# # Copyright (c) 2008-2012 Stefan Krah. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # # # Usage: python deccheck.py [--short|--medium|--long|--all] # import sys, random from copy import copy from collections import defaultdict from test.support import import_fresh_module from randdec import randfloat, all_unary, all_binary, all_ternary from randdec import unary_optarg, binary_optarg, ternary_optarg from formathelper import rand_format, rand_locale C = import_fresh_module('decimal', fresh=['_decimal']) P = import_fresh_module('decimal', blocked=['_decimal']) EXIT_STATUS = 0 # Contains all categories of Decimal methods. Functions = { # Plain unary: 'unary': ( '__abs__', '__bool__', '__ceil__', '__complex__', '__copy__', '__floor__', '__float__', '__hash__', '__int__', '__neg__', '__pos__', '__reduce__', '__repr__', '__str__', '__trunc__', 'adjusted', 'as_tuple', 'canonical', 'conjugate', 'copy_abs', 'copy_negate', 'is_canonical', 'is_finite', 'is_infinite', 'is_nan', 'is_qnan', 'is_signed', 'is_snan', 'is_zero', 'radix' ), # Unary with optional context: 'unary_ctx': ( 'exp', 'is_normal', 'is_subnormal', 'ln', 'log10', 'logb', 'logical_invert', 'next_minus', 'next_plus', 'normalize', 'number_class', 'sqrt', 'to_eng_string' ), # Unary with optional rounding mode and context: 'unary_rnd_ctx': ('to_integral', 'to_integral_exact', 'to_integral_value'), # Plain binary: 'binary': ( '__add__', '__divmod__', '__eq__', '__floordiv__', '__ge__', '__gt__', '__le__', '__lt__', '__mod__', '__mul__', '__ne__', '__pow__', '__radd__', '__rdivmod__', '__rfloordiv__', '__rmod__', '__rmul__', '__rpow__', '__rsub__', '__rtruediv__', '__sub__', '__truediv__', 'compare_total', 'compare_total_mag', 'copy_sign', 'quantize', 'same_quantum' ), # Binary with optional context: 'binary_ctx': ( 'compare', 'compare_signal', 'logical_and', 'logical_or', 'logical_xor', 'max', 'max_mag', 'min', 'min_mag', 'next_toward', 'remainder_near', 'rotate', 'scaleb', 'shift' ), # Plain ternary: 'ternary': ('__pow__',), # Ternary with optional context: 'ternary_ctx': ('fma',), # Special: 'special': ('__format__', '__reduce_ex__', '__round__', 'from_float', 'quantize'), # Properties: 'property': ('real', 'imag') } # Contains all categories of Context methods. The n-ary classification # applies to the number of Decimal arguments. ContextFunctions = { # Plain nullary: 'nullary': ('context.__hash__', 'context.__reduce__', 'context.radix'), # Plain unary: 'unary': ('context.abs', 'context.canonical', 'context.copy_abs', 'context.copy_decimal', 'context.copy_negate', 'context.create_decimal', 'context.exp', 'context.is_canonical', 'context.is_finite', 'context.is_infinite', 'context.is_nan', 'context.is_normal', 'context.is_qnan', 'context.is_signed', 'context.is_snan', 'context.is_subnormal', 'context.is_zero', 'context.ln', 'context.log10', 'context.logb', 'context.logical_invert', 'context.minus', 'context.next_minus', 'context.next_plus', 'context.normalize', 'context.number_class', 'context.plus', 'context.sqrt', 'context.to_eng_string', 'context.to_integral', 'context.to_integral_exact', 'context.to_integral_value', 'context.to_sci_string' ), # Plain binary: 'binary': ('context.add', 'context.compare', 'context.compare_signal', 'context.compare_total', 'context.compare_total_mag', 'context.copy_sign', 'context.divide', 'context.divide_int', 'context.divmod', 'context.logical_and', 'context.logical_or', 'context.logical_xor', 'context.max', 'context.max_mag', 'context.min', 'context.min_mag', 'context.multiply', 'context.next_toward', 'context.power', 'context.quantize', 'context.remainder', 'context.remainder_near', 'context.rotate', 'context.same_quantum', 'context.scaleb', 'context.shift', 'context.subtract' ), # Plain ternary: 'ternary': ('context.fma', 'context.power'), # Special: 'special': ('context.