/******************************************************************************************** * Supersingular Isogeny Key Encapsulation Library * * Abstract: elliptic curve and isogeny functions *********************************************************************************************/ #include "sike_r1_namespace.h" #include "P503_internal_r1.h" void xDBL(const point_proj_t P, point_proj_t Q, const f2elm_t *A24plus, const f2elm_t *C24) { // Doubling of a Montgomery point in projective coordinates (X:Z). // Input: projective Montgomery x-coordinates P = (X1:Z1), where x1=X1/Z1 and Montgomery curve constants A+2C and 4C. // Output: projective Montgomery x-coordinates Q = 2*P = (X2:Z2). f2elm_t _t0, _t1; f2elm_t *t0=&_t0, *t1=&_t1; fp2sub(&P->X, &P->Z, t0); // t0 = X1-Z1 fp2add(&P->X, &P->Z, t1); // t1 = X1+Z1 fp2sqr_mont(t0, t0); // t0 = (X1-Z1)^2 fp2sqr_mont(t1, t1); // t1 = (X1+Z1)^2 fp2mul_mont(C24, t0, &Q->Z); // Z2 = C24*(X1-Z1)^2 fp2mul_mont(t1, &Q->Z, &Q->X); // X2 = C24*(X1-Z1)^2*(X1+Z1)^2 fp2sub(t1, t0, t1); // t1 = (X1+Z1)^2-(X1-Z1)^2 fp2mul_mont(A24plus, t1, t0); // t0 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] fp2add(&Q->Z, t0, &Q->Z); // Z2 = A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2 fp2mul_mont(&Q->Z, t1, &Q->Z); // Z2 = [A24plus*[(X1+Z1)^2-(X1-Z1)^2] + C24*(X1-Z1)^2]*[(X1+Z1)^2-(X1-Z1)^2] } void xDBLe(const point_proj_t P, point_proj_t Q, const f2elm_t *A24plus, const f2elm_t *C24, const int e) { // Computes [2^e](X:Z) on Montgomery curve with projective constant via e repeated doublings. // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A+2C and 4C. // Output: projective Montgomery x-coordinates Q <- (2^e)*P. int i; copy_words((const digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD); for (i = 0; i < e; i++) { xDBL(Q, Q, A24plus, C24); } } void get_4_isog(const point_proj_t P, f2elm_t *A24plus, f2elm_t *C24, f2elm_t* coeff) { // Computes the corresponding 4-isogeny of a projective Montgomery point (X4:Z4) of order 4. // Input: projective point of order four P = (X4:Z4). // Output: the 4-isogenous Montgomery curve with projective coefficients A+2C/4C and the 3 coefficients // that are used to evaluate the isogeny at a point in eval_4_isog(). fp2sub(&P->X, &P->Z, &coeff[1]); // coeff[1] = X4-Z4 fp2add(&P->X, &P->Z, &coeff[2]); // coeff[2] = X4+Z4 fp2sqr_mont(&P->Z, &coeff[0]); // coeff[0] = Z4^2 fp2add(&coeff[0], &coeff[0], &coeff[0]); // coeff[0] = 2*Z4^2 fp2sqr_mont(&coeff[0], C24); // C24 = 4*Z4^4 fp2add(&coeff[0], &coeff[0], &coeff[0]); // coeff[0] = 4*Z4^2 fp2sqr_mont(&P->X, A24plus); // A24plus = X4^2 fp2add(A24plus, A24plus, A24plus); // A24plus = 2*X4^2 fp2sqr_mont(A24plus, A24plus); // A24plus = 4*X4^4 } void eval_4_isog(point_proj_t P, f2elm_t* coeff) { // Evaluates the isogeny at the point (X:Z) in the domain of the isogeny, given a 4-isogeny phi defined // by the 3 coefficients in coeff (computed in the function get_4_isog()). // Inputs: the coefficients