/* * Copyright (C) 2014 Altera Corporation * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include static const struct socfpga_clock_manager *clock_manager_base = (void *)SOCFPGA_CLKMGR_ADDRESS; static u32 eosc1_hz; static u32 cb_intosc_hz; static u32 f2s_free_hz; uint32_t cm_l4_main_clk_hz = 0; uint32_t cm_l4_sp_clk_hz = 0; uint32_t cm_l4_mp_clk_hz = 0; uint32_t cm_l4_sys_free_clk_hz = 0; #define LOCKED_MASK \ (CLKMGR_CLKMGR_STAT_MAINPLLLOCKED_SET_MSK | \ CLKMGR_CLKMGR_STAT_PERPLLLOCKED_SET_MSK) static inline void cm_wait_for_lock(uint32_t mask) { register uint32_t inter_val; do { inter_val = readl(&clock_manager_base->stat) & mask; } while (inter_val != mask); } /* function to poll in the fsm busy bit */ static inline void cm_wait4fsm(void) { register uint32_t inter_val; do { inter_val = readl(&clock_manager_base->stat) & CLKMGR_CLKMGR_STAT_BUSY_SET_MSK; } while (inter_val); } static u32 cm_get_main_vco(void) { u32 vco1, src_hz, numer, denom, vco; u32 clk_src = readl(&clock_manager_base->main_pll_vco0); clk_src = (clk_src >> CLKMGR_MAINPLL_VCO0_PSRC_LSB) & CLKMGR_MAINPLL_VCO0_PSRC_MSK; if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_EOSC) { src_hz = eosc1_hz; } else if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC) { src_hz = cb_intosc_hz; } else if (clk_src == CLKMGR_MAINPLL_VCO0_PSRC_F2S) { src_hz = f2s_free_hz; } else { printf("cm_get_main_vco invalid clk_src %d\n", clk_src); return 0; } vco1 = readl(&clock_manager_base->main_pll_vco1); numer = vco1 & CLKMGR_MAINPLL_VCO1_NUMER_MSK; denom = (vco1 >> CLKMGR_MAINPLL_VCO1_DENOM_LSB) & CLKMGR_MAINPLL_VCO1_DENOM_MSK; vco = src_hz; vco /= (1 + denom); vco *= (1 + numer); return vco; } static u32 cm_get_peri_vco(void) { u32 vco1, src_hz, numer, denom, vco; u32 clk_src = readl(&clock_manager_base->per_pll_vco0); clk_src = (clk_src >> CLKMGR_PERPLL_VCO0_PSRC_LSB) & CLKMGR_PERPLL_VCO0_PSRC_MSK; if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_EOSC) { src_hz = eosc1_hz; } else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC) { src_hz = cb_intosc_hz; } else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_F2S) { src_hz = f2s_free_hz; } else if (clk_src == CLKMGR_PERPLL_VCO0_PSRC_MAIN) { src_hz = cm_get_main_vco(); src_hz /= (readl(&clock_manager_base->main_pll_cntr15clk) & CLKMGR_MAINPLL_CNTRCLK_MSK) + 1; } else { printf("cm_get_per_vco invalid clk_src %d\n", clk_src); return 0; } vco1 = readl(&clock_manager_base->per_pll_vco1); numer = vco1 & CLKMGR_PERPLL_VCO1_NUMER_MSK; denom = (vco1 >> CLKMGR_PERPLL_VCO1_DENOM_LSB) & CLKMGR_PERPLL_VCO1_DENOM_MSK; vco = src_hz; vco /= (1 + denom); vco *= (1 + numer); return vco; } static u32 cm_get_noc_hz(void) { u32 clk_src, dividor, nocclk, src_hz; nocclk = readl(&clock_manager_base->main_pll_nocclk); clk_src = (nocclk >> CLKMGR_MAINPLL_NOCCLK_SRC_LSB) & CLKMGR_MAINPLL_NOCCLK_SRC_MSK; dividor = 1 + (nocclk & CLKMGR_MAINPLL_NOCDIV_MSK); if (clk_src == CLKMGR_PERPLLGRP_SRC_MAIN) { src_hz = cm_get_main_vco(); src_hz /= 1 + (readl(SOCFPGA_CLKMGR_ADDRESS+CLKMGR_MAINPLL_NOC_CLK_OFFSET)& CLKMGR_MAINPLL_NOCCLK_CNT_MSK); } else if (clk_src == CLKMGR_PERPLLGRP_SRC_PERI) { src_hz = cm_get_peri_vco(); src_hz /= 1 + ((readl(SOCFPGA_CLKMGR_ADDRESS+CLKMGR_MAINPLL_NOC_CLK_OFFSET)>> CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB)& CLKMGR_MAINPLL_NOCCLK_CNT_MSK); } else if (clk_src == CLKMGR_PERPLLGRP_SRC_OSC1) { src_hz = eosc1_hz; } else if (clk_src == CLKMGR_PERPLLGRP_SRC_INTOSC) { src_hz = cb_intosc_hz; } else if (clk_src == CLKMGR_PERPLLGRP_SRC_FPGA) { src_hz = f2s_free_hz; } else { src_hz = 0; } return src_hz/dividor; } static u32 cm_get_l4_noc_hz(u32 nocdivshift) { u32 dividor2 = 1 << ((readl(&clock_manager_base->main_pll_nocdiv) >> nocdivshift) & CLKMGR_MAINPLL_NOCDIV_MSK); return cm_get_noc_hz()/dividor2; } unsigned int cm_get_mmc_controller_clk_hz(void) { u32 clk_hz = 0; u32 clk_input = readl(&clock_manager_base->per_pll_cntr6clk); clk_input = (clk_input >> CLKMGR_PERPLL_CNTR6CLK_SRC_LSB) & CLKMGR_PERPLLGRP_SRC_MSK; switch (clk_input) { case CLKMGR_PERPLLGRP_SRC_MAIN: clk_hz = cm_get_main_vco(); clk_hz /= 1 + (readl(&clock_manager_base->main_pll_cntr6clk) & CLKMGR_MAINPLL_CNTRCLK_MSK); break; case CLKMGR_PERPLLGRP_SRC_PERI: clk_hz = cm_get_peri_vco(); clk_hz /= 1 + (readl(&clock_manager_base->per_pll_cntr6clk) & CLKMGR_PERPLL_CNTRCLK_MSK); break; case CLKMGR_PERPLLGRP_SRC_OSC1: clk_hz = eosc1_hz; break; case CLKMGR_PERPLLGRP_SRC_INTOSC: clk_hz = cb_intosc_hz; break; case CLKMGR_PERPLLGRP_SRC_FPGA: clk_hz = f2s_free_hz; break; } return clk_hz/4; } struct mainpll_cfg { u32 vco0_psrc; u32 vco1_denom; u32 vco1_numer; u32 mpuclk; u32 mpuclk_cnt; u32 mpuclk_src; u32 nocclk; u32 nocclk_cnt; u32 nocclk_src; u32 cntr2clk_cnt; u32 cntr3clk_cnt; u32 cntr4clk_cnt; u32 cntr5clk_cnt; u32 cntr6clk_cnt; u32 cntr7clk_cnt; u32 cntr7clk_src; u32 cntr8clk_cnt; u32 cntr9clk_cnt; u32 cntr9clk_src; u32 cntr15clk_cnt; u32 nocdiv_l4mainclk; u32 nocdiv_l4mpclk; u32 nocdiv_l4spclk; u32 nocdiv_csatclk; u32 nocdiv_cstraceclk; u32 nocdiv_cspdbclk; }; struct perpll_cfg { u32 vco0_psrc; u32 vco1_denom; u32 vco1_numer; u32 cntr2clk_cnt; u32 cntr2clk_src; u32 cntr3clk_cnt; u32 cntr3clk_src; u32 cntr4clk_cnt; u32 cntr4clk_src; u32 cntr5clk_cnt; u32 cntr5clk_src; u32 cntr6clk_cnt; u32 cntr6clk_src; u32 cntr7clk_cnt; u32 cntr8clk_cnt; u32 cntr8clk_src; u32 cntr9clk_cnt; u32 cntr9clk_src; u32 emacctl_emac0sel; u32 emacctl_emac1sel; u32 emacctl_emac2sel; u32 gpiodiv_gpiodbclk; }; struct strtou32 { const char *str; const u32 val; }; static const struct strtou32 mailpll_cfg_tab[] = { { "vco0-psrc", offsetof(struct mainpll_cfg, vco0_psrc) }, { "vco1-denom", offsetof(struct mainpll_cfg, vco1_denom) }, { "vco1-numer", offsetof(struct mainpll_cfg, vco1_numer) }, { "mpuclk-cnt", offsetof(struct mainpll_cfg, mpuclk_cnt) }, { "mpuclk-src", offsetof(struct mainpll_cfg, mpuclk_src) }, { "nocclk-cnt", offsetof(struct mainpll_cfg, nocclk_cnt) }, { "nocclk-src", offsetof(struct mainpll_cfg, nocclk_src) }, { "cntr2clk-cnt", offsetof(struct mainpll_cfg, cntr2clk_cnt) }, { "cntr3clk-cnt", offsetof(struct mainpll_cfg, cntr3clk_cnt) }, { "cntr4clk-cnt", offsetof(struct mainpll_cfg, cntr4clk_cnt) }, { "cntr5clk-cnt", offsetof(struct mainpll_cfg, cntr5clk_cnt) }, { "cntr6clk-cnt", offsetof(struct mainpll_cfg, cntr6clk_cnt) }, { "cntr7clk-cnt", offsetof(struct mainpll_cfg, cntr7clk_cnt) }, { "cntr7clk-src", offsetof(struct mainpll_cfg, cntr7clk_src) }, { "cntr8clk-cnt", offsetof(struct mainpll_cfg, cntr8clk_cnt) }, { "cntr9clk-cnt", offsetof(struct mainpll_cfg, cntr9clk_cnt) }, { "cntr9clk-src", offsetof(struct mainpll_cfg, cntr9clk_src) }, { "cntr15clk-cnt", offsetof(struct mainpll_cfg, cntr15clk_cnt) }, { "nocdiv-l4mainclk", offsetof(struct mainpll_cfg, nocdiv_l4mainclk) }, { "nocdiv-l4mpclk", offsetof(struct mainpll_cfg, nocdiv_l4mpclk) }, { "nocdiv-l4spclk", offsetof(struct mainpll_cfg, nocdiv_l4spclk) }, { "nocdiv-csatclk", offsetof(struct mainpll_cfg, nocdiv_csatclk) }, { "nocdiv-cstraceclk", offsetof(struct mainpll_cfg, nocdiv_cstraceclk) }, { "nocdiv-cspdbgclk", offsetof(struct mainpll_cfg, nocdiv_cspdbclk) }, }; static const struct strtou32 perpll_cfg_tab[] = { { "vco0-psrc", offsetof(struct perpll_cfg, vco0_psrc) }, { "vco1-denom", offsetof(struct perpll_cfg, vco1_denom) }, { "vco1-numer", offsetof(struct perpll_cfg, vco1_numer) }, { "cntr2clk-cnt", offsetof(struct perpll_cfg, cntr2clk_cnt) }, { "cntr2clk-src", offsetof(struct perpll_cfg, cntr2clk_src) }, { "cntr3clk-cnt", offsetof(struct perpll_cfg, cntr3clk_cnt) }, { "cntr3clk-src", offsetof(struct perpll_cfg, cntr3clk_src) }, { "cntr4clk-cnt", offsetof(struct perpll_cfg, cntr4clk_cnt) }, { "cntr4clk-src", offsetof(struct perpll_cfg, cntr4clk_src) }, { "cntr5clk-cnt", offsetof(struct perpll_cfg, cntr5clk_cnt) }, { "cntr5clk-src", offsetof(struct perpll_cfg, cntr5clk_src) }, { "cntr6clk-cnt", offsetof(struct perpll_cfg, cntr6clk_cnt) }, { "cntr6clk-src", offsetof(struct perpll_cfg, cntr6clk_src) }, { "cntr7clk-cnt", offsetof(struct perpll_cfg, cntr7clk_cnt) }, { "cntr8clk-cnt", offsetof(struct perpll_cfg, cntr8clk_cnt) }, { "cntr8clk-src", offsetof(struct perpll_cfg, cntr8clk_src) }, { "cntr9clk-cnt", offsetof(struct