__reduce_ex__', 'context.create_decimal_from_float') } # Functions that require a restricted exponent range for reasonable runtimes. UnaryRestricted = [ '__ceil__', '__floor__', '__int__', '__trunc__', 'to_integral', 'to_integral_value' ] BinaryRestricted = ['__round__'] TernaryRestricted = ['__pow__', 'context.power'] # ====================================================================== # Unified Context # ====================================================================== # Translate symbols. CondMap = { C.Clamped: P.Clamped, C.ConversionSyntax: P.ConversionSyntax, C.DivisionByZero: P.DivisionByZero, C.DivisionImpossible: P.InvalidOperation, C.DivisionUndefined: P.DivisionUndefined, C.Inexact: P.Inexact, C.InvalidContext: P.InvalidContext, C.InvalidOperation: P.InvalidOperation, C.Overflow: P.Overflow, C.Rounded: P.Rounded, C.Subnormal: P.Subnormal, C.Underflow: P.Underflow, C.FloatOperation: P.FloatOperation, } RoundModes = [C.ROUND_UP, C.ROUND_DOWN, C.ROUND_CEILING, C.ROUND_FLOOR, C.ROUND_HALF_UP, C.ROUND_HALF_DOWN, C.ROUND_HALF_EVEN, C.ROUND_05UP] class Context(object): """Provides a convenient way of syncing the C and P contexts""" __slots__ = ['c', 'p'] def __init__(self, c_ctx=None, p_ctx=None): """Initialization is from the C context""" self.c = C.getcontext() if c_ctx is None else c_ctx self.p = P.getcontext() if p_ctx is None else p_ctx self.p.prec = self.c.prec self.p.Emin = self.c.Emin self.p.Emax = self.c.Emax self.p.rounding = self.c.rounding self.p.capitals = self.c.capitals self.settraps([sig for sig in self.c.traps if self.c.traps[sig]]) self.setstatus([sig for sig in self.c.flags if self.c.flags[sig]]) self.p.clamp = self.c.clamp def __str__(self): return str(self.c) + '\n' + str(self.p) def getprec(self): assert(self.c.prec == self.p.prec) return self.c.prec def setprec(self, val): self.c.prec = val self.p.prec = val def getemin(self): assert(self.c.Emin == self.p.Emin) return self.c.Emin def setemin(self, val): self.c.Emin = val self.p.Emin = val def getemax(self): assert(self.c.Emax == self.p.Emax) return self.c.Emax def setemax(self, val): self.c.Emax = val self.p.Emax = val def getround(self): assert(self.c.rounding == self.p.rounding) return self.c.rounding def setround(self, val): self.c.rounding = val self.p.rounding = val def getcapitals(self): assert(self.c.capitals == self.p.capitals) return self.c.capitals def setcapitals(self, val): self.c.capitals = val self.p.capitals = val def getclamp(self): assert(self.c.clamp == self.p.clamp) return self.c.clamp def setclamp(self, val): self.c.clamp = val self.p.clamp = val prec = property(getprec, setprec) Emin = property(getemin, setemin) Emax = property(getemax, setemax) rounding = property(getround, setround) clamp = property(getclamp, setclamp) capitals = property(getcapitals, setcapitals) def clear_traps(self): self.c.clear_traps() for trap in self.p.traps: self.p.traps[trap] = False def clear_status(self): self.c.clear_flags() self.p.clear_flags() def settraps(self, lst): """lst: C signal list""" self.clear_traps() for signal in lst: self.c.traps[signal] = True self.p.traps[CondMap[signal]] = True def setstatus(self, lst): """lst: C signal list""" self.clear_status() for signal in lst: self.c.flags[signal] = True self.p.flags[CondMap[signal]] = True def assert_eq_status(self): """assert equality of C and P status""" for signal in self.c.flags: if self.c.flags[signal] == (not self.p.flags[CondMap[signal]]): return False return True # We don't want exceptions so that we can compare the status flags. context = Context() context.Emin = C.MIN_EMIN context.Emax = C.MAX_EMAX context.clear_traps() # When creating decimals, _decimal is ultimately limited by the maximum # context values. We emulate this restriction for decimal.py. maxcontext = P.Context( prec=C.MAX_PREC, Emin=C.MIN_EMIN, Emax=C.MAX_EMAX, rounding=P.ROUND_HALF_UP, capitals=1 ) maxcontext.clamp = 0 def RestrictedDecimal(value): maxcontext.traps = copy(context.p.traps) maxcontext.clear_flags() if isinstance(value, str): value = value.strip() dec = maxcontext.create_decimal(value) if maxcontext.flags[P.Inexact] or \ maxcontext.flags[P.Rounded] or \ maxcontext.flags[P.Clamped] or \ maxcontext.flags[P.InvalidOperation]: return context.p._raise_error(P.InvalidOperation) if maxcontext.flags[P.FloatOperation]: context.p.flags[P.FloatOperation] = True return dec # ====================================================================== # TestSet: Organize data and events during a single test case # ====================================================================== class RestrictedList(list): """List that can only be modified by appending items.""" def __getattribute__(self, name): if name != 'append': raise AttributeError("unsupported operation") return list.__getattribute__(self, name) def unsupported(self, *_): raise AttributeError("unsupported operation") __add__ = __delattr__ = __delitem__ = __iadd__ = __imul__ = unsupported __mul__ = __reversed__ = __rmul__ = __setattr__ = __setitem__ = unsupported class TestSet(object): """A TestSet contains the original input operands, converted operands, Python exceptions that occurred either during conversion or during execution of the actual function, and the final results. For safety, most attributes are lists that only support the append operation. If a function name is prefixed with 'context.', the corresponding context method is called. """ def __init__(self, funcname, operands): if funcname.startswith("context."): self.funcname = funcname.replace("context.", "") self.contextfunc = True else: self.funcname = funcname self.contextfunc = False self.op = operands # raw operand tuple self.context = context # context used for the operation self.cop = RestrictedList() # converted C.Decimal operands self.cex = RestrictedList() # Python exceptions for C.Decimal self.cresults = RestrictedList() # C.Decimal results self.pop = RestrictedList() # converted P.Decimal operands self.pex = RestrictedList() # Python exceptions for P.Decimal self.presults = RestrictedList() # P.Decimal results # ====================================================================== # SkipHandler: skip known discrepancies # ====================================================================== class SkipHandler: """Handle known discrepancies between decimal.py and _decimal.so. These are either ULP differences in the power function or extremely minor issues.""" def __init__(self): self.ulpdiff = 0 self.powmod_zeros = 0 self.maxctx = P.Context(Emax=10**18, Emin=-10**18) def default(self, t): return False __ge__ = __gt__ = __le__ = __lt__ = __ne__ = __eq__ = default __reduce__ = __format__ = __repr__ = __str__ = default def harrison_ulp(self, dec): """ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-5504.pdf""" a = dec.next_plus() b = dec.next_minus() return abs(a - b) def standard_ulp(self, dec, prec): return P._dec_from_triple(0, '1', dec._exp+len(dec._int)-prec) def rounding_direction(self, x, mode): """Determine the effective direction of the rounding when the exact result x is rounded according to mode. Return -1 for downwards, 0 for undirected, 1 for upwards, 2 for ROUND_05UP.""" cmp = 1 if x.compare_total(P.Decimal("+0")) >= 0 else -1 if mode in (P.ROUND_HALF_EVEN, P.ROUND_HALF_UP, P.ROUND_HALF_DOWN): return 0 elif mode == P.ROUND_CEILING: return 1 elif mode == P.ROUND_FLOOR: return -1 elif mode == P.ROUND_UP: return cmp elif mode == P.ROUND_DOWN: return -cmp elif mode == P.ROUND_05UP: return 2 else: raise ValueError("Unexpected rounding mode: %s" % mode) def check_ulpdiff(self, exact, rounded): # current precision p = context.p.prec # Convert infinities to the largest representable number + 1. x = exact if exact.is_infinite(): x = P._dec_from_triple(exact._sign, '10', context.p.Emax) y = rounded if rounded.is_infinite(): y = P._dec_from_triple(rounded._sign, '10', context.p.Emax) # err = (rounded - exact) / ulp(rounded) self.maxctx.prec = p * 2 t = self.maxctx.subtract(y, x) if context.c.flags[C.Clamped] or \ context.c.flags[C.Underflow]: # The standard ulp does not work in Underflow territory. ulp = self.harrison_ulp(y) else: ulp = self.standard_ulp(y, p) # Error in ulps. err = self.maxctx.divide(t, ulp) dir = self.rounding_direction(x, context.p.rounding) if dir == 0: if P.Decimal("-0.6") < err < P.Decimal("0.6"): return True elif dir == 1: # directed, upwards if P.Decimal("-0.1") < err < P.Decimal("1.1"): return True elif dir == -1: # directed, downwards if P.Decimal("-1.1") < err < P.Decimal("0.1"): return True else: # ROUND_05UP if P.Decimal("-1.1") < err < P.Decimal("1.1"): return True print("ulp: %s error: %s exact: %s c_rounded: %s" % (ulp, err, exact, rounded)) return False def bin_resolve_ulp(self, t): """Check if results of _decimal's power function are within the allowed ulp ranges.""" # NaNs are beyond repair. if t.rc.is_nan() or t.rp.is_nan(): return False # "exact" result, double precision, half_even self.maxctx.prec = context.p.prec * 2 op1, op2 = t.pop[0], t.pop[1] if t.contextfunc: exact = getattr(self.maxctx, t.funcname)(op1, op2) else: exact = getattr(op1, t.funcname)(op2, context=self.maxctx) # _decimal's rounded result rounded = P.Decimal(t.cresults[0]) self.ulpdiff += 1 return self.check_ulpdiff(exact, rounded) ############################ Correct rounding ############################# def resolve_underflow(self, t): """In extremely rare cases where the infinite precision result is just below etiny, cdecimal does not set Subnormal/Underflow. Example: setcontext(Context(prec=21, rounding=ROUND_UP, Emin=-55, Emax=85)) Decimal("1.00000000000000000000000000000000000000000000000" "0000000100000000000000000000000000000000000000000" "0000000000000025").ln() """ if t.cresults != t.presults: return False # Results must be identical. if context.c.flags[C.Rounded] and \ context.c.flags[C.Inexact] and \ context.p.flags[P.Rounded] and \ context.p.flags[P.Inexact]: return True # Subnormal/Underflow may be missing. return False def exp(self, t): """Resolve Underflow or ULP difference.""" return self.resolve_underflow(t) def log10(self, t): """Resolve Underflow or ULP difference.""" return self.resolve_underflow(t) def ln(self, t): """Resolve Underflow or ULP difference.""" return self.resolve_underflow(t) def __pow__(self, t): """Always calls the resolve function. C.Decimal does not have correct rounding for the power function.""" if context.c.flags[C.Rounded] and \ context.c.flags[C.Inexact] and \ context.p.flags[P.Rounded] and \ context.p.flags[P.Inexact]: return self.bin_resolve_ulp(t) else: return False power = __rpow__ = __pow__ ############################## Technicalities ############################# def __float__(self, t): """NaN comparison in the verify() function obviously gives an incorrect answer: nan == nan -> False""" if t.cop[0].is_nan() and t.pop[0].is_nan(): return True return False __complex__ = __float__ def __radd__(self, t): """decimal.py gives precedence to the first NaN; this is not important, as __radd__ will not be called for two decimal arguments.""" if t.rc.is_nan() and t.rp.is_nan(): return True return False __rmul__ = __radd__ ################################ Various ################################## def __round__(self, t): """Exception: Decimal('1').