_cs_is_valid(bus, cs)) { printf("SPI error: unsupported bus %d / chip select %d\n", bus, cs); return NULL; } if (max_hz > TEGRA_SPI_MAX_FREQ) { printf("SPI error: unsupported frequency %d Hz. Max frequency" " is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ); return NULL; } spi = spi_alloc_slave(struct tegra_spi_slave, bus, cs); if (!spi) { printf("SPI error: malloc of SPI structure failed\n"); return NULL; } spi->ctrl = &spi_ctrls[bus]; if (!spi->ctrl) { printf("SPI error: could not find controller for bus %d\n", bus); return NULL; } if (max_hz < spi->ctrl->freq) { debug("%s: limiting frequency from %u to %u\n", __func__, spi->ctrl->freq, max_hz); spi->ctrl->freq = max_hz; } spi->ctrl->mode = mode; return &spi->slave; } void tegra30_spi_free_slave(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); free(spi); } int tegra30_spi_init(int *node_list, int count) { struct tegra_spi_ctrl *ctrl; int i; int node = 0; int found = 0; for (i = 0; i < count; i++) { ctrl = &spi_ctrls[i]; node = node_list[i]; ctrl->regs = (struct spi_regs *)fdtdec_get_addr(gd->fdt_blob, node, "reg"); if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) { debug("%s: no slink register found\n", __func__); continue; } ctrl->freq = fdtdec_get_int(gd->fdt_blob, node, "spi-max-frequency", 0); if (!ctrl->freq) { debug("%s: no slink max frequency found\n", __func__); continue; } ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node); if (ctrl->periph_id == PERIPH_ID_NONE) { debug("%s: could not decode periph id\n", __func__); continue; } ctrl->valid = 1; found = 1; debug("%s: found controller at %p, freq = %u, periph_id = %d\n", __func__, ctrl->regs, ctrl->freq, ctrl->periph_id); } return !found; } int tegra30_spi_claim_bus(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; u32 reg; /* Change SPI clock to correct frequency, PLLP_OUT0 source */ clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH, spi->ctrl->freq); /* Clear stale status here */ reg = SLINK_STAT_RDY | SLINK_STAT_RXF_FLUSH | SLINK_STAT_TXF_FLUSH | \ SLINK_STAT_RXF_UNR | SLINK_STAT_TXF_OVF; writel(reg, ®s->status); debug("%s: STATUS = %08x\n", __func__, readl(®s->status)); /* Set master mode and sw controlled CS */ reg = readl(®s->command); reg |= SLINK_CMD_M_S | SLINK_CMD_CS_SOFT; writel(reg, ®s->command); debug("%s: COMMAND = %08x\n", __func__, readl(®s->command)); return 0; } void tegra30_spi_cs_activate(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; /* CS is negated on Tegra, so drive a 1 to get a 0 */ setbits_le32(®s->command, SLINK_CMD_CS_VAL); } void tegra30_spi_cs_deactivate(struct spi_slave *slave) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; /* CS is negated on Tegra, so drive a 0 to get a 1 */ clrbits_le32(®s->command, SLINK_CMD_CS_VAL); } int tegra30_spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *data_out, void *data_in, unsigned long flags) { struct tegra_spi_slave *spi = to_tegra_spi(slave); struct spi_regs *regs = spi->ctrl->regs; u32 reg, tmpdout, tmpdin = 0; const u8 *dout = data_out; u8 *din = data_in; int num_bytes; int ret; debug("%s: slave %u:%u dout %p din %p bitlen %u\n", __func__, slave->bus, slave->cs, dout, din, bitlen); if (bitlen % 8) return -1; num_bytes = bitlen / 8; ret = 0; reg = readl(®s->status); writel(reg, ®s->status); /* Clear all SPI events via R/W */ debug("%s entry: STATUS = %08x\n", __func__, reg); reg = readl(®s->status2); writel(reg, ®s->status2); /* Clear all STATUS2 events via R/W */ debug("%s entry: STATUS2 = %08x\n", __func__, reg); debug("%s entry: COMMAND = %08x\n", __func__, readl(®s->command)); clrsetbits_le32(®s->command2, SLINK_CMD2_SS_EN_MASK, SLINK_CMD2_TXEN | SLINK_CMD2_RXEN | (slave->cs << SLINK_CMD2_SS_EN_SHIFT)); debug("%s entry: COMMAND2 = %08x\n", __func__, readl(®s->command2)); if (flags & SPI_XFER_BEGIN) spi_cs_activate(slave); /* handle data in 32-bit chunks */ while (num_bytes > 0) { int bytes; int is_read = 0; int tm, i; tmpdout = 0; bytes = (num_bytes > 4) ? 4 : num_bytes; if (dout != NULL) { for (i = 0; i < bytes; ++i) tmpdout = (tmpdout << 8) | dout[i]; dout += bytes; } num_bytes -= bytes; clrsetbits_le32(®s->command, SLINK_CMD_BIT_LENGTH_MASK, bytes * 8 - 1); writel(tmpdout, ®s->tx_fifo); setbits_le32(®s->command, SLINK_CMD_GO); /* * Wait for SPI transmit FIFO to empty, or to time out. * The RX FIFO status will be read and cleared last */ for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) { u32 status; status = readl(®s->status); /* We can exit when we've had both RX and TX activity */ if (is_read && (status & SLINK_STAT_TXF_EMPTY)) break; if ((status & (SLINK_STAT_BSY | SLINK_STAT_RDY)) != SLINK_STAT_RDY) tm++; else if (!(status & SLINK_STAT_RXF_EMPTY)) { tmpdin = readl(®s->rx_fifo); is_read = 1; /* swap bytes read in */ if (din != NULL) { for (i = bytes - 1; i >= 0; --i) { din[i] = tmpdin & 0xff; tmpdin >>= 8; } din += bytes; } } } if (tm >= SPI_TIMEOUT) ret = tm; /* clear ACK RDY, etc. bits */ writel(readl(®s->status), ®s->status); } if (flags & SPI_XFER_END) spi_cs_deactivate(slave); debug("%s: transfer ended. Value=%08x, status = %08x\n", __func__, tmpdin, readl(®s->status)); if (ret) { printf("%s: timeout during SPI transfer, tm %d\n", __func__, ret); return -1; } return 0; }