perpll_cfg, cntr9clk_cnt) }, { "emacctl-emac0sel", offsetof(struct perpll_cfg, emacctl_emac0sel) }, { "emacctl-emac1sel", offsetof(struct perpll_cfg, emacctl_emac1sel) }, { "emacctl-emac2sel", offsetof(struct perpll_cfg, emacctl_emac2sel) }, { "gpiodiv-gpiodbclk", offsetof(struct perpll_cfg, gpiodiv_gpiodbclk) }, }; static const struct strtou32 alteragrp_cfg_tab[] = { { "nocclk", offsetof(struct mainpll_cfg, nocclk) }, { "mpuclk", offsetof(struct mainpll_cfg, mpuclk) }, }; int of_to_struct(const void *blob, int node, const struct strtou32* cfg_tab, int cfg_tab_len, void *cfg) { int i; u32 val; for (i = 0; i < cfg_tab_len; i++) { if (fdtdec_get_int_array(blob, node, cfg_tab[i].str, &val, 1)) { /* could not find required property */ return 100; } *(u32*)(cfg + cfg_tab[i].val) = val; } return 0; } struct strtopu32 { const char *str; u32 *p; }; const struct strtopu32 dt_to_val[] = { {"/clocks/altera_arria10_hps_eosc1", &eosc1_hz}, {"/clocks/altera_arria10_hps_cb_intosc_ls", &cb_intosc_hz}, {"/clocks/altera_arria10_hps_f2h_free", &f2s_free_hz}, }; static void of_get_input_clks(const void *blob) { int node, i; for (i = 0; i < ARRAY_SIZE(dt_to_val); i++) { node = fdt_path_offset(blob, dt_to_val[i].str); if (node < 0) continue; fdtdec_get_int_array(blob, node, "clock-frequency", dt_to_val[i].p, 1); } } int of_get_clk_cfg(const void *blob, struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg) { int node, child, len; const char *node_name; of_get_input_clks(blob); node = fdtdec_next_compatible(blob, 0, COMPAT_ARRIA10_CLK_INIT); if (node < 0) return 1; child = fdt_first_subnode(blob, node); if (child < 0) return 2; node_name = fdt_get_name(blob, child, &len); while (node_name) { if (!strcmp(node_name, "mainpll")) { if (of_to_struct(blob, child, mailpll_cfg_tab, ARRAY_SIZE(mailpll_cfg_tab), main_cfg)) return 101; } else if (!strcmp(node_name, "perpll")) { if (of_to_struct(blob, child, perpll_cfg_tab, ARRAY_SIZE(perpll_cfg_tab), per_cfg)) return 102; } else if (!strcmp(node_name, "alteragrp")) { if (of_to_struct(blob, child, alteragrp_cfg_tab, ARRAY_SIZE(alteragrp_cfg_tab), main_cfg)) return 103; } child = fdt_next_subnode(blob, child); if (child < 0) break; node_name = fdt_get_name(blob, child, &len); } return 0; } /* calculate the intended main VCO frequency based on handoff */ static u32 cm_calc_handoff_main_vco_clk_hz(struct mainpll_cfg *main_cfg) { u32 clk_hz; /* Check main VCO clock source: eosc, intosc or f2s? */ switch (main_cfg->vco0_psrc) { case CLKMGR_MAINPLL_VCO0_PSRC_EOSC: clk_hz = eosc1_hz; break; case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC: clk_hz = cb_intosc_hz; break; case CLKMGR_MAINPLL_VCO0_PSRC_F2S: clk_hz = f2s_free_hz; break; default: return 0; } /* calculate the VCO frequency */ clk_hz /= (1 + main_cfg->vco1_denom); clk_hz *= (1 + main_cfg->vco1_numer); return clk_hz; } /* calculate the intended periph VCO frequency based on handoff */ static u32 cm_calc_handoff_periph_vco_clk_hz(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg) { u32 clk_hz; /* Check periph VCO clock source: eosc, intosc, f2s or mainpll? */ switch (per_cfg->vco0_psrc) { case CLKMGR_PERPLL_VCO0_PSRC_EOSC: clk_hz = eosc1_hz; break; case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC: clk_hz = cb_intosc_hz; break; case CLKMGR_PERPLL_VCO0_PSRC_F2S: clk_hz = f2s_free_hz; break; case CLKMGR_PERPLL_VCO0_PSRC_MAIN: clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg); clk_hz /= main_cfg->cntr15clk_cnt; break; default: return 0; } /* calculate the VCO frequency */ clk_hz /= (1 + per_cfg->vco1_denom); clk_hz *= (1 + per_cfg->vco1_numer); return clk_hz; } /* calculate the intended MPU clock frequency based on handoff */ static u32 cm_calc_handoff_mpu_clk_hz(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg) { u32 clk_hz; /* Check MPU clock source: main, periph, osc1, intosc or f2s? */ switch (main_cfg->mpuclk_src) { case CLKMGR_MAINPLL_MPUCLK_SRC_MAIN: clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg); clk_hz /= ((main_cfg->mpuclk & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1); break; case CLKMGR_MAINPLL_MPUCLK_SRC_PERI: clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg); clk_hz /= (((main_cfg->mpuclk >> CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1); break; case CLKMGR_MAINPLL_MPUCLK_SRC_OSC1: clk_hz = eosc1_hz; break; case CLKMGR_MAINPLL_MPUCLK_SRC_INTOSC: clk_hz = cb_intosc_hz; break; case CLKMGR_MAINPLL_MPUCLK_SRC_FPGA: clk_hz = f2s_free_hz; break; default: return 0; } clk_hz /= (main_cfg->mpuclk_cnt + 1); return clk_hz; } /* calculate the intended NOC clock frequency based on handoff */ static u32 cm_calc_handoff_noc_clk_hz(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg) { u32 clk_hz; /* Check MPU clock source: main, periph, osc1, intosc or f2s? */ switch (main_cfg->nocclk_src) { case CLKMGR_MAINPLL_NOCCLK_SRC_MAIN: clk_hz = cm_calc_handoff_main_vco_clk_hz(main_cfg); clk_hz /= ((main_cfg->nocclk & CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1); break; case CLKMGR_MAINPLL_NOCCLK_SRC_PERI: clk_hz = cm_calc_handoff_periph_vco_clk_hz(main_cfg, per_cfg); clk_hz /= (((main_cfg->nocclk >> CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) & CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1); break; case CLKMGR_MAINPLL_NOCCLK_SRC_OSC1: clk_hz = eosc1_hz; break; case CLKMGR_MAINPLL_NOCCLK_SRC_INTOSC: clk_hz = cb_intosc_hz; break; case CLKMGR_MAINPLL_NOCCLK_SRC_FPGA: clk_hz = f2s_free_hz; break; default: return 0; } clk_hz /= (main_cfg->nocclk_cnt + 1); return clk_hz; } /* return 1 if PLL ramp is required */ static int cm_is_pll_ramp_required(int main0periph1, struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg) { /* Check for main PLL */ if (main0periph1 == 0) { /* * PLL ramp is not required if both MPU clock and NOC clock are * not sourced from main PLL */ if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_MAIN && main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) return 0; /* * PLL ramp is required if MPU clock is sourced from main PLL * and MPU clock is over 900MHz (as advised by HW team) */ if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN && (cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) > CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ)) return 1; /* * PLL ramp is required if NOC clock is sourced from main PLL * and NOC clock is over 300MHz (as advised by HW team) */ if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN && (cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) > CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ)) return 2; } else if (main0periph1 == 1) { /* * PLL ramp is not required if both MPU clock and NOC clock are * not sourced from periph PLL */ if (main_cfg->mpuclk_src != CLKMGR_MAINPLL_MPUCLK_SRC_PERI && main_cfg->nocclk_src != CLKMGR_MAINPLL_NOCCLK_SRC_PERI) return 0; /* * PLL ramp is required if MPU clock are source from periph PLL * and MPU clock is over 900MHz (as advised by HW team) */ if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI && (cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg) > CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ)) return 1; /* * PLL ramp is required if NOC clock are source from periph PLL * and NOC clock is over 300MHz (as advised by HW team) */ if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI && (cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg) > CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ)) return 2; } return 0; } /* * Calculate the new PLL numerator which is based on existing DTS hand off and * intended safe frequency (safe_hz). Note that PLL ramp is only modifying the * numerator while maintaining denominator as denominator will influence the * jitter condition. Please refer A10 HPS TRM for the jitter guide. Note final * value for numerator is minus with 1 to cater our register value * representation. */ static u32 cm_calc_safe_pll_numer(int main0periph1, struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg, u32 safe_hz) { u32 clk_hz = 0; /* Check for main PLL */ if (main0periph1 == 0) { /* Check main VCO clock source: eosc, intosc or f2s? */ switch (main_cfg->vco0_psrc) { case CLKMGR_MAINPLL_VCO0_PSRC_EOSC: clk_hz = eosc1_hz; break; case