/* Copyright 2005 Robert Kern (robert.kern@gmail.com) * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* The implementations of rk_hypergeometric_hyp(), rk_hypergeometric_hrua(), * and rk_triangular() were adapted from Ivan Frohne's rv.py which has this * license: * * Copyright 1998 by Ivan Frohne; Wasilla, Alaska, U.S.A. * All Rights Reserved * * Permission to use, copy, modify and distribute this software and its * documentation for any purpose, free of charge, is granted subject to the * following conditions: * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the software. * * THE SOFTWARE AND DOCUMENTATION IS PROVIDED WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR * OR COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM OR DAMAGES IN A CONTRACT * ACTION, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR ITS DOCUMENTATION. */ #include "distributions.h" #include #include #include #include #ifndef min #define min(x,y) ((xy)?x:y) #endif #ifndef M_PI #define M_PI 3.14159265358979323846264338328 #endif /* * log-gamma function to support some of these distributions. The * algorithm comes from SPECFUN by Shanjie Zhang and Jianming Jin and their * book "Computation of Special Functions", 1996, John Wiley & Sons, Inc. */ static double loggam(double x) { double x0, x2, xp, gl, gl0; long k, n; static double a[10] = {8.333333333333333e-02,-2.777777777777778e-03, 7.936507936507937e-04,-5.952380952380952e-04, 8.417508417508418e-04,-1.917526917526918e-03, 6.410256410256410e-03,-2.955065359477124e-02, 1.796443723688307e-01,-1.39243221690590e+00}; x0 = x; n = 0; if ((x == 1.0) || (x == 2.0)) { return 0.0; } else if (x <= 7.0) { n = (long)(7 - x); x0 = x + n; } x2 = 1.0/(x0*x0); xp = 2*M_PI; gl0 = a[9]; for (k=8; k>=0; k--) { gl0 *= x2; gl0 += a[k]; } gl = gl0/x0 + 0.5*log(xp) + (x0-0.5)*log(x0) - x0; if (x <= 7.0) { for (k=1; k<=n; k++) { gl -= log(x0-1.0); x0 -= 1.0; } } return gl; } double rk_normal(rk_state *state, double loc, double scale) { return loc + scale*rk_gauss(state); } double rk_standard_exponential(rk_state *state) { /* We use -log(1-U) since U is [0, 1) */ return -log(1.0 - rk_double(state)); } double rk_exponential(rk_state *state, double scale) { return scale * rk_standard_exponential(state); } double rk_uniform(rk_state *state, double loc, double scale) { return loc + scale*rk_double(state); } double rk_standard_gamma(rk_state *state, double shape) { double b, c; double U, V, X, Y; if (shape == 1.0) { return rk_standard_exponential(state); } else if (shape < 1.0) { for (;;) { U = rk_double(state); V = rk_standard_exponential(state); if (U <= 1.0 - shape) { X = pow(U, 1./shape); if (X <= V) { return X; } } else { Y = -log((1-U)/shape); X = pow(1.0 - shape + shape*Y, 1./shape); if (X <= (V + Y)) { return X; } } } } else { b = shape - 1./3.; c = 1./sqrt(9*b); for (;;) { do { X = rk_gauss(state); V = 1.0 + c*X; } while (V <= 0.0); V = V*V*V; U = rk_double(state); if (U < 1.0 - 0.0331*(X*X)*(X*X)) return (b*V); if (log(U) < 0.5*X*X + b*(1. - V + log(V))) return (b*V); } } } double rk_gamma(rk_state *state, double shape, double scale) { return scale * rk_standard_gamma(state, shape); } double rk_beta(rk_state *state, double a, double b) { double Ga, Gb; if ((a <= 1.0) && (b <= 1.0)) { double U, V, X, Y; /* Use Johnk's algorithm */ while (1) { U = rk_double(state); V = rk_double(state); X = pow(U, 1.0/a); Y = pow(V, 1.0/b); if ((X + Y) <= 1.0) { if (X +Y > 0) { return X / (X + Y); } else { double logX = log(U) / a; double logY = log(V) / b; double logM = logX > logY ? logX : logY; logX -= logM; logY -= logM; return exp(logX - log(exp(logX) + exp(logY))); } } } } else { Ga = rk_standard_gamma(state, a); Gb = rk_standard_gamma(state, b); return Ga/(Ga + Gb); } } double rk_chisquare(rk_state *state, double df) { return 2.0*rk_standard_gamma(state, df/2.0); } double rk_noncentral_chisquare(rk_state *state, double df, double nonc) { if (nonc == 0){ return rk_chisquare(state, df); } if(1 < df) { const double Chi2 = rk_chisquare(state, df - 1); const double N = rk_gauss(state) + sqrt(nonc); return Chi2 + N*N; } else { const long i = rk_poisson(state, nonc / 2.0); return rk_chisquare(state, df + 2 * i); } } double rk_f(rk_state *state, double dfnum, double dfden) { return ((rk_chisquare(state, dfnum) * dfden) / (rk_chisquare(state, dfden) * dfnum)); } double rk_noncentral_f(rk_state *state, double dfnum, double dfden, double nonc) { double t = rk_noncentral_chisquare(state, dfnum, nonc) * dfden; return t / (rk_chisquare(state, dfden) * dfnum); } long rk_binomial_btpe(rk_state *state, long n, double p) { double r,q,fm,p1,xm,xl,xr,c,laml,lamr,p2,p3,p4; double a,u,v,s,F,rho,t,A,nrq,x1,x2,f1,f2,z,z2,w,w2,x; long m,y,k,i; if (!(state->has_binomial) || (state->nsave != n) || (state->psave != p)) { /* initialize */ state->nsave = n; state->psave = p; state->has_binomial = 1; state->r = r = min(p, 1.0-p); state->q = q = 1.0 - r; state->fm = fm = n*r+r; state->m = m = (long)floor(state->fm); state->p1 = p1 = floor(2.195*sqrt(n*r*q)-4.6*q) + 0.5; state->xm = xm = m + 0.5; state->xl = xl = xm - p1; state->xr = xr = xm + p1; state->c = c = 0.134 + 20.5/(15.3 + m); a = (fm - xl)/(fm-xl*r); state->laml = laml = a*(1.0 + a/2.0); a = (xr - fm)/(xr*q); state->lamr = lamr = a*(1.0 + a/2.0); state->p2 = p2 = p1*(1.0 + 2.0*c); state->p3 = p3 = p2 + c/laml; state->p4 = p4 = p3 + c/lamr; } else { r = state->r; q = state->q; fm = state->fm; m = state->m; p1 = state->p1; xm = state->xm; xl = state->xl; xr = state->xr; c = state->c; laml = state->laml; lamr = state->lamr; p2 = state->p2; p3 = state->p3; p4 = state->p4; } /* sigh ... */ Step10: nrq = n*r*q; u = rk_double(state)*p4; v = rk_double(state); if (u > p1) goto Step20; y = (long)floor(xm - p1*v + u); goto Step60; Step20: if (u > p2) goto Step30; x = xl + (u - p1)/c; v = v*c + 1.0 - fabs(m - x + 0.5)/p1; if (v > 1.0) goto Step10; y = (long)floor(x); goto Step50; Step30: if (u > p3) goto Step40; y = (long)floor(xl + log(v)/laml); if (y < 0) goto Step10; v = v*(u-p2)*laml; goto Step50; Step40: y = (long)floor(xr - log(v)/lamr); if (y > n) goto Step10; v = v*(u-p3)*lamr; Step50: k = labs(y - m); if ((k > 20) && (k < ((nrq)/2.0 - 1))) goto Step52; s = r/q; a = s*(n+1); F = 1.0; if (m < y) { for (i=m+1; i<=y; i++) { F *= (a/i - s); } } else if (m > y) { for (i=y+1; i<=m; i++) { F /= (a/i - s); } } if (v > F) goto Step10; goto Step60; Step52: rho = (k/(nrq))*((k*(k/3.0 + 0.625) + 0.16666666666666666)/nrq + 0.5); t = -k*k/(2*nrq); A = log(v); if (A < (t - rho)) goto Step60; if (A > (t + rho)) goto Step10; x1 = y+1; f1 = m+1; z = n+1-m; w = n-y+1; x2 = x1*x1; f2 = f1*f1; z2 = z*z; w2 = w*w; if (A > (xm*log(f1/x1) + (n-m+0.5)*log(z/w) + (y-m)*log(w*r/(x1*q)) + (13680.