/////////////// Header.proto /////////////// //@proto_block: h_code #if !defined(CYTHON_CCOMPLEX) #if defined(__cplusplus) #define CYTHON_CCOMPLEX 1 #elif defined(_Complex_I) #define CYTHON_CCOMPLEX 1 #else #define CYTHON_CCOMPLEX 0 #endif #endif #if CYTHON_CCOMPLEX #ifdef __cplusplus #include #else #include #endif #endif #if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) #undef _Complex_I #define _Complex_I 1.0fj #endif /////////////// RealImag.proto /////////////// #if CYTHON_CCOMPLEX #ifdef __cplusplus #define __Pyx_CREAL(z) ((z).real()) #define __Pyx_CIMAG(z) ((z).imag()) #else #define __Pyx_CREAL(z) (__real__(z)) #define __Pyx_CIMAG(z) (__imag__(z)) #endif #else #define __Pyx_CREAL(z) ((z).real) #define __Pyx_CIMAG(z) ((z).imag) #endif #if defined(__cplusplus) && CYTHON_CCOMPLEX \ && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) #define __Pyx_SET_CREAL(z,x) ((z).real(x)) #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) #else #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) #endif /////////////// Declarations.proto /////////////// //@proto_block: complex_type_declarations #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< {{real_type}} > {{type_name}}; #else typedef {{real_type}} _Complex {{type_name}}; #endif #else typedef struct { {{real_type}} real, imag; } {{type_name}}; #endif static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}}, {{real_type}}); /////////////// Declarations /////////////// #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { return ::std::complex< {{real_type}} >(x, y); } #else static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { return x + y*({{type}})_Complex_I; } #endif #else static CYTHON_INLINE {{type}} {{type_name}}_from_parts({{real_type}} x, {{real_type}} y) { {{type}} z; z.real = x; z.imag = y; return z; } #endif /////////////// ToPy.proto /////////////// #define __pyx_PyComplex_FromComplex(z) \ PyComplex_FromDoubles((double)__Pyx_CREAL(z), \ (double)__Pyx_CIMAG(z)) /////////////// FromPy.proto /////////////// static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject*); /////////////// FromPy /////////////// static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) { Py_complex cval; #if !CYTHON_COMPILING_IN_PYPY if (PyComplex_CheckExact(o)) cval = ((PyComplexObject *)o)->cval; else #endif cval = PyComplex_AsCComplex(o); return {{type_name}}_from_parts( ({{real_type}})cval.real, ({{real_type}})cval.imag); } /////////////// Arithmetic.proto /////////////// #if CYTHON_CCOMPLEX #define __Pyx_c_eq{{func_suffix}}(a, b) ((a)==(b)) #define __Pyx_c_sum{{func_suffix}}(a, b) ((a)+(b)) #define __Pyx_c_diff{{func_suffix}}(a, b) ((a)-(b)) #define __Pyx_c_prod{{func_suffix}}(a, b) ((a)*(b)) #define __Pyx_c_quot{{func_suffix}}(a, b) ((a)/(b)) #define __Pyx_c_neg{{func_suffix}}(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==({{real_type}})0) #define __Pyx_c_conj{{func_suffix}}(z) (::std::conj(z)) #if {{is_float}} #define __Pyx_c_abs{{func_suffix}}(z) (::std::abs(z)) #define __Pyx_c_pow{{func_suffix}}(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero{{func_suffix}}(z) ((z)==0) #define __Pyx_c_conj{{func_suffix}}(z) (conj{{m}}(z)) #if {{is_float}} #define __Pyx_c_abs{{func_suffix}}(z) (cabs{{m}}(z)) #define __Pyx_c_pow{{func_suffix}}(a, b) (cpow{{m}}(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}}, {{type}}); static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}}, {{type}}); static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}}, {{type}}); static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}}, {{type}}); static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}}, {{type}}); static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}}); static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}}); static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}}); #if {{is_float}} static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}}); static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}}, {{type}}); #endif #endif /////////////// Arithmetic /////////////// #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq{{func_suffix}}({{type}} a, {{type}} b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE {{type}} __Pyx_c_sum{{func_suffix}}({{type}} a, {{type}} b) { {{type}} z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE {{type}} __Pyx_c_diff{{func_suffix}}({{type}} a, {{type}} b) { {{type}} z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE {{type}} __Pyx_c_prod{{func_suffix}}({{type}} a, {{type}} b) { {{type}} z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if {{is_float}} static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) { if (b.imag == 0) { return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real); } else if (fabs{{m}}(b.real) >= fabs{{m}}(b.imag)) { if (b.real == 0 && b.imag == 0) { return {{type_name}}_from_parts(a.real / b.real, a.imag / b.imag); } else { {{real_type}} r = b.imag / b.real; {{real_type}} s = 1.0 / (b.real + b.imag * r); return {{type_name}}_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { {{real_type}} r = b.real / b.imag; {{real_type}} s = 1.0 / (b.imag + b.real * r); return {{type_name}}_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE {{type}} __Pyx_c_quot{{func_suffix}}({{type}} a, {{type}} b) { if (b.imag == 0) { return {{type_name}}_from_parts(a.real / b.real, a.imag / b.real); } else { {{real_type}} denom = b.real * b.real + b.imag * b.imag; return {{type_name}}_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE {{type}} __Pyx_c_neg{{func_suffix}}({{type}} a) { {{type}} z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero{{func_suffix}}({{type}} a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE {{type}} __Pyx_c_conj{{func_suffix}}({{type}} a) { {{type}} z; z.real = a.real; z.imag = -a.imag; return z; } #if {{is_float}} static CYTHON_INLINE {{real_type}} __Pyx_c_abs{{func_suffix}}({{type}} z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrt{{m}}(z.real*z.real + z.imag*z.imag); #else return hypot{{m}}(z.real, z.imag); #endif } static CYTHON_INLINE {{type}} __Pyx_c_pow{{func_suffix}}({{type}} a, {{type}} b) { {{type}} z; {{real_type}} r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { {{real_type}} denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: z = __Pyx_c_prod{{func_suffix}}(a, a); return __Pyx_c_prod{{func_suffix}}(a, a); case 3: z = __Pyx_c_prod{{func_suffix}}(a, a); return __Pyx_c_prod{{func_suffix}}(z, a); case 4: z = __Pyx_c_prod{{func_suffix}}(a, a); return __Pyx_c_prod{{func_suffix}}(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if (b.imag == 0) { z.real = pow{{m}}(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2{{m}}(0, -1); } } else { r = __Pyx_c_abs{{func_suffix}}(a); theta = atan2{{m}}(a.imag, a.real); } lnr = log{{m}}(r); z_r = exp{{m}}(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cos{{m}}(z_theta); z.imag = z_r * sin{{m}}(z_theta); return z; } #endif #endif