CLKMGR_MAINPLL_VCO0_PSRC_E_INTOSC: clk_hz = cb_intosc_hz; break; case CLKMGR_MAINPLL_VCO0_PSRC_F2S: clk_hz = f2s_free_hz; break; default: return 0; } /* Applicable if MPU clock is from main PLL */ if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) { /* calculate the safe numer value */ clk_hz = (safe_hz / clk_hz) * (main_cfg->mpuclk_cnt + 1) * ((main_cfg->mpuclk & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1) * (1 + main_cfg->vco1_denom) - 1; } /* Reach here if MPU clk not from main PLL but NOC clk is */ else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) { /* calculate the safe numer value */ clk_hz = (safe_hz / clk_hz) * (main_cfg->nocclk_cnt + 1) * ((main_cfg->nocclk & CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1) * (1 + main_cfg->vco1_denom) - 1; } else clk_hz = 0; } else if (main0periph1 == 1) { /* Check periph VCO clock source: eosc, intosc, f2s, mainpll */ switch (per_cfg->vco0_psrc) { case CLKMGR_PERPLL_VCO0_PSRC_EOSC: clk_hz = eosc1_hz; break; case CLKMGR_PERPLL_VCO0_PSRC_E_INTOSC: clk_hz = cb_intosc_hz; break; case CLKMGR_PERPLL_VCO0_PSRC_F2S: clk_hz = f2s_free_hz; break; case CLKMGR_PERPLL_VCO0_PSRC_MAIN: clk_hz = cm_calc_handoff_main_vco_clk_hz( main_cfg); clk_hz /= main_cfg->cntr15clk_cnt; break; default: return 0; } /* Applicable if MPU clock is from periph PLL */ if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) { /* calculate the safe numer value */ clk_hz = (safe_hz / clk_hz) * (main_cfg->mpuclk_cnt + 1) * (((main_cfg->mpuclk >> CLKMGR_MAINPLL_MPUCLK_PERICNT_LSB) & CLKMGR_MAINPLL_MPUCLK_CNT_MSK) + 1) * (1 + per_cfg->vco1_denom) - 1; } /* Reach here if MPU clk not from periph PLL but NOC clk is */ else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) { /* calculate the safe numer value */ clk_hz = (safe_hz / clk_hz) * (main_cfg->nocclk_cnt + 1) * (((main_cfg->nocclk >> CLKMGR_MAINPLL_NOCCLK_PERICNT_LSB) & CLKMGR_MAINPLL_NOCCLK_CNT_MSK) + 1) * (1 + per_cfg->vco1_denom) - 1; } else clk_hz = 0; } return clk_hz; } /* ramping the main PLL to final value */ static void cm_pll_ramp_main(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg, u32 pll_ramp_main_hz) { u32 clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0; /* find out the increment value */ if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_MAIN) { clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ; clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg); } else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_MAIN) { clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ; clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg); } /* execute the ramping here */ for (clk_hz = pll_ramp_main_hz + clk_incr_hz; clk_hz < clk_final_hz; clk_hz += clk_incr_hz) { writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) | cm_calc_safe_pll_numer(0, main_cfg, per_cfg, clk_hz), &clock_manager_base->main_pll_vco1); udelay(1000); cm_wait_for_lock(LOCKED_MASK); } writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) | main_cfg->vco1_numer, &clock_manager_base->main_pll_vco1); udelay(1000); cm_wait_for_lock(LOCKED_MASK); } /* ramping the periph PLL to final value */ static void cm_pll_ramp_periph(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg, u32 pll_ramp_periph_hz) { u32 clk_hz = 0, clk_incr_hz = 0, clk_final_hz = 0; /* find out the increment value */ if (main_cfg->mpuclk_src == CLKMGR_MAINPLL_MPUCLK_SRC_PERI) { clk_incr_hz = CLKMGR_PLL_RAMP_MPUCLK_INCREMENT_HZ; clk_final_hz = cm_calc_handoff_mpu_clk_hz(main_cfg, per_cfg); } else if (main_cfg->nocclk_src == CLKMGR_MAINPLL_NOCCLK_SRC_PERI) { clk_incr_hz = CLKMGR_PLL_RAMP_NOCCLK_INCREMENT_HZ; clk_final_hz = cm_calc_handoff_noc_clk_hz(main_cfg, per_cfg); } /* execute the ramping here */ for (clk_hz = pll_ramp_periph_hz + clk_incr_hz; clk_hz < clk_final_hz; clk_hz += clk_incr_hz) { writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) | cm_calc_safe_pll_numer(1, main_cfg, per_cfg, clk_hz), &clock_manager_base->per_pll_vco1); udelay(1000); cm_wait_for_lock(LOCKED_MASK); } writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) | per_cfg->vco1_numer, &clock_manager_base->per_pll_vco1); udelay(1000); cm_wait_for_lock(LOCKED_MASK); } /* * Setup