/* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0" * * Written by Nir Drucker and Shay Gueron, * AWS Cryptographic Algorithms Group. * (ndrucker@amazon.com, gueron@amazon.com) */ #include "gf2x.h" #include "utilities.h" #if !defined(USE_OPENSSL_GF2M) // The algorithm is based on the windowing method, for example as in: // Brent, R. P., Gaudry, P., Thomé, E., & Zimmermann, P. (2008, May), "Faster // multiplication in GF (2)[x]". In: International Algorithmic Number Theory // Symposium (pp. 153-166). Springer, Berlin, Heidelberg. In this implementation, // the last three bits are multiplied using a schoolbook multiplicaiton. void gf2x_mul_1x1(uint64_t *c, uint64_t a, uint64_t b) { uint64_t h = 0, l = 0, u[8]; const uint64_t w = 64; const uint64_t s = 3; // Multiplying 64 bits by 7 can results in an overflow of 3 bits. // Therefore, these bits are masked out, and are treated in step 3. const uint64_t b0 = b & 0x1fffffffffffffff; // Step 1: Calculate a multiplication table with 8 entries. u[0] = 0; u[1] = b0; u[2] = u[1] << 1; u[3] = u[2] ^ b0; u[4] = u[2] << 1; u[5] = u[4] ^ b0; u[6] = u[3] << 1; u[7] = u[6] ^ b0; // Step 2: Multiply two elements in parallel in poisitions i,i+s l = u[a & 7] ^ (u[(a >> 3) & 7] << 3); h = (u[(a >> 3) & 7] >> 61); for(uint32_t i = (2 * s); i < w; i += (2 * s)) { uint64_t g1 = u[(a >> i) & 7]; uint64_t g2 = u[(a >> (i + s)) & 7]; l ^= (g1 << i) ^ (g2 << (i + s)); h ^= (g1 >> (w - i)) ^ (g2 >> (w - (i + s))); } // Step 3: Multiply the last three bits. for(uint8_t i = 61; i < 64; i++) { uint64_t mask = (-((b >> i) & 1)); l ^= ((a << i) & mask); h ^= ((a >> (w - i)) & mask); } c[0] = l; c[1] = h; } void karatzuba_add1(OUT const uint64_t *res, IN const uint64_t *a, IN const uint64_t *b, IN const uint64_t n_half, IN uint64_t *alah) { for(uint32_t j = 0; j < n_half; j++) { alah[j + 0 * n_half] = a[j] ^ a[n_half + j]; alah[j + 1 * n_half] = b[j] ^ b[n_half + j]; alah[j + 2 * n_half] = res[n_half + j] ^ res[2 * n_half + j]; } } void karatzuba_add2(OUT uint64_t *res1, OUT uint64_t *res2, IN const uint64_t *res, IN const uint64_t *tmp, IN const uint64_t n_half) { for(uint32_t j = 0; j < n_half; j++) { res1[j] ^= res[j] ^ tmp[j]; res2[j] ^= res2[n_half + j] ^ tmp[j]; } } void red(uint64_t *a) { for(uint32_t i = 0; i < R_QW; i++) { const uint64_t temp0 = a[R_QW + i - 1]; const uint64_t temp1 = a[R_QW + i]; a[i] ^= (temp0 >> LAST_R_QW_LEAD) | (temp1 << LAST_R_QW_TRAIL); } a[R_QW - 1] &= LAST_R_QW_MASK; // Clean the secrets from the upper half of a. secure_clean((uint8_t *)&a[R_QW], sizeof(uint64_t) * R_QW); } #endif