defining the isogeny, and the projective point P = (X:Z). // Output: the projective point P = phi(P) = (X:Z) in the codomain. f2elm_t _t0, _t1; f2elm_t *t0=&_t0, *t1=&_t1; fp2add(&P->X, &P->Z, t0); // t0 = X+Z fp2sub(&P->X, &P->Z, t1); // t1 = X-Z fp2mul_mont(t0, &coeff[1], &P->X); // X = (X+Z)*coeff[1] fp2mul_mont(t1, &coeff[2], &P->Z); // Z = (X-Z)*coeff[2] fp2mul_mont(t0, t1, t0); // t0 = (X+Z)*(X-Z) fp2mul_mont(t0, &coeff[0], t0); // t0 = coeff[0]*(X+Z)*(X-Z) fp2add(&P->X, &P->Z, t1); // t1 = (X-Z)*coeff[2] + (X+Z)*coeff[1] fp2sub(&P->X, &P->Z, &P->Z); // Z = (X-Z)*coeff[2] - (X+Z)*coeff[1] fp2sqr_mont(t1, t1); // t1 = [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2 fp2sqr_mont(&P->Z, &P->Z); // Z = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 fp2add(t1, t0, &P->X); // X = coeff[0]*(X+Z)*(X-Z) + [(X-Z)*coeff[2] + (X+Z)*coeff[1]]^2 fp2sub(&P->Z, t0, t0); // t0 = [(X-Z)*coeff[2] - (X+Z)*coeff[1]]^2 - coeff[0]*(X+Z)*(X-Z) fp2mul_mont(&P->X, t1, &P->X); // Xfinal fp2mul_mont(&P->Z, t0, &P->Z); // Zfinal } void xTPL(const point_proj_t P, point_proj_t Q, const f2elm_t *A24minus, const f2elm_t *A24plus) { // Tripling of a Montgomery point in projective coordinates (X:Z). // Input: projective Montgomery x-coordinates P = (X:Z), where x=X/Z and Montgomery curve constants A24plus = A+2C and A24minus = A-2C. // Output: projective Montgomery x-coordinates Q = 3*P = (X3:Z3). f2elm_t _t0, _t1, _t2, _t3, _t4, _t5, _t6; f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ; f2elm_t *t3=&_t3, *t4=&_t4, *t5=&_t5, *t6=&_t6; fp2sub(&P->X, &P->Z, t0); // t0 = X-Z fp2sqr_mont(t0, t2); // t2 = (X-Z)^2 fp2add(&P->X, &P->Z, t1); // t1 = X+Z fp2sqr_mont(t1, t3); // t3 = (X+Z)^2 fp2add(t0, t1, t4); // t4 = 2*X fp2sub(t1, t0, t0); // t0 = 2*Z fp2sqr_mont(t4, t1); // t1 = 4*X^2 fp2sub(t1, t3, t1); // t1 = 4*X^2 - (X+Z)^2 fp2sub(t1, t2, t1); // t1 = 4*X^2 - (X+Z)^2 - (X-Z)^2 fp2mul_mont(t3, A24plus, t5); // t5 = A24plus*(X+Z)^2 fp2mul_mont(t3, t5, t3); // t3 = A24plus*(X+Z)^3 fp2mul_mont(A24minus, t2, t6); // t6 = A24minus*(X-Z)^2 fp2mul_mont(t2, t6, t2); // t2 = A24minus*(X-Z)^3 fp2sub(t2, t3, t3); // t3 = A24minus*(X-Z)^3 - coeff*(X+Z)^3 fp2sub(t5, t6, t2); // t2 = A24plus*(X+Z)^2 - A24minus*(X-Z)^2 fp2mul_mont(t1, t2, t1); // t1 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] fp2add(t3, t1, t2); // t2 = [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] + A24minus*(X-Z)^3 - coeff*(X+Z)^3 fp2sqr_mont(t2, t2); // t2 = t2^2 fp2mul_mont(t4, t2, &Q->X); // X3 = 2*X*t2 fp2sub(t3, t1, t1); // t1 = A24minus*(X-Z)^3 - A24plus*(X+Z)^3 - [4*X^2 - (X+Z)^2 - (X-Z)^2]*[A24plus*(X+Z)^2 - A24minus*(X-Z)^2] fp2sqr_mont(t1, t1); // t1 = t1^2 fp2mul_mont(t0, t1, &Q->Z); // Z3 = 2*Z*t1 } void xTPLe(const point_proj_t P, point_proj_t Q, const f2elm_t *A24minus, const f2elm_t *A24plus, const int e) { // Computes [3^e](X:Z) on Montgomery curve with projective constant via e repeated triplings. // Input: projective Montgomery