__round__(-100000000000000000000000000) Should it really be InvalidOperation?""" if t.rc is None and t.rp.is_nan(): return True return False shandler = SkipHandler() def skip_error(t): return getattr(shandler, t.funcname, shandler.default)(t) # ====================================================================== # Handling verification errors # ====================================================================== class VerifyError(Exception): """Verification failed.""" pass def function_as_string(t): if t.contextfunc: cargs = t.cop pargs = t.pop cfunc = "c_func: %s(" % t.funcname pfunc = "p_func: %s(" % t.funcname else: cself, cargs = t.cop[0], t.cop[1:] pself, pargs = t.pop[0], t.pop[1:] cfunc = "c_func: %s.%s(" % (repr(cself), t.funcname) pfunc = "p_func: %s.%s(" % (repr(pself), t.funcname) err = cfunc for arg in cargs: err += "%s, " % repr(arg) err = err.rstrip(", ") err += ")\n" err += pfunc for arg in pargs: err += "%s, " % repr(arg) err = err.rstrip(", ") err += ")" return err def raise_error(t): global EXIT_STATUS if skip_error(t): return EXIT_STATUS = 1 err = "Error in %s:\n\n" % t.funcname err += "input operands: %s\n\n" % (t.op,) err += function_as_string(t) err += "\n\nc_result: %s\np_result: %s\n\n" % (t.cresults, t.presults) err += "c_exceptions: %s\np_exceptions: %s\n\n" % (t.cex, t.pex) err += "%s\n\n" % str(t.context) raise VerifyError(err) # ====================================================================== # Main testing functions # # The procedure is always (t is the TestSet): # # convert(t) -> Initialize the TestSet as necessary. # # Return 0 for early abortion (e.g. if a TypeError # occurs during conversion, there is nothing to test). # # Return 1 for continuing with the test case. # # callfuncs(t) -> Call the relevant function for each implementation # and record the results in the TestSet. # # verify(t) -> Verify the results. If verification fails, details # are printed to stdout. # ====================================================================== def convert(t, convstr=True): """ t is the testset. At this stage the testset contains a tuple of operands t.op of various types. For decimal methods the first operand (self) is always converted to Decimal. If 'convstr' is true, string operands are converted as well. Context operands are of type deccheck.Context, rounding mode operands are given as a tuple (C.rounding, P.rounding). Other types (float, int, etc.) are left unchanged. """ for i, op in enumerate(t.op): context.clear_status() if op in RoundModes: t.cop.append(op) t.pop.append(op) elif not t.contextfunc and i == 0 or \ convstr and isinstance(op, str): try: c = C.Decimal(op) cex = None except (TypeError, ValueError, OverflowError) as e: c = None cex = e.__class__ try: p = RestrictedDecimal(op) pex = None except (TypeError, ValueError, OverflowError) as e: p = None pex = e.__class__ t.cop.append(c) t.cex.append(cex) t.pop.append(p) t.pex.append(pex) if cex is pex: if str(c) != str(p) or not context.assert_eq_status(): raise_error(t) if cex and pex: # nothing to test return 0 else: raise_error(t) elif isinstance(op, Context): t.context = op t.cop.append(op.c) t.pop.append(op.p) else: t.cop.append(op) t.pop.append(op) return 1 def callfuncs(t): """ t is the testset. At this stage the testset contains operand lists t.cop and t.pop for the C and Python versions of decimal. For Decimal methods, the first operands are of type C.Decimal and P.Decimal respectively. The remaining operands can have various types. For Context methods, all operands can have any type. t.rc and t.rp are the results of the operation. """ context.clear_status() try: if t.contextfunc: cargs = t.cop t.rc = getattr(context.c, t.funcname)(*cargs) else: cself = t.cop[0] cargs = t.cop[1:] t.rc = getattr(cself, t.funcname)(*cargs) t.cex.append(None) except (TypeError, ValueError, OverflowError, MemoryError) as e: t.rc = None t.cex.append(e.