/* * (C) Copyright 2002 * Custom IDEAS, Inc. <www.cideas.com> * Gerald Van Baren <vanbaren@cideas.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <asm/u-boot.h> #include <ioports.h> #include <mpc8260.h> #include <i2c.h> #include <spi.h> #include <command.h> #ifdef CONFIG_SHOW_BOOT_PROGRESS #include <status_led.h> #endif #ifdef CONFIG_ETHER_LOOPBACK_TEST extern void eth_loopback_test(void); #endif /* CONFIG_ETHER_LOOPBACK_TEST */ #include "clkinit.h" #include "ioconfig.h" /* I/O configuration table */ /* * PBI Page Based Interleaving * PSDMR_PBI page based interleaving * 0 bank based interleaving * External Address Multiplexing (EAMUX) adds a clock to address cycles * (this can help with marginal board layouts) * PSDMR_EAMUX adds a clock * 0 no extra clock * Buffer Command (BUFCMD) adds a clock to command cycles. * PSDMR_BUFCMD adds a clock * 0 no extra clock */ #define CONFIG_PBI PSDMR_PBI #define PESSIMISTIC_SDRAM 0 #define EAMUX 0 /* EST requires EAMUX */ #define BUFCMD 0 /* * ADC/DAC Defines: */ #define INITIAL_SAMPLE_RATE 10016 /* Initial Daq sample rate */ #define INITIAL_RIGHT_JUST 0 /* Initial DAC right justification */ #define INITIAL_MCLK_DIVIDE 0 /* Initial MCLK Divide */ #define INITIAL_SAMPLE_64X 1 /* Initial 64x clocking mode */ #define INITIAL_SAMPLE_128X 0 /* Initial 128x clocking mode */ /* * ADC Defines: */ #define I2C_ADC_1_ADDR 0x0E /* I2C Address of the ADC #1 */ #define I2C_ADC_2_ADDR 0x0F /* I2C Address of the ADC #2 */ #define ADC_SDATA1_MASK 0x00020000 /* PA14 - CH12SDATA_PU */ #define ADC_SDATA2_MASK 0x00010000 /* PA15 - CH34SDATA_PU */ #define ADC_VREF_CAP 100 /* VREF capacitor in uF */ #define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP) /* 10 usec per uF, in usec */ #define ADC_SDATA_DELAY 100 /* ADC SDATA release delay in usec */ #define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500) /* Wait at least 4100 LRCLK's */ #define ADC_REG1_FRAME_START 0x80 /* Frame start */ #define ADC_REG1_GROUND_CAL 0x40 /* Ground calibration enable */ #define ADC_REG1_ANA_MOD_PDOWN 0x20 /* Analog modulator section in power down */ #define ADC_REG1_DIG_MOD_PDOWN 0x10 /* Digital modulator section in power down */ #define ADC_REG2_128x 0x80 /* Oversample at 128x */ #define ADC_REG2_CAL 0x40 /* System calibration enable */ #define ADC_REG2_CHANGE_SIGN 0x20 /* Change sign enable */ #define ADC_REG2_LR_DISABLE 0x10 /* Left/Right output disable */ #define ADC_REG2_HIGH_PASS_DIS 0x08 /* High pass filter disable */ #define ADC_REG2_SLAVE_MODE 0x04 /* Slave mode */ #define ADC_REG2_DFS 0x02 /* Digital format select */ #define ADC_REG2_MUTE 0x01 /* Mute */ #define ADC_REG7_ADDR_ENABLE 0x80 /* Address enable */ #define ADC_REG7_PEAK_ENABLE 0x40 /* Peak enable */ #define ADC_REG7_PEAK_UPDATE 0x20 /* Peak update */ #define ADC_REG7_PEAK_FORMAT 0x10 /* Peak display format */ #define ADC_REG7_DIG_FILT_PDOWN 0x04 /* Digital filter power down enable */ #define ADC_REG7_FIR2_IN_EN 0x02 /* External FIR2 input enable */ #define ADC_REG7_PSYCHO_EN 0x01 /* External pyscho filter input enable */ /* * DAC Defines: */ #define I2C_DAC_ADDR 0x11 /* I2C Address of the DAC */ #define DAC_RST_MASK 0x00008000 /* PA16 - DAC_RST* */ #define DAC_RESET_DELAY 100 /* DAC reset delay in usec */ #define DAC_INITIAL_DELAY 5000 /* DAC initialization delay in usec */ #define DAC_REG1_AMUTE 0x80 /* Auto-mute */ #define DAC_REG1_LEFT_JUST_24_BIT (0 << 4) /* Fmt 0: Left justified 24 bit */ #define DAC_REG1_I2S_24_BIT (1 << 4) /* Fmt 1: I2S up to 24 bit */ #define DAC_REG1_RIGHT_JUST_16BIT (2 << 4) /* Fmt 2: Right justified 16 bit */ #define DAC_REG1_RIGHT_JUST_24BIT (3 << 4) /* Fmt 3: Right justified 24 