x-coordinates P = (XP:ZP), such that xP=XP/ZP and Montgomery curve constants A24plus = A+2C and A24minus = A-2C. // Output: projective Montgomery x-coordinates Q <- (3^e)*P. int i; copy_words((const digit_t*)P, (digit_t*)Q, 2*2*NWORDS_FIELD); for (i = 0; i < e; i++) { xTPL(Q, Q, A24minus, A24plus); } } void get_3_isog(const point_proj_t P, f2elm_t *A24minus, f2elm_t *A24plus, f2elm_t* coeff) { // Computes the corresponding 3-isogeny of a projective Montgomery point (X3:Z3) of order 3. // Input: projective point of order three P = (X3:Z3). // Output: the 3-isogenous Montgomery curve with projective coefficient A/C. f2elm_t _t0, _t1, _t2, _t3, _t4; f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ; f2elm_t *t3=&_t3, *t4=&_t4 ; fp2sub(&P->X, &P->Z, &coeff[0]); // coeff0 = X-Z fp2sqr_mont(&coeff[0], t0); // t0 = (X-Z)^2 fp2add(&P->X, &P->Z, &coeff[1]); // coeff1 = X+Z fp2sqr_mont(&coeff[1], t1); // t1 = (X+Z)^2 fp2add(t0, t1, t2); // t2 = (X+Z)^2 + (X-Z)^2 fp2add(&coeff[0], &coeff[1], t3); // t3 = 2*X fp2sqr_mont(t3, t3); // t3 = 4*X^2 fp2sub(t3, t2, t3); // t3 = 4*X^2 - (X+Z)^2 - (X-Z)^2 fp2add(t1, t3, t2); // t2 = 4*X^2 - (X-Z)^2 fp2add(t3, t0, t3); // t3 = 4*X^2 - (X+Z)^2 fp2add(t0, t3, t4); // t4 = 4*X^2 - (X+Z)^2 + (X-Z)^2 fp2add(t4, t4, t4); // t4 = 2(4*X^2 - (X+Z)^2 + (X-Z)^2) fp2add(t1, t4, t4); // t4 = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2 fp2mul_mont(t2, t4, A24minus); // A24minus = [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2] fp2add(t1, t2, t4); // t4 = 4*X^2 + (X+Z)^2 - (X-Z)^2 fp2add(t4, t4, t4); // t4 = 2(4*X^2 + (X+Z)^2 - (X-Z)^2) fp2add(t0, t4, t4); // t4 = 8*X^2 + 2*(X+Z)^2 - (X-Z)^2 fp2mul_mont(t3, t4, t4); // t4 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] fp2sub(t4, A24minus, t0); // t0 = [4*X^2 - (X+Z)^2]*[8*X^2 + 2*(X+Z)^2 - (X-Z)^2] - [4*X^2 - (X-Z)^2]*[8*X^2 - (X+Z)^2 + 2*(X-Z)^2] fp2add(A24minus, t0, A24plus); // A24plus = 8*X^2 - (X+Z)^2 + 2*(X-Z)^2 } void eval_3_isog(point_proj_t Q, const f2elm_t* coeff) { // Computes the 3-isogeny R=phi(X:Z), given projective point (X3:Z3) of order 3 on a Montgomery curve and // a point P with 2 coefficients in coeff (computed in the function get_3_isog()). // Inputs: projective points P = (X3:Z3) and Q = (X:Z). // Output: the projective point Q <- phi(Q) = (X3:Z3). f2elm_t _t0, _t1, _t2; f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2 ; fp2add(&Q->X, &Q->Z, t0); // t0 = X+Z fp2sub(&Q->X, &Q->Z, t1); // t1 = X-Z fp2mul_mont(t0, &coeff[0], t0); // t0 = coeff0*(X+Z) fp2mul_mont(t1, &coeff[1], t1); // t1 = coeff1*(X-Z) fp2add(t0, t1, t2); // t2 = coeff0*(X-Z) + coeff1*(X+Z) fp2sub(t1, t0, t0); // t0 = coeff0*(X-Z) - coeff1*(X+Z) fp2sqr_mont(t2, t2); // t2 = [coeff0*(X-Z) + coeff1*(X+Z)]^2 fp2sqr_mont(t0, t0); // t1 = [coeff0*(X-Z) - coeff1*(X+Z)]^2 fp2mul_mont(&Q->X, t2, &Q->X); // X3final = X*[coeff0*(X-Z) + coeff1*(X+Z)]^2 fp2mul_mont(&Q->Z, t0, &Q->Z); // Z3final = Z*[coeff0*(X-Z) - coeff1*(X+Z)]^2 } void