__class__) try: if t.contextfunc: pargs = t.pop t.rp = getattr(context.p, t.funcname)(*pargs) else: pself = t.pop[0] pargs = t.pop[1:] t.rp = getattr(pself, t.funcname)(*pargs) t.pex.append(None) except (TypeError, ValueError, OverflowError, MemoryError) as e: t.rp = None t.pex.append(e.__class__) def verify(t, stat): """ t is the testset. At this stage the testset contains the following tuples: t.op: original operands t.cop: C.Decimal operands (see convert for details) t.pop: P.Decimal operands (see convert for details) t.rc: C result t.rp: Python result t.rc and t.rp can have various types. """ t.cresults.append(str(t.rc)) t.presults.append(str(t.rp)) if isinstance(t.rc, C.Decimal) and isinstance(t.rp, P.Decimal): # General case: both results are Decimals. t.cresults.append(t.rc.to_eng_string()) t.cresults.append(t.rc.as_tuple()) t.cresults.append(str(t.rc.imag)) t.cresults.append(str(t.rc.real)) t.presults.append(t.rp.to_eng_string()) t.presults.append(t.rp.as_tuple()) t.presults.append(str(t.rp.imag)) t.presults.append(str(t.rp.real)) nc = t.rc.number_class().lstrip('+-s') stat[nc] += 1 else: # Results from e.g. __divmod__ can only be compared as strings. if not isinstance(t.rc, tuple) and not isinstance(t.rp, tuple): if t.rc != t.rp: raise_error(t) stat[type(t.rc).__name__] += 1 # The return value lists must be equal. if t.cresults != t.presults: raise_error(t) # The Python exception lists (TypeError, etc.) must be equal. if t.cex != t.pex: raise_error(t) # The context flags must be equal. if not t.context.assert_eq_status(): raise_error(t) # ====================================================================== # Main test loops # # test_method(method, testspecs, testfunc) -> # # Loop through various context settings. The degree of # thoroughness is determined by 'testspec'. For each # setting, call 'testfunc'. Generally, 'testfunc' itself # a loop, iterating through many test cases generated # by the functions in randdec.py. # # test_n-ary(method, prec, exp_range, restricted_range, itr, stat) -> # # 'test_unary', 'test_binary' and 'test_ternary' are the # main test functions passed to 'test_method'. They deal # with the regular cases. The thoroughness of testing is # determined by 'itr'. # # 'prec', 'exp_range' and 'restricted_range' are passed # to the test-generating functions and limit the generated # values. In some cases, for reasonable run times a # maximum exponent of 9999 is required. # # The 'stat' parameter is passed down to the 'verify' # function, which records statistics for the result values. # ====================================================================== def log(fmt, args=None): if args: sys.stdout.write(''.join((fmt, '\n')) % args) else: sys.stdout.write(''.join((str(fmt), '\n'))) sys.stdout.flush() def test_method(method, testspecs, testfunc): """Iterate a test function through many context settings.""" log("testing %s ...", method) stat = defaultdict(int) for spec in testspecs: if 'samples' in spec: spec['prec'] = sorted(random.sample(range(1, 101), spec['samples'])) for prec in spec['prec']: context.prec = prec for expts in spec['expts']: emin, emax = expts if emin == 'rand': context.Emin = random.randrange(-1000, 0) context.Emax = random.randrange(prec, 1000) else: context.Emin, context.Emax = emin, emax if prec > context.Emax: continue log(" prec: %d emin: %d emax: %d", (context.prec, context.Emin, context.Emax)) restr_range = 9999 if context.Emax > 9999 else context.Emax+99 for rounding in RoundModes: context.rounding = rounding context.capitals = random.randrange(2) if spec['clamp'] == 'rand': context.clamp = random.randrange(2) else: context.clamp = spec['clamp'] exprange = context.c.Emax testfunc(method, prec, exprange, restr_range, spec['iter'], stat) log(" result types: %s" % sorted([t for t in stat.items()])) def test_unary(method, prec, exp_range, restricted_range, itr, stat): """Iterate a unary function through many test cases.""" if method in UnaryRestricted: exp_range = restricted_range for op in all_unary(prec, exp_range, itr): t = TestSet(method, op) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) if not method.startswith('__'): for op in unary_optarg(prec, exp_range, itr): t = TestSet(method, op) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) def test_binary(method, prec, exp_range, restricted_range, itr, stat): """Iterate a binary function through many test cases.""" if method in BinaryRestricted: exp_range = restricted_range for op in all_binary(prec, exp_range, itr): t = TestSet(method, op) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) if not method.startswith('__'): for op in binary_optarg(prec, exp_range, itr): t = TestSet(method, op) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) def test_ternary(method, prec, exp_range, restricted_range, itr, stat): """Iterate a ternary function through many test cases.""" if method in TernaryRestricted: exp_range = restricted_range for op in all_ternary(prec, exp_range, itr): t = TestSet(method, op) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) if not method.startswith('__'): for op in ternary_optarg(prec, exp_range, itr): t = TestSet(method, op) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) def test_format(method, prec, exp_range, restricted_range, itr, stat): """Iterate the __format__ method through many test cases.""" for op in all_unary(prec, exp_range, itr): fmt1 = rand_format(chr(random.randrange(0, 128)), 'EeGgn') fmt2 = rand_locale() for fmt in (fmt1, fmt2): fmtop = (op[0], fmt) t = TestSet(method, fmtop) try: if not convert(t, convstr=False): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) for op in all_unary(prec, 9999, itr): fmt1 = rand_format(chr(random.randrange(0, 128)), 'Ff%') fmt2 = rand_locale() for fmt in (fmt1, fmt2): fmtop = (op[0], fmt) t = TestSet(method, fmtop) try: if not convert(t, convstr=False): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) def test_round(method, prec, exprange, restricted_range, itr, stat): """Iterate the __round__ method through many test cases.""" for op in all_unary(prec, 9999, itr): n = random.randrange(10) roundop = (op[0], n) t = TestSet(method, roundop) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) def test_from_float(method, prec, exprange, restricted_range, itr, stat): """Iterate the __float__ method through many test cases.""" for rounding in RoundModes: context.rounding = rounding for i in range(1000): f = randfloat() op = (f,) if method.startswith("context.") else ("sNaN", f) t = TestSet(method, op) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) def randcontext(exprange): c = Context(C.Context(), P.Context()) c.Emax = random.randrange(1, exprange+1) c.Emin = random.randrange(-exprange, 0) maxprec = 100 if c.Emax >= 100 else c.Emax c.prec = random.randrange(1, maxprec+1) c.clamp = random.randrange(2) c.clear_traps() return c def test_quantize_api(method, prec, exprange, restricted_range, itr, stat): """Iterate the 'quantize' method through many test cases, using the optional arguments.""" for op in