bit */ #define DAC_REG1_RIGHT_JUST_20BIT (4 << 4) /* Fmt 4: Right justified 20 bit */ #define DAC_REG1_RIGHT_JUST_18BIT (5 << 4) /* Fmt 5: Right justified 18 bit */ #define DAC_REG1_DEM_NO (0 << 2) /* No De-emphasis */ #define DAC_REG1_DEM_44KHZ (1 << 2) /* 44.1KHz De-emphasis */ #define DAC_REG1_DEM_48KHZ (2 << 2) /* 48KHz De-emphasis */ #define DAC_REG1_DEM_32KHZ (3 << 2) /* 32KHz De-emphasis */ #define DAC_REG1_SINGLE 0 /* 4- 50KHz sample rate */ #define DAC_REG1_DOUBLE 1 /* 50-100KHz sample rate */ #define DAC_REG1_QUAD 2 /* 100-200KHz sample rate */ #define DAC_REG1_DSD 3 /* Direct Stream Data, DSD */ #define DAC_REG5_INVERT_A 0x80 /* Invert channel A */ #define DAC_REG5_INVERT_B 0x40 /* Invert channel B */ #define DAC_REG5_I2C_MODE 0x20 /* Control port (I2C) mode */ #define DAC_REG5_POWER_DOWN 0x10 /* Power down mode */ #define DAC_REG5_MUTEC_A_B 0x08 /* Mutec A=B */ #define DAC_REG5_FREEZE 0x04 /* Freeze */ #define DAC_REG5_MCLK_DIV 0x02 /* MCLK divide by 2 */ #define DAC_REG5_RESERVED 0x01 /* Reserved */ /* * Check Board Identity: */ int checkboard(void) { printf("SACSng\n"); return 0; } phys_size_t initdram(int board_type) { volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; volatile memctl8260_t *memctl = &immap->im_memctl; volatile uchar c = 0; volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8); uint psdmr = CONFIG_SYS_PSDMR; int i; uint psrt = 14; /* for no SPD */ uint chipselects = 1; /* for no SPD */ uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024; /* for no SPD */ uint or = CONFIG_SYS_OR2_PRELIM; /* for no SPD */ #ifdef SDRAM_SPD_ADDR uint data_width; uint rows; uint banks; uint cols; uint caslatency; uint width; uint rowst; uint sdam; uint bsma; uint sda10; u_char data; u_char cksum; int j; #endif #ifdef SDRAM_SPD_ADDR /* Keep the compiler from complaining about potentially uninitialized vars */ data_width = chipselects = rows = banks = cols = caslatency = psrt = 0; /* * Read the SDRAM SPD EEPROM via I2C. */ i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1); cksum = data; for (j = 1; j < 64; j++) { /* read only the checksummed bytes */ /* note: the I2C address autoincrements when alen == 0 */ i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1); if (j == 5) chipselects = data & 0x0F; else if (j == 6) data_width = data; else if (j == 7) data_width |= data << 8; else if (j == 3) rows = data & 0x0F; else if (j == 4) cols = data & 0x0F; else if (j == 12) { /* * Refresh rate: this assumes the prescaler is set to * approximately 1uSec per tick. */ switch (data & 0x7F) { default: case 0: psrt = 14; /* 15.625uS */ break; case 1: psrt = 2; /* 3.9uS */ break; case 2: psrt = 6; /* 7.8uS */ break; case 3: psrt = 29; /* 31.3uS */ break; case 4: psrt = 60; /* 62.5uS */ break; case 5: psrt = 120; /* 125uS */ break; } } else if (j == 17) banks = data; else if (j == 18) { caslatency = 3; /* default CL */ #if(PESSIMISTIC_SDRAM) if ((data & 0x04) != 0) caslatency = 3; else if ((data & 0x02) != 0) caslatency = 2; else if ((data & 0x01) != 0) caslatency = 1; #else if ((data & 0x01) != 0) caslatency = 1; else if ((data & 0x02) != 0) caslatency = 2; else if ((data & 0x04) != 0) caslatency = 3; #endif else { printf("WARNING: Unknown CAS latency 0x%02X, using 3\n", data); } } else if (j == 63) { if (data != cksum) { printf("WARNING: Configuration data checksum failure:" " is 0x%02x, calculated 0x%02x\n", data, cksum); } } cksum += data; } /* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */ if (caslatency < 2) { printf("WARNING: CL was %d, forcing to 2\n", caslatency); caslatency = 2; } if (rows > 14) { printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n", rows); rows = 14; } if (cols > 11) { printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n", cols); cols = 11; } if ((data_width != 64) && (data_width != 72)) { printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n", data_width); } width = 3; /* 2^3 = 8 bytes = 64 bits wide */ /* * Convert banks into log2(banks) */ if (banks == 2) banks = 1; else if (banks == 4) banks = 2; else if (banks == 8) banks = 3; sdram_size = 1 << (rows + cols + banks + width); #if(CONFIG_PBI == 0) /* bank-based interleaving */ rowst = ((32 - 6) - (rows + cols + width)) * 2; #else rowst = 32 - (rows + banks + cols + width); #endif or = ~(sdram_size - 1) | /* SDAM address mask */ ((banks - 1) << 13) | /* banks per device */ (rowst << 9) | /* rowst */ ((rows - 9) << 6); /* numr */ memctl->memc_or2 = or; /* * SDAM specifies the number of columns that are multiplexed * (reference AN2165/D), defined to be (columns - 6) for page * interleave, (columns - 8) for bank interleave. * * BSMA is 14 - max(rows, cols). The bank select lines come * into play above the highest "address" line going into the * the SDRAM. */ #if(CONFIG_PBI == 0) /* bank-based interleaving */ sdam = cols - 8; bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); sda10 = sdam + 2; #else sdam = cols - 6; bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols); sda10 = sdam; #endif #if(PESSIMISTIC_SDRAM) psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_16_CLK | PSDMR_PRETOACT_8W | PSDMR_ACTTORW_8W | PSDMR_WRC_4C | PSDMR_EAMUX | PSDMR_BUFCMD) | caslatency | ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ (sdam << 24) | (bsma << 21) | (sda10 << 18); #else psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_7_CLK | PSDMR_PRETOACT_3W | /* 1 for 7E parts (fast PC-133) */ PSDMR_ACTTORW_2W | /* 1 for 7E parts (fast PC-133) */ PSDMR_WRC_1C | /* 1 clock + 7nSec */ EAMUX | BUFCMD) | caslatency | ((caslatency - 1) << 6) | /* LDOTOPRE is CL - 1 */ (sdam << 24) | (bsma << 21) | (sda10 << 18); #endif #endif /* * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35): * * "At system reset, initialization software must set up the * programmable parameters in the memory controller banks registers * (ORx, BRx, P/LSDMR). After all memory parameters are configured, * system software should execute the following initialization sequence * for each SDRAM device. * * 1. Issue a PRECHARGE-ALL-BANKS command * 2. Issue eight CBR REFRESH commands * 3. Issue a MODE-SET command to initialize the mode register * * Quote from Micron MT48LC8M16A2 data sheet: * * "...the SDRAM requires a 100uS delay prior to issuing any * command other than a COMMAND INHIBIT or NOP. Starting at some * point during this 100uS period and continuing at least through * the end of this period, COMMAND INHIBIT or NOP commands should * be applied." * * "Once the 100uS delay has been satisfied with at least one COMMAND * INHIBIT or NOP command having been applied, a /PRECHARGE command/ * should be applied. All banks must then be precharged, thereby * placing the device in the all banks idle state." * * "Once in the idle state, /two/ AUTO REFRESH cycles must be * performed. After the AUTO REFRESH cycles are complete, the * SDRAM is ready for mode register programming." * * (/emphasis/ mine, gvb) * * The way I interpret this, Micron start up sequence is: * 1. Issue a PRECHARGE-BANK command (initial precharge) * 2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged") * 3. Issue two (presumably, doing eight is OK) CBR REFRESH commands * 4. Issue a MODE-SET command to initialize the mode register * * -------- * * The initial commands are executed by setting P/LSDMR[OP] and * accessing the SDRAM with a single-byte transaction." * * The appropriate BRx/ORx registers have already been set when we * get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE. */ memctl->memc_mptpr = CONFIG_SYS_MPTPR; memctl->memc_psrt = psrt; memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; for (i = 0; i < 8; i++) *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; *ramaddr = c; /* * Do it a second time for the second set of chips if the DIMM has * two chip selects (double sided). */ if (chipselects > 1) { ramaddr += sdram_size; memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size; memctl->memc_or3 = or; memctl->memc_psdmr = psdmr | PSDMR_OP_PREA; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR; for (i = 0; i < 8; i++) *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_MRW; *ramaddr = c; memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN; *ramaddr = c; } /* return total ram size */ return (sdram_size * chipselects); } /*----------------------------------------------------------------------- * Board Control Functions */ void board_poweroff(void) { while (1); /* hang forever */ } #ifdef CONFIG_MISC_INIT_R /* ------------------------------------------------------------------------- */ int misc_init_r(void) { /* * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization. */ volatile ioport_t *iopa = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */ ); volatile ioport_t *iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT); int reg; /* I2C register value */ char *ep; /* Environment pointer */ char str_buf[12]; /* sprintf output buffer */ int sample_rate; /* ADC/DAC sample rate */ int sample_64x; /* Use 64/4 clocking for the ADC/DAC */ int sample_128x; /* Use 128/4 clocking for the ADC/DAC */ int right_just; /* Is the data to the DAC right justified? */ int mclk_divide; /* MCLK Divide */ int quiet; /* Quiet or minimal output mode */ quiet = 0; if ((ep = getenv("quiet")) != NULL) quiet = simple_strtol(ep, NULL, 10); else setenv("quiet", "0"); /* * SACSng custom initialization: * Start the ADC and DAC clocks, since the Crystal parts do not * work on the I2C bus until the clocks are running. */ sample_rate = INITIAL_SAMPLE_RATE; if ((ep = getenv("DaqSampleRate")) != NULL) sample_rate = simple_strtol(ep, NULL, 10); sample_64x = INITIAL_SAMPLE_64X; sample_128x = INITIAL_SAMPLE_128X; if ((ep = getenv("Daq64xSampling")) != NULL) { sample_64x = simple_strtol(ep, NULL, 10); if (sample_64x) sample_128x = 0; else sample_128x = 1; } else { if ((ep = getenv("Daq128xSampling")) != NULL) { sample_128x = simple_strtol(ep, NULL, 10); if (sample_128x) sample_64x = 0; else sample_64x = 1; } } /* * Stop the clocks and wait for at least 1 LRCLK period * to make sure the clocking has really stopped. */ Daq_Stop_Clocks(); udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE); /* * Initialize the clocks with the new rates */ Daq_Init_Clocks(sample_rate, sample_64x); sample_rate = Daq_Get_SampleRate(); /* * Start the clocks and wait for at least 1 LRCLK period * to make sure the clocking has become stable. */ Daq_Start_Clocks(sample_rate); udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE); sprintf(str_buf, "%d", sample_rate); setenv("DaqSampleRate", str_buf); if (sample_64x) { setenv("Daq64xSampling", "1"); setenv("Daq128xSampling", NULL); } else { setenv("Daq64xSampling", NULL); setenv("Daq128xSampling", "1"); } /* * Display the ADC/DAC clocking information */ if (!quiet) Daq_Display_Clocks(); /* * Determine the DAC data justification */ right_just = INITIAL_RIGHT_JUST; if ((ep = getenv("DaqDACRightJustified")) != NULL) right_just = simple_strtol(ep, NULL, 