clocks while making no assumptions of the * previous state of the clocks. * * Start by being paranoid and gate all sw managed clocks * * Put all plls in bypass * * Put all plls VCO registers back to reset value (bgpwr dwn). * * Put peripheral and main pll src to reset value to avoid glitch. * * Delay 5 us. * * Deassert bg pwr dn and set numerator and denominator * * Start 7 us timer. * * set internal dividers * * Wait for 7 us timer. * * Enable plls * * Set external dividers while plls are locking * * Wait for pll lock * * Assert/deassert outreset all. * * Take all pll's out of bypass * * Clear safe mode * * set source main and peripheral clocks * * Ungate clocks */ static int cm_full_cfg(struct mainpll_cfg *main_cfg, struct perpll_cfg *per_cfg) { u32 pll_ramp_main_hz = 0, pll_ramp_periph_hz = 0, ramp_required; #ifndef TEST_AT_ASIMOV /* gate off all mainpll clock excpet HW managed clock */ writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK | CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK, &clock_manager_base->main_pll_enr); /* now we can gate off the rest of the peripheral clocks */ writel(0, &clock_manager_base->per_pll_en); /* Put all plls in external bypass */ writel(CLKMGR_MAINPLL_BYPASS_RESET, &clock_manager_base->main_pll_bypasss); writel(CLKMGR_PERPLL_BYPASS_RESET, &clock_manager_base->per_pll_bypasss); /* * Put all plls VCO registers back to reset value. * Some code might have messed with them. At same time set the * desired clock source */ writel(CLKMGR_MAINPLL_VCO0_RESET | CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK | (main_cfg->vco0_psrc << CLKMGR_MAINPLL_VCO0_PSRC_LSB), &clock_manager_base->main_pll_vco0); writel(CLKMGR_PERPLL_VCO0_RESET | CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK | (per_cfg->vco0_psrc << CLKMGR_PERPLL_VCO0_PSRC_LSB), &clock_manager_base->per_pll_vco0); writel(CLKMGR_MAINPLL_VCO1_RESET, &clock_manager_base->main_pll_vco1); writel(CLKMGR_PERPLL_VCO1_RESET, &clock_manager_base->per_pll_vco1); /* clear the interrupt register status register */ writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK | CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK | CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK | CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK | CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK | CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK | CLKMGR_CLKMGR_INTR_MAINPLLACHIEVED_SET_MSK | CLKMGR_CLKMGR_INTR_PERPLLACHIEVED_SET_MSK, &clock_manager_base->intr); /* Program VCO “Numerator” and “Denominator” for main PLL */ ramp_required = cm_is_pll_ramp_required(0, main_cfg, per_cfg); if (ramp_required) { /* set main PLL to safe starting threshold frequency */ if (ramp_required == 1) pll_ramp_main_hz = CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ; else if (ramp_required == 2) pll_ramp_main_hz = CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ; writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) | cm_calc_safe_pll_numer(0, main_cfg, per_cfg, pll_ramp_main_hz), &clock_manager_base->main_pll_vco1); } else writel((main_cfg->vco1_denom << CLKMGR_MAINPLL_VCO1_DENOM_LSB) | main_cfg->vco1_numer, &clock_manager_base->main_pll_vco1); /* Program VCO “Numerator” and “Denominator” for periph PLL */ ramp_required = cm_is_pll_ramp_required(1, main_cfg, per_cfg); if (ramp_required) { /* set periph PLL to safe starting threshold frequency */ if (ramp_required == 1) pll_ramp_periph_hz = CLKMGR_PLL_RAMP_MPUCLK_THRESHOLD_HZ; else if (ramp_required == 2) pll_ramp_periph_hz = CLKMGR_PLL_RAMP_NOCCLK_THRESHOLD_HZ; writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) | cm_calc_safe_pll_numer(1, main_cfg, per_cfg, pll_ramp_periph_hz), &clock_manager_base->per_pll_vco1); } else writel((per_cfg->vco1_denom << CLKMGR_PERPLL_VCO1_DENOM_LSB) | per_cfg->vco1_numer, &clock_manager_base->per_pll_vco1); /* Wait for at least 5 us */ udelay(5); /* Now deassert BGPWRDN and PWRDN */ clrbits_le32(&clock_manager_base->main_pll_vco0, CLKMGR_MAINPLL_VCO0_BGPWRDN_SET_MSK | CLKMGR_MAINPLL_VCO0_PWRDN_SET_MSK); clrbits_le32(&clock_manager_base->per_pll_vco0, CLKMGR_PERPLL_VCO0_BGPWRDN_SET_MSK | CLKMGR_PERPLL_VCO0_PWRDN_SET_MSK); #endif /***************** TEST_AT_ASIMOV *****************/ /* Wait for at least 7 us */ udelay(7); #ifndef TEST_AT_ASIMOV /* enable the VCO and disable the external regulator to PLL */ writel((readl(&clock_manager_base->main_pll_vco0) & ~CLKMGR_MAINPLL_VCO0_REGEXTSEL_SET_MSK) | CLKMGR_MAINPLL_VCO0_EN_SET_MSK, &clock_manager_base->main_pll_vco0); writel((readl(&clock_manager_base->per_pll_vco0) & ~CLKMGR_PERPLL_VCO0_REGEXTSEL_SET_MSK) | CLKMGR_PERPLL_VCO0_EN_SET_MSK, &clock_manager_base->per_pll_vco0); /* setup all the main PLL counter and clock source */ writel(main_cfg->nocclk, SOCFPGA_CLKMGR_ADDRESS + CLKMGR_MAINPLL_NOC_CLK_OFFSET); writel(main_cfg->mpuclk, SOCFPGA_CLKMGR_ADDRESS + CLKMGR_ALTERAGRP_MPU_CLK_OFFSET); /* main_emaca_clk divider */ writel(main_cfg->cntr2clk_cnt, &clock_manager_base->main_pll_cntr2clk); /* main_emacb_clk divider */ writel(main_cfg->cntr3clk_cnt, &clock_manager_base->main_pll_cntr3clk); /* main_emac_ptp_clk divider */ writel(main_cfg->cntr4clk_cnt, &clock_manager_base->main_pll_cntr4clk); /* main_gpio_db_clk divider */ writel(main_cfg->cntr5clk_cnt, &clock_manager_base->main_pll_cntr5clk); /* main_sdmmc_clk divider */ writel(main_cfg->cntr6clk_cnt, &clock_manager_base->main_pll_cntr6clk); /* main_s2f_user0_clk divider */ writel(main_cfg->cntr7clk_cnt | (main_cfg->cntr7clk_src << CLKMGR_MAINPLL_CNTR7CLK_SRC_LSB), &clock_manager_base->main_pll_cntr7clk); /* main_s2f_user1_clk divider */ writel(main_cfg->cntr8clk_cnt, &clock_manager_base->main_pll_cntr8clk); /* main_hmc_pll_clk divider */ writel(main_cfg->cntr9clk_cnt | (main_cfg->cntr9clk_src << CLKMGR_MAINPLL_CNTR9CLK_SRC_LSB), &clock_manager_base->main_pll_cntr9clk); /* main_periph_ref_clk divider */ writel(main_cfg->cntr15clk_cnt, &clock_manager_base->main_pll_cntr15clk); /* setup all the peripheral PLL counter and clock source */ /* peri_emaca_clk divider */ writel(per_cfg->cntr2clk_cnt | (per_cfg->cntr2clk_src << CLKMGR_PERPLL_CNTR2CLK_SRC_LSB), &clock_manager_base->per_pll_cntr2clk); /* peri_emacb_clk divider */ writel(per_cfg->cntr3clk_cnt | (per_cfg->cntr3clk_src << CLKMGR_PERPLL_CNTR3CLK_SRC_LSB), &clock_manager_base->per_pll_cntr3clk); /* peri_emac_ptp_clk divider */ writel(per_cfg->cntr4clk_cnt | (per_cfg->cntr4clk_src << CLKMGR_PERPLL_CNTR4CLK_SRC_LSB), &clock_manager_base->per_pll_cntr4clk); /* peri_gpio_db_clk divider */ writel(per_cfg->cntr5clk_cnt | (per_cfg->cntr5clk_src << CLKMGR_PERPLL_CNTR5CLK_SRC_LSB), &clock_manager_base->per_pll_cntr5clk); /* peri_sdmmc_clk divider */ writel(per_cfg->cntr6clk_cnt | (per_cfg->cntr6clk_src << CLKMGR_PERPLL_CNTR6CLK_SRC_LSB), &clock_manager_base->per_pll_cntr6clk); /* peri_s2f_user0_clk divider */ writel(per_cfg->cntr7clk_cnt, &clock_manager_base->per_pll_cntr7clk); /* peri_s2f_user1_clk divider */ writel(per_cfg->cntr8clk_cnt | (per_cfg->cntr8clk_src << CLKMGR_PERPLL_CNTR8CLK_SRC_LSB), &clock_manager_base->per_pll_cntr8clk); /* peri_hmc_pll_clk divider */ writel(per_cfg->cntr9clk_cnt, &clock_manager_base->per_pll_cntr9clk); /* setup all the external PLL counter */ /* mpu wrapper / external divider */ writel(main_cfg->mpuclk_cnt | (main_cfg->mpuclk_src << CLKMGR_MAINPLL_MPUCLK_SRC_LSB), &clock_manager_base->main_pll_mpuclk); /* NOC wrapper / external divider */ writel(main_cfg->nocclk_cnt | (main_cfg->nocclk_src << CLKMGR_MAINPLL_NOCCLK_SRC_LSB), &clock_manager_base->main_pll_nocclk); /* NOC subclock divider such as l4 */ writel(main_cfg->nocdiv_l4mainclk | (main_cfg->nocdiv_l4mpclk << CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB) | (main_cfg->nocdiv_l4spclk << CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB) | (main_cfg->nocdiv_csatclk << CLKMGR_MAINPLL_NOCDIV_CSATCLK_LSB) | (main_cfg->nocdiv_cstraceclk << CLKMGR_MAINPLL_NOCDIV_CSTRACECLK_LSB) | (main_cfg->nocdiv_cspdbclk << CLKMGR_MAINPLL_NOCDIV_CSPDBGCLK_LSB), &clock_manager_base->main_pll_nocdiv); /* gpio_db external