all_binary(prec, restricted_range, itr): for rounding in RoundModes: c = randcontext(exprange) quantizeop = (op[0], op[1], rounding, c) t = TestSet(method, quantizeop) try: if not convert(t): continue callfuncs(t) verify(t, stat) except VerifyError as err: log(err) def check_untested(funcdict, c_cls, p_cls): """Determine untested, C-only and Python-only attributes. Uncomment print lines for debugging.""" c_attr = set(dir(c_cls)) p_attr = set(dir(p_cls)) intersect = c_attr & p_attr funcdict['c_only'] = tuple(sorted(c_attr-intersect)) funcdict['p_only'] = tuple(sorted(p_attr-intersect)) tested = set() for lst in funcdict.values(): for v in lst: v = v.replace("context.", "") if c_cls == C.Context else v tested.add(v) funcdict['untested'] = tuple(sorted(intersect-tested)) #for key in ('untested', 'c_only', 'p_only'): # s = 'Context' if c_cls == C.Context else 'Decimal' # print("\n%s %s:\n%s" % (s, key, funcdict[key])) if __name__ == '__main__': import time randseed = int(time.time()) random.seed(randseed) # Set up the testspecs list. A testspec is simply a dictionary # that determines the amount of different contexts that 'test_method' # will generate. base_expts = [(C.MIN_EMIN, C.MAX_EMAX)] if C.MAX_EMAX == 999999999999999999: base_expts.append((-999999999, 999999999)) # Basic contexts. base = { 'expts': base_expts, 'prec': [], 'clamp': 'rand', 'iter': None, 'samples': None, } # Contexts with small values for prec, emin, emax. small = { 'prec': [1, 2, 3, 4, 5], 'expts': [(-1, 1), (-2, 2), (-3, 3), (-4, 4), (-5, 5)], 'clamp': 'rand', 'iter': None } # IEEE interchange format. ieee = [ # DECIMAL32 {'prec': [7], 'expts': [(-95, 96)], 'clamp': 1, 'iter': None}, # DECIMAL64 {'prec': [16], 'expts': [(-383, 384)], 'clamp': 1, 'iter': None}, # DECIMAL128 {'prec': [34], 'expts': [(-6143, 6144)], 'clamp': 1, 'iter': None} ] if '--medium' in sys.argv: base['expts'].append(('rand', 'rand')) # 5 random precisions base['samples'] = 5 testspecs = [small] + ieee + [base] if '--long' in sys.argv: base['expts'].append(('rand', 'rand')) # 10 random precisions base['samples'] = 10 testspecs = [small] + ieee + [base] elif '--all' in sys.argv: base['expts'].append(('rand', 'rand')) # All precisions in [1, 100] base['samples'] = 100 testspecs = [small] + ieee + [base] else: # --short rand_ieee = random.choice(ieee) base['iter'] = small['iter'] = rand_ieee['iter'] = 1 # 1 random precision and exponent pair base['samples'] = 1 base['expts'] = [random.choice(base_expts)] # 1 random precision and exponent pair prec = random.randrange(1, 6) small['prec'] = [prec] small['expts'] = [(-prec, prec)] testspecs = [small, rand_ieee, base] check_untested(Functions, C.Decimal, P.Decimal) check_untested(ContextFunctions, C.Context, P.Context) log("\n\nRandom seed: %d\n\n", randseed) # Decimal methods: for method in Functions['unary'] + Functions['unary_ctx'] + \ Functions['unary_rnd_ctx']: test_method(method, testspecs, test_unary) for method in Functions['binary'] + Functions['binary_ctx']: test_method(method, testspecs, test_binary) for method in Functions['ternary'] + Functions['ternary_ctx']: test_method(method, testspecs, test_ternary) test_method('__format__', testspecs, test_format) test_method('__round__', testspecs, test_round) test_method('from_float', testspecs, test_from_float) test_method('quantize', testspecs, test_quantize_api) # Context methods: for method in ContextFunctions['unary']: test_method(method, testspecs, test_unary) for method in ContextFunctions['binary']: test_method(method, testspecs, test_binary) for method in ContextFunctions['ternary']: test_method(method, testspecs, test_ternary) test_method('context.create_decimal_from_float', testspecs, test_from_float) sys.exit(EXIT_STATUS)