inv_3_way(f2elm_t *z1, f2elm_t *z2, f2elm_t *z3) { // 3-way simultaneous inversion // Input: z1,z2,z3 // Output: 1/z1,1/z2,1/z3 (override inputs). f2elm_t _t0, _t1, _t2, _t3; f2elm_t *t0=&_t0, *t1=&_t1; f2elm_t *t2=&_t2, *t3=&_t3; fp2mul_mont(z1, z2, t0); // t0 = z1*z2 fp2mul_mont(z3, t0, t1); // t1 = z1*z2*z3 fp2inv_mont(t1); // t1 = 1/(z1*z2*z3) fp2mul_mont(z3, t1, t2); // t2 = 1/(z1*z2) fp2mul_mont(t2, z2, t3); // t3 = 1/z1 fp2mul_mont(t2, z1, z2); // z2 = 1/z2 fp2mul_mont(t0, t1, z3); // z3 = 1/z3 fp2copy(t3, z1); // z1 = 1/z1 } void get_A(const f2elm_t *xP, const f2elm_t *xQ, const f2elm_t *xR, f2elm_t *A) { // Given the x-coordinates of P, Q, and R, returns the value A corresponding to the Montgomery curve E_A: y^2=x^3+A*x^2+x such that R=Q-P on E_A. // Input: the x-coordinates xP, xQ, and xR of the points P, Q and R. // Output: the coefficient A corresponding to the curve E_A: y^2=x^3+A*x^2+x. f2elm_t _t0, _t1, one = {0}; f2elm_t *t0=&_t0, *t1=&_t1; fpcopy((const digit_t*)&Montgomery_one, one.e[0]); fp2add(xP, xQ, t1); // t1 = xP+xQ fp2mul_mont(xP, xQ, t0); // t0 = xP*xQ fp2mul_mont(xR, t1, A); // A = xR*t1 fp2add(t0, A, A); // A = A+t0 fp2mul_mont(t0, xR, t0); // t0 = t0*xR fp2sub(A, &one, A); // A = A-1 fp2add(t0, t0, t0); // t0 = t0+t0 fp2add(t1, xR, t1); // t1 = t1+xR fp2add(t0, t0, t0); // t0 = t0+t0 fp2sqr_mont(A, A); // A = A^2 fp2inv_mont(t0); // t0 = 1/t0 fp2mul_mont(A, t0, A); // A = A*t0 fp2sub(A, t1, A); // Afinal = A-t1 } void j_inv(const f2elm_t *A, const f2elm_t *C, f2elm_t *jinv) { // Computes the j-invariant of a Montgomery curve with projective constant. // Input: A,C in GF(p^2). // Output: j=256*(A^2-3*C^2)^3/(C^4*(A^2-4*C^2)), which is the j-invariant of the Montgomery curve B*y^2=x^3+(A/C)*x^2+x or (equivalently) j-invariant of B'*y^2=C*x^3+A*x^2+C*x. f2elm_t _t0, _t1; f2elm_t *t0=&_t0, *t1=&_t1; fp2sqr_mont(A, jinv); // jinv = A^2 fp2sqr_mont(C, t1); // t1 = C^2 fp2add(t1, t1, t0); // t0 = t1+t1 fp2sub(jinv, t0, t0); // t0 = jinv-t0 fp2sub(t0, t1, t0); // t0 = t0-t1 fp2sub(t0, t1, jinv); // jinv = t0-t1 fp2sqr_mont(t1, t1); // t1 = t1^2 fp2mul_mont(jinv, t1, jinv); // jinv = jinv*t1 fp2add(t0, t0, t0); // t0 = t0+t0 fp2add(t0, t0, t0); // t0 = t0+t0 fp2sqr_mont(t0, t1); // t1 = t0^2 fp2mul_mont(t0, t1, t0); // t0 = t0*t1 fp2add(t0, t0, t0); // t0 = t0+t0 fp2add(t0, t0, t0); // t0 = t0+t0 fp2inv_mont(jinv); // jinv = 1/jinv fp2mul_mont(jinv, t0, jinv); // jinv = t0*jinv } void xDBLADD(point_proj_t P, point_proj_t Q, const f2elm_t *xPQ, const f2elm_t *A24) { // Simultaneous doubling and differential addition. // Input: projective Montgomery points P=(XP:ZP) and Q=(XQ:ZQ) such that xP=XP/ZP and xQ=XQ/ZQ, affine difference xPQ=x(P-Q) and Montgomery curve constant A24=(A+2)/4. // Output: projective Montgomery points P <- 2*P = (X2P:Z2P) such that x(2P)=X2P/Z2P, and Q <- P+Q = (XQP:ZQP) such that = x(Q+P)=XQP/ZQP. f2elm_t _t0, _t1, _t2; f2elm_t *t0=&_t0, *t1=&_t1, *t2=&_t2; fp2add(&P->X, &P->Z, t0); // t0 = XP+ZP fp2sub(&P->X, &P->Z, t1); // t1 = XP-ZP fp2sqr_mont(t0, &P->X); // XP = (XP+ZP)^2 fp2sub(&Q->X, &Q->Z, t2); // t2 = XQ-ZQ fp2correction(t2); fp2add(&Q->X,&Q->Z, &Q->X); // XQ = XQ+ZQ fp2mul_mont(t0, t2, t0); // t0 = (XP+ZP)*(XQ-ZQ) fp2sqr_mont(t1, &P->Z); // ZP = (XP-ZP)^2 fp2mul_mont(t1, &Q->X, t1); // t1 = (XP-ZP)*(XQ+ZQ) fp2sub(&P->X, &P->Z, t2); // t2 = (XP+ZP)^2-(XP-ZP)^2 fp2mul_mont(&P->X, &P->Z, &P->X); // XP = (XP+ZP)^2*(XP-ZP)^2 fp2mul_mont(t2, A24, &Q->X); // XQ = A24*[(XP+ZP)^2-(XP-ZP)^2] fp2sub(t0, t1, &Q->Z); // ZQ = (XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ) fp2add(&Q->X, &P->Z, &P->Z); // ZP = A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2 fp2add(t0, t1, &Q->X); // XQ = (XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ) fp2mul_mont(&P->Z, t2, &P->Z); // ZP = [A24*[(XP+ZP)^2-(XP-ZP)^2]+(XP-ZP)^2]*[(XP+ZP)^2-(XP-ZP)^2] fp2sqr_mont(&Q->Z, &Q->Z); // ZQ = [(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2 fp2sqr_mont(&Q->X, &Q->X); // XQ = [(XP+ZP)*(XQ-ZQ)+(XP-ZP)*(XQ+ZQ)]^2 fp2mul_mont(&Q->Z, xPQ, &Q->Z); // ZQ = xPQ*[(XP+ZP)*(XQ-ZQ)-(XP-ZP)*(XQ+ZQ)]^2 } static void swap_points(point_proj_t P, point_proj_t Q, const digit_t option) { // Swap points. // If option = 0 then P <- P and Q <- Q, else if option = 0xFF...FF then P <- Q and Q <- P unsigned int i; for (i = 0; i < NWORDS_FIELD; i++) { digit_t temp = option & (P->X.e[0][i] ^ Q->X.e[0][i]); P->X.e[0][i] = temp ^ P->X.e[0][i]; Q->X.e[0][i] = temp ^ Q->X.e[0][i]; temp = option & (P->Z.e[0][i] ^ Q->Z.e[0][i]); P->Z.e[0][i] = temp ^ P->Z.e[0][i]; Q->Z.e[0][i] = temp ^ Q->Z.e[0][i]; temp = option & (P->X.e[1][i] ^ Q->X.e[1][i]); P->X.e[1][i] = temp ^ P->X.e[1][i]; Q->X.e[1][i] = temp ^ Q->X.e[1][i]; temp = option & (P->Z.e[1][i] ^ Q->Z.e[1][i]); P->Z.e[1][i] = temp ^ P->Z.e[1][i]; Q->Z.e[1][i] = temp ^ Q->Z.e[1][i]; } } static void LADDER3PT(const f2elm_t *xP, const f2elm_t *xQ, const f2elm_t *xPQ, const digit_t* m, const unsigned int AliceOrBob, point_proj_t R, const f2elm_t *A) { point_proj_t R0 = {0}, R2 = {0}; f2elm_t _A24 = {0}; f2elm_t *A24=&_A24; int i, nbits, prevbit = 0; if (AliceOrBob == ALICE) { nbits = OALICE_BITS; } else { nbits = OBOB_BITS; } // Initializing constant fpcopy((const digit_t*)&Montgomery_one, A24->e[0]); fp2add(A24, A24, A24); fp2add(A, A24, A24); fp2div2(A24, A24); fp2div2(A24, A24); // A24 = (A+2)/4 // Initializing points fp2copy(xQ, &R0->X); fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R0->Z.e); fp2copy(xPQ, &R2->X); fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R2->Z.e); fp2copy(xP, &R->X); fpcopy((const digit_t*)&Montgomery_one, (digit_t*)R->Z.e); fpzero((digit_t*)(R->Z.e)[1]); // Main loop for (i = 0; i < nbits; i++) { int bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1; int swap = bit ^ prevbit; prevbit = bit; digit_t mask = 0 - (digit_t)swap; swap_points(R, R2, mask); xDBLADD(R0, R2, &R->X, A24); fp2mul_mont(&R2->X, &R->Z, &R2->X); } }