10); sprintf(str_buf, "%d", right_just); setenv("DaqDACRightJustified", str_buf); /* * Determine the DAC MCLK Divide */ mclk_divide = INITIAL_MCLK_DIVIDE; if ((ep = getenv("DaqDACMClockDivide")) != NULL) mclk_divide = simple_strtol(ep, NULL, 10); sprintf(str_buf, "%d", mclk_divide); setenv("DaqDACMClockDivide", str_buf); /* * Initializing the I2C address in the Crystal A/Ds: * * 1) Wait for VREF cap to settle (10uSec per uF) * 2) Release pullup on SDATA * 3) Write the I2C address to register 6 * 4) Enable address matching by setting the MSB in register 7 */ if (!quiet) printf("Initializing the ADC...\n"); udelay(ADC_INITIAL_DELAY); /* 10uSec per uF of VREF cap */ iopa->pdat &= ~ADC_SDATA1_MASK; /* release SDATA1 */ udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR); /* set address */ i2c_reg_write(I2C_ADC_1_ADDR, 0x07, /* turn on ADDREN */ ADC_REG7_ADDR_ENABLE); i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */ (sample_64x ? 0 : ADC_REG2_128x) | ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE); reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F; if (reg != I2C_ADC_1_ADDR) { printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n", reg, I2C_ADC_1_ADDR); } iopa->pdat &= ~ADC_SDATA2_MASK; /* release SDATA2 */ udelay(ADC_SDATA_DELAY); /* arbitrary settling time */ /* set address (do not set ADDREN yet) */ i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR); i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */ (sample_64x ? 0 : ADC_REG2_128x) | ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE); reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F; if (reg != I2C_ADC_2_ADDR) { printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n", reg, I2C_ADC_2_ADDR); } i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */ ADC_REG1_FRAME_START | ADC_REG1_GROUND_CAL); i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */ (sample_64x ? 0 : ADC_REG2_128x) | ADC_REG2_CAL | ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE); udelay(ADC_CAL_DELAY); /* a minimum of 4100 LRCLKs */ i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00); /* remove GNDCAL */ /* * Now that we have synchronized the ADC's, enable address * selection on the second ADC as well as the first. */ i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE); /* * Initialize the Crystal DAC * * Two of the config lines are used for I2C so we have to set them * to the proper initialization state without inadvertantly * sending an I2C "start" sequence. When we bring the I2C back to * the normal state, we send an I2C "stop" sequence. */ if (!quiet) printf("Initializing the DAC...\n"); /* * Bring the I2C clock and data lines low for initialization */ I2C_SCL(0); I2C_DELAY; I2C_SDA(0); I2C_ACTIVE; I2C_DELAY; /* Reset the DAC */ iopa->pdat &= ~DAC_RST_MASK; udelay(DAC_RESET_DELAY); /* Release the DAC reset */ iopa->pdat |= DAC_RST_MASK; udelay(DAC_INITIAL_DELAY); /* * Cause the DAC to: * Enable control port (I2C mode) * Going into power down */ i2c_reg_write(I2C_DAC_ADDR, 0x05, DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN); /* * Cause the DAC to: * Enable control port (I2C mode) * Going into power down * . MCLK divide by 1 * . MCLK divide by 2 */ i2c_reg_write(I2C_DAC_ADDR, 0x05, DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN | (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); /* * Cause the DAC to: * Auto-mute disabled * . Format 0, left justified 24 bits * . Format 3, right justified 24 bits * No de-emphasis * . Single speed mode * . Double speed mode */ i2c_reg_write(I2C_DAC_ADDR, 0x01, (right_just ? DAC_REG1_RIGHT_JUST_24BIT : DAC_REG1_LEFT_JUST_24_BIT) | DAC_REG1_DEM_NO | (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE)); sprintf(str_buf, "%d", sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE); setenv("DaqDACFunctionalMode", str_buf); /* * Cause the DAC to: * Enable control port (I2C mode) * Remove power down * . MCLK divide by 1 * . MCLK divide by 2 */ i2c_reg_write(I2C_DAC_ADDR, 0x05, DAC_REG5_I2C_MODE | (mclk_divide ? DAC_REG5_MCLK_DIV : 0)); /* * Create a I2C stop condition: * low->high on data while clock is high. */ I2C_SCL(1); I2C_DELAY; I2C_SDA(1); I2C_DELAY; I2C_TRISTATE; if (!quiet) printf("\n"); #ifdef CONFIG_ETHER_LOOPBACK_TEST /* * Run the Ethernet loopback test */ eth_loopback_test(); #endif /* CONFIG_ETHER_LOOPBACK_TEST */ #ifdef CONFIG_SHOW_BOOT_PROGRESS /* * Turn off the RED fail LED now that we are up and running. */ status_led_set(STATUS_LED_RED, STATUS_LED_OFF); #endif return 0; } #ifdef CONFIG_SHOW_BOOT_PROGRESS /* * Show boot status: flash the LED if something goes wrong, indicating * that last thing that worked and thus, by implication, what is broken. * * This stores the last OK value in RAM so this will not work properly * before RAM is initialized. Since it is being used for indicating * boot status (i.e. after RAM is initialized), that is OK. */ static void flash_code(uchar number, uchar modulo, uchar digits) { int j; /* * Recursively do upper digits. */ if (digits > 1) flash_code(number / modulo, modulo, digits - 1); number = number % modulo; /* * Zero is indicated by one long flash (dash). */ if (number == 0) { status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); udelay(1000000); status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); udelay(200000); } else { /* * Non-zero is indicated by short flashes, one per count. */ for (j = 0; j < number; j++) { status_led_set(STATUS_LED_BOOT, STATUS_LED_ON); udelay(100000); status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF); udelay(200000); } } /* * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total */ udelay(700000); } static int last_boot_progress; void show_boot_progress(int status) { int i, j; if (status > 0) { last_boot_progress = status; } else { /* * If a specific failure code is given, flash this code * else just use the last success code we've seen */ if (status < -1) last_boot_progress = -status; /* * Flash this code 5 times */ for (j = 0; j < 5; j++) { /* * Houston, we have a problem. * Blink the last OK status which indicates where things failed. */ status_led_set(STATUS_LED_RED, STATUS_LED_ON); flash_code(last_boot_progress, 5, 3); /* * Delay 5 seconds between repetitions, * with the fault LED blinking */ for (i = 0; i < 5; i++) { status_led_set(STATUS_LED_RED, STATUS_LED_OFF); udelay(500000); status_led_set(STATUS_LED_RED, STATUS_LED_ON); udelay(500000); } } /* * Reset the board to retry initialization. */ do_reset(NULL, 0, 0, NULL); } } #endif /* CONFIG_SHOW_BOOT_PROGRESS */ /* * The following are used to control the SPI chip selects for the SPI command. */ #if defined(CONFIG_CMD_SPI) #define SPI_ADC_CS_MASK 0x00000800 #define SPI_DAC_CS_MASK 0x00001000 static const u32 cs_mask[] = { SPI_ADC_CS_MASK, SPI_DAC_CS_MASK, }; int spi_cs_is_valid(unsigned int bus, unsigned int cs) { return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]); } void spi_cs_activate(struct spi_slave *slave) { volatile ioport_t *iopd = ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ ); iopd->pdat &= ~cs_mask[slave->cs]; } void spi_cs_deactivate(struct spi_slave *slave) { volatile ioport_t *iopd = ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ ); iopd->pdat |= cs_mask[slave->cs]; } #endif #endif /* CONFIG_MISC_INIT_R */