-(462.-(132.-(99.-140./f2)/f2)/f2)/f2)/f1/166320. + (13680.-(462.-(132.-(99.-140./z2)/z2)/z2)/z2)/z/166320. + (13680.-(462.-(132.-(99.-140./x2)/x2)/x2)/x2)/x1/166320. + (13680.-(462.-(132.-(99.-140./w2)/w2)/w2)/w2)/w/166320.)) { goto Step10; } Step60: if (p > 0.5) { y = n - y; } return y; } long rk_binomial_inversion(rk_state *state, long n, double p) { double q, qn, np, px, U; long X, bound; if (!(state->has_binomial) || (state->nsave != n) || (state->psave != p)) { state->nsave = n; state->psave = p; state->has_binomial = 1; state->q = q = 1.0 - p; state->r = qn = exp(n * log(q)); state->c = np = n*p; state->m = bound = min(n, np + 10.0*sqrt(np*q + 1)); } else { q = state->q; qn = state->r; np = state->c; bound = state->m; } X = 0; px = qn; U = rk_double(state); while (U > px) { X++; if (X > bound) { X = 0; px = qn; U = rk_double(state); } else { U -= px; px = ((n-X+1) * p * px)/(X*q); } } return X; } long rk_binomial(rk_state *state, long n, double p) { double q; if (p <= 0.5) { if (p*n <= 30.0) { return rk_binomial_inversion(state, n, p); } else { return rk_binomial_btpe(state, n, p); } } else { q = 1.0-p; if (q*n <= 30.0) { return n - rk_binomial_inversion(state, n, q); } else { return n - rk_binomial_btpe(state, n, q); } } } long rk_negative_binomial(rk_state *state, double n, double p) { double Y; Y = rk_gamma(state, n, (1-p)/p); return rk_poisson(state, Y); } long rk_poisson_mult(rk_state *state, double lam) { long X; double prod, U, enlam; enlam = exp(-lam); X = 0; prod = 1.0; while (1) { U = rk_double(state); prod *= U; if (prod > enlam) { X += 1; } else { return X; } } } /* * The transformed rejection method for generating Poisson random variables * W. Hoermann * Insurance: Mathematics and Economics 12, 39-45 (1993) */ #define LS2PI 0.91893853320467267 #define TWELFTH 0.083333333333333333333333 long rk_poisson_ptrs(rk_state *state, double lam) { long k; double U, V, slam, loglam, a, b, invalpha, vr, us; slam = sqrt(lam); loglam = log(lam); b = 0.931 + 2.53*slam; a = -0.059 + 0.02483*b; invalpha = 1.1239 + 1.1328/(b-3.4); vr = 0.9277 - 3.6224/(b-2); while (1) { U = rk_double(state) - 0.5; V = rk_double(state); us = 0.5 - fabs(U); k = (long)floor((2*a/us + b)*U + lam + 0.43); if ((us >= 0.07) && (V <= vr)) { return k; } if ((k < 0) || ((us < 0.013) && (V > us))) { continue; } if ((log(V) + log(invalpha) - log(a/(us*us)+b)) <= (-lam + k*loglam - loggam(k+1))) { return k; } } } long rk_poisson(rk_state *state, double lam) { if (lam >= 10) { return rk_poisson_ptrs(state, lam); } else if (lam == 0) { return 0; } else { return rk_poisson_mult(state, lam); } } double rk_standard_cauchy(rk_state *state) { return rk_gauss(state) / rk_gauss(state); } double rk_standard_t(rk_state *state, double df) { double N, G, X; N = rk_gauss(state); G = rk_standard_gamma(state, df/2); X = sqrt(df/2)*N/sqrt(G); return X; } /* Uses the rejection algorithm compared against the wrapped Cauchy distribution suggested by Best and Fisher and documented in Chapter 9 of Luc's Non-Uniform Random Variate Generation. http://cg.scs.carleton.ca/~luc/rnbookindex.html (but corrected to match the algorithm in R and Python) */ double rk_vonmises(rk_state *state, double mu, double kappa) { double s; double U, V, W, Y, Z; double result, mod; int neg; if (kappa < 1e-8) { return M_PI * (2*rk_double(state)-1); } else { /* with double precision rho is zero until 1.4e-8 */ if (kappa < 1e-5) { /* * second order taylor expansion around kappa = 0 * precise until relatively large kappas as second order is 0 */ s = (1./kappa + kappa); } else { double r = 1 + sqrt(1 + 4*kappa*kappa); double rho = (r - sqrt(2*r)) / (2*kappa); s = (1 + rho*rho)/(2*rho); } while (1) { U = rk_double(state); Z = cos(M_PI*U); W = (1 + s*Z)/(s + Z); Y = kappa * (s - W); V = rk_double(state); if ((Y*(2-Y) - V >= 0) || (log(Y/V)+1 - Y >= 0)) { break; } } U = rk_double(state); result = acos(W); if (U < 0.5) { result = -result; } result += mu; neg = (result < 0); mod = fabs(result); mod = (fmod(mod+M_PI, 2*M_PI)-M_PI); if (neg) { mod *= -1; } return mod; } } double rk_pareto(rk_state *state, double a) { return exp(rk_standard_exponential(state)/a) - 1; } double rk_weibull(rk_state *state, double a) { return pow(rk_standard_exponential(state), 1./a); } double rk_power(rk_state *state, double a) { return pow(1 - exp(-rk_standard_exponential(state)), 1./a); } double rk_laplace(rk_state *state, double loc, double scale) { double U; U = rk_double(state); if (U < 0.5) { U = loc + scale * log(U + U); } else { U = loc - scale * log(2.0 - U - U); } return U; } double rk_gumbel(rk_state *state, double loc, double scale) { double U; U = 1.0 - rk_double(state); return loc - scale * log(-log(U)); } double rk_logistic(rk_state *state, double loc, double scale) { double U; U = rk_double(state); return loc + scale * log(U/(1.0 - U)); } double rk_lognormal(rk_state *state, double mean, double sigma) { return exp(rk_normal(state, mean, sigma)); } double rk_rayleigh(rk_state *state, double mode) { return mode*sqrt(-2.0 * log(1.0 - rk_double(state))); } double rk_wald(rk_state *state, double mean, double scale) { double U, X, Y; double mu_2l; mu_2l = mean / (2*scale); Y = rk_gauss(state); Y = mean*Y*Y; X = mean + mu_2l*(Y - sqrt(4*scale*Y + Y*Y)); U = rk_double(state); if (U <= mean/(mean+X)) { return X; } else { return mean*mean/X; } } long rk_zipf(rk_state *state, double a) { double am1, b; am1 = a - 1.0; b = pow(2.0, am1); while (1) { double T, U, V, X; U = 1.0 - rk_double(state); V = rk_double(state); X = floor(pow(U, -1.0/am1)); /* * The real result may be above what can be represented in a signed * long. Since this is a straightforward rejection algorithm, we can * just reject this value. This function then models a Zipf * distribution truncated to sys.maxint. */ if (X > LONG_MAX || X < 1.0) { continue; } T = pow(1.0 + 1.0/X, am1); if (V*X*(T - 1.0)/(b - 1.0) <= T/b) { return (long)X; } } } long rk_geometric_search(rk_state *state, double p) { double U; long X; double sum, prod, q; X = 1; sum = prod = p; q = 1.0 - p; U = rk_double(state); while (U > sum) { prod *= q; sum += prod; X++; } return X; } long rk_geometric_inversion(rk_state *state, double p) { return (long)ceil(log(1.0-rk_double(state))/log(1.0-p)); } long rk_geometric(rk_state *state, double p) { if (p >= 0.333333333333333333333333) { return rk_geometric_search(state, p); } else { return rk_geometric_inversion(state, p); } } long rk_hypergeometric_hyp(rk_state *state, long good, long bad, long sample) { long d1, K, Z; double d2, U, Y; d1 = bad + good - sample; d2 = (double)min(bad, good); Y = d2; K = sample; while (Y > 0.0) { U = rk_double(state); Y -= (long)floor(U + Y/(d1 + K)); K--; if (K == 0) break; } Z = (long)(d2 - Y); if (good > bad) Z = sample - Z; return Z; } /* D1 = 2*sqrt(2/e) */ /* D2 = 3 - 2*sqrt(3/e) */ #define D1 1.7155277699214135 #define D2 0.8989161620588988 long rk_hypergeometric_hrua(rk_state *state, long good, long bad, long sample) { long mingoodbad, maxgoodbad, popsize, m, d9; double d4, d5, d6, d7, d8, d10, d11; long Z; double T, W, X, Y; mingoodbad = min(good, bad); popsize = good + bad; maxgoodbad = max(good, bad); m = min(sample, popsize - sample); d4 = ((double)mingoodbad) / popsize; d5 = 1.0 - d4; d6 = m*d4 + 0.5; d7 = sqrt((double)(popsize - m) * sample * d4 * d5 / (popsize - 1) + 0.5); d8 = D1*d7 + D2; d9 = (long)floor((double)(m + 1) * (mingoodbad + 1) / (popsize + 2)); d10 = (loggam(d9+1) + loggam(mingoodbad-d9+1) + loggam(m-d9+1) + loggam(maxgoodbad-m+d9+1)); d11 = min(min(m, mingoodbad)+1.0, floor(d6+16*d7)); /* 16 for 16-decimal-digit precision in D1 and D2 */ while (1) { X = rk_double(state); Y = rk_double(state); W = d6 + d8*(Y- 0.5)/X; /* fast rejection: */ if ((W < 0.0) || (W >= d11)) continue; Z = (long)floor(W); T = d10 - (loggam(Z+1) + loggam(mingoodbad-Z+1) + loggam(m-Z+1) + loggam(maxgoodbad-m+Z+1)); /* fast acceptance: */ if ((X*(4.0-X)-3.0) <= T) break; /* fast rejection: */ if (X*(X-T) >= 1) continue; if (2.0*log(X) <= T) break; /* acceptance */ } /* this is a correction to HRUA* by Ivan Frohne in rv.py */ if (good > bad) Z = m - Z; /* another fix from rv.py to allow sample to exceed popsize/2 */ if (m < sample) Z = good - Z; return Z; } #undef D1 #undef D2 long rk_hypergeometric(rk_state *state, long good, long bad, long sample) { if (sample > 10) { return rk_hypergeometric_hrua(state, good, bad, sample); } else { return rk_hypergeometric_hyp(state, good, bad, sample); } } double rk_triangular(rk_state *state, double left, double mode, double right) { double base, leftbase, ratio, leftprod, rightprod; double U; base = right - left; leftbase = mode - left; ratio = leftbase / base; leftprod = leftbase*base; rightprod = (right - mode)*base; U = rk_double(state); if (U <= ratio) { return left + sqrt(U*leftprod); } else { return right - sqrt((1.0 - U) * rightprod); } } long rk_logseries(rk_state *state, double p) { double q, r, U, V; long result; r = log(1.0 - p); while (1) { V = rk_double(state); if (V >= p) { return 1; } U = rk_double(state); q = 1.0 - exp(r*U); if (V <= q*q) { result = (long)floor(1 + log(V)/log(q)); if (result < 1) { continue; } else { return result; } } if (V >= q) { return 1; } return 2; } }