divider */ writel(per_cfg->gpiodiv_gpiodbclk, &clock_manager_base->per_pll_gpiodiv); /* setup the EMAC clock mux select */ writel((per_cfg->emacctl_emac0sel << CLKMGR_PERPLL_EMACCTL_EMAC0SEL_LSB) | (per_cfg->emacctl_emac1sel << CLKMGR_PERPLL_EMACCTL_EMAC1SEL_LSB) | (per_cfg->emacctl_emac2sel << CLKMGR_PERPLL_EMACCTL_EMAC2SEL_LSB), &clock_manager_base->per_pll_emacctl); /* at this stage, check for PLL lock status */ cm_wait_for_lock(LOCKED_MASK); /* * after locking, but before taking out of bypass, * assert/deassert outresetall */ /* assert mainpll outresetall */ setbits_le32(&clock_manager_base->main_pll_vco0, CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK); /* assert perpll outresetall */ setbits_le32(&clock_manager_base->per_pll_vco0, CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK); /* de-assert mainpll outresetall */ clrbits_le32(&clock_manager_base->main_pll_vco0, CLKMGR_MAINPLL_VCO0_OUTRSTALL_SET_MSK); /* de-assert perpll outresetall */ clrbits_le32(&clock_manager_base->per_pll_vco0, CLKMGR_PERPLL_VCO0_OUTRSTALL_SET_MSK); /* Take all PLLs out of bypass when boot mode is cleared. */ /* release mainpll from bypass */ writel(CLKMGR_MAINPLL_BYPASS_RESET, &clock_manager_base->main_pll_bypassr); /* wait till Clock Manager is not busy */ cm_wait4fsm(); /* release perpll from bypass */ writel(CLKMGR_PERPLL_BYPASS_RESET, &clock_manager_base->per_pll_bypassr); /* wait till Clock Manager is not busy */ cm_wait4fsm(); /* clear boot mode */ clrbits_le32(&clock_manager_base->ctrl, CLKMGR_CLKMGR_CTL_BOOTMOD_SET_MSK); /* wait till Clock Manager is not busy */ cm_wait4fsm(); /* At here, we need to ramp to final value if needed */ if (pll_ramp_main_hz != 0) cm_pll_ramp_main(main_cfg, per_cfg, pll_ramp_main_hz); if (pll_ramp_periph_hz != 0) cm_pll_ramp_periph(main_cfg, per_cfg, pll_ramp_periph_hz); /* Now ungate non-hw-managed clocks */ writel(CLKMGR_MAINPLL_EN_S2FUSER0CLKEN_SET_MSK | CLKMGR_MAINPLL_EN_HMCPLLREFCLKEN_SET_MSK, &clock_manager_base->main_pll_ens); writel(CLKMGR_PERPLL_EN_RESET, &clock_manager_base->per_pll_ens); /* Clear the loss lock and slip bits as they might set during clock reconfiguration */ writel(CLKMGR_CLKMGR_INTR_MAINPLLLOST_SET_MSK | CLKMGR_CLKMGR_INTR_PERPLLLOST_SET_MSK | CLKMGR_CLKMGR_INTR_MAINPLLRFSLIP_SET_MSK | CLKMGR_CLKMGR_INTR_PERPLLRFSLIP_SET_MSK | CLKMGR_CLKMGR_INTR_MAINPLLFBSLIP_SET_MSK | CLKMGR_CLKMGR_INTR_PERPLLFBSLIP_SET_MSK, &clock_manager_base->intr); #endif /***************** TEST_AT_ASIMOV *****************/ return 0; } int cm_basic_init(const void *blob) { struct mainpll_cfg main_cfg; struct perpll_cfg per_cfg; int rval; /* initialize to zero for use case of optional node */ memset(&main_cfg, 0, sizeof(main_cfg)); if (of_get_clk_cfg(blob, &main_cfg, &per_cfg)) { return 1; } rval = cm_full_cfg(&main_cfg, &per_cfg); cm_l4_main_clk_hz = cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB); cm_l4_mp_clk_hz = cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB); cm_l4_sp_clk_hz = cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB); cm_l4_sys_free_clk_hz = cm_get_noc_hz()/4; return rval; } void cm_use_intosc(void) { setbits_le32(&clock_manager_base->ctrl, CLKMGR_CLKMGR_CTL_BOOTCLK_INTOSC_SET_MSK); } static void cm_print_clock_quick_summary(void) { printf("EOSC1 %8d kHz\n", eosc1_hz / 1000); printf("cb_intosc %8d kHz\n", cb_intosc_hz / 1000); printf("f2s_free %8d kHz\n", f2s_free_hz / 1000); printf("MMC %8d kHz\n", cm_get_mmc_controller_clk_hz() / 1000); printf("Main VCO %8d kHz\n", cm_get_main_vco()/1000); printf("NOC %8d kHz\n", cm_get_noc_hz()/1000); printf("L4 Main %8d kHz\n", cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MAINCLK_LSB)/1000); printf("L4 MP %8d kHz\n", cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4MPCLK_LSB)/1000); printf("L4 SP %8d kHz\n", cm_get_l4_noc_hz(CLKMGR_MAINPLL_NOCDIV_L4SPCLK_LSB)/1000); printf("L4 sys free %8d kHz\n", cm_l4_sys_free_clk_hz/1000); } int do_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { cm_print_clock_quick_summary(); return 0; } U_BOOT_CMD( clocks, CONFIG_SYS_MAXARGS, 1, do_showclocks, "display clocks", "" );