import math import pprint import sys from decimal import Decimal from numbers import Number import six from more_itertools.more import always_iterable from six.moves import filterfalse from six.moves import zip import _pytest._code from _pytest.compat import isclass from _pytest.compat import Mapping from _pytest.compat import Sequence from _pytest.compat import STRING_TYPES from _pytest.outcomes import fail BASE_TYPE = (type, STRING_TYPES) def _cmp_raises_type_error(self, other): """__cmp__ implementation which raises TypeError. Used by Approx base classes to implement only == and != and raise a TypeError for other comparisons. Needed in Python 2 only, Python 3 all it takes is not implementing the other operators at all. """ __tracebackhide__ = True raise TypeError( "Comparison operators other than == and != not supported by approx objects" ) def _non_numeric_type_error(value, at): at_str = " at {}".format(at) if at else "" return TypeError( "cannot make approximate comparisons to non-numeric values: {!r} {}".format( value, at_str ) ) # builtin pytest.approx helper class ApproxBase(object): """ Provide shared utilities for making approximate comparisons between numbers or sequences of numbers. """ # Tell numpy to use our `__eq__` operator instead of its. __array_ufunc__ = None __array_priority__ = 100 def __init__(self, expected, rel=None, abs=None, nan_ok=False): __tracebackhide__ = True self.expected = expected self.abs = abs self.rel = rel self.nan_ok = nan_ok self._check_type() def __repr__(self): raise NotImplementedError def __eq__(self, actual): return all( a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual) ) __hash__ = None def __ne__(self, actual): return not (actual == self) if sys.version_info[0] == 2: __cmp__ = _cmp_raises_type_error def _approx_scalar(self, x): return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok) def _yield_comparisons(self, actual): """ Yield all the pairs of numbers to be compared. This is used to implement the `__eq__` method. """ raise NotImplementedError def _check_type(self): """ Raise a TypeError if the expected value is not a valid type. """ # This is only a concern if the expected value is a sequence. In every # other case, the approx() function ensures that the expected value has # a numeric type. For this reason, the default is to do nothing. The # classes that deal with sequences should reimplement this method to # raise if there are any non-numeric elements in the sequence. pass def _recursive_list_map(f, x): if isinstance(x, list): return list(_recursive_list_map(f, xi) for xi in x) else: return f(x) class ApproxNumpy(ApproxBase): """ Perform approximate comparisons where the expected value is numpy array. """ def __repr__(self): list_scalars = _recursive_list_map(self._approx_scalar, self.expected.tolist()) return "approx({!r})".format(list_scalars) if sys.version_info[0] == 2: __cmp__ = _cmp_raises_type_error def __eq__(self, actual): import numpy as np # self.expected is supposed to always be an array here if not np.isscalar(actual): try: actual = np.asarray(actual) except: # noqa raise TypeError("cannot compare '{}' to numpy.ndarray".format(actual)) if not np.isscalar(actual) and actual.shape != self.expected.shape: return False return ApproxBase.__eq__(self, actual) def _yield_comparisons(self, actual): import numpy as np # `actual` can either be a numpy array or a scalar, it is treated in # `__eq__` before being passed to `ApproxBase.__eq__`, which is the # only method that calls this one. if np.isscalar(actual): for i in np.ndindex(self.expected.shape): yield actual, np.asscalar(self.expected[i]) else: for i in np.ndindex(self.expected.shape): yield np.asscalar(actual[i]), np.asscalar(self.expected[i]) class ApproxMapping(ApproxBase): """ Perform approximate comparisons where the expected value is a mapping with numeric values (the keys can be anything). """ def __repr__(self): return "approx({!r})".format( {k: self._approx_scalar(v) for k, v in self.expected.items()} ) def __eq__(self, actual): if set(actual.keys()) != set(self.expected.keys()): return False return ApproxBase.__eq__(self, actual) def _yield_comparisons(self, actual): for k in self.expected.keys(): yield actual[k], self.expected[k] def _check_type(self): __tracebackhide__ = True for key, value in self.expected.items(): if isinstance(value, type(self.expected)): msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n full mapping={}" raise TypeError(msg.format(key, value, pprint.pformat(self.expected))) elif not isinstance(value, Number): raise _non_numeric_type_error(self.expected, at="key={!r}".format(key)) class ApproxSequence(ApproxBase): """ Perform approximate comparisons where the expected value is a sequence of numbers. """ def __repr__(self): seq_type = type(self.expected) if seq_type not in (tuple, list, set): seq_type = list return "approx({!r})".format( seq_type(self._approx_scalar(x) for x in self.expected) ) def __eq__(self, actual): if len(actual) != len(self.expected): return False return ApproxBase.__eq__(self, actual) def _yield_comparisons(self, actual): return zip(actual, self.expected) def _check_type(self): __tracebackhide__ = True for index, x in enumerate(self.expected): if isinstance(x, type(self.expected)): msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n full sequence: {}" raise TypeError(msg.format(x, index, pprint.pformat(self.expected))) elif not isinstance(x, Number): raise _non_numeric_type_error( self.expected, at="index {}".format(index) ) class ApproxScalar(ApproxBase): """ Perform approximate comparisons where the expected value is a single number. """ DEFAULT_ABSOLUTE_TOLERANCE = 1e-12 DEFAULT_RELATIVE_TOLERANCE = 1e-6 def __repr__(self): """ Return a string communicating both the expected value and the tolerance for the comparison being made, e.g. '1.0 +- 1e-6'. Use the unicode plus/minus symbol if this is python3 (it's too hard to get right for python2). """ if isinstance(self.expected, complex): return str(self.expected) # Infinities aren't compared using tolerances, so don't show a # tolerance. if math.isinf(self.expected): return str(self.expected) # If a sensible tolerance can't be calculated, self.tolerance will # raise a ValueError. In this case, display '???'. try: vetted_tolerance = "{:.1e}".format(self.tolerance) except ValueError: vetted_tolerance = "???" if sys.version_info[0] == 2: return "{} +- {}".format(self.expected, vetted_tolerance) else: return u"{} \u00b1 {}".format(self.expected, vetted_tolerance) def __eq__(self, actual): """ Return true if the given value is equal to the expected value within the pre-specified tolerance. """ if _is_numpy_array(actual): # Call ``__eq__()`` manually to prevent infinite-recursion with # numpy<1.13. See #3748. return all(self.__eq__(a) for a in actual.flat) # Short-circuit exact equality. if actual == self.expected: return True # Allow the user to control whether NaNs are considered equal to each # other or not. The abs() calls are for compatibility with complex # numbers. if math.isnan(abs(self.expected)): return self.nan_ok and math.isnan(abs(actual)) # Infinity shouldn't be approximately equal to anything but itself, but # if there's a relative tolerance, it will be infinite and infinity # will seem approximately equal to everything. The equal-to-itself # case would have been short circuited above, so here we can just # return false if the expected value is infinite. The abs() call is # for compatibility with complex numbers. if math.isinf(abs(self.expected)): return False # Return true if the two numbers are within the tolerance. return abs(self.expected - actual) <= self.tolerance __hash__ = None @property def tolerance(self): """ Return the tolerance for the comparison. This could be either an absolute tolerance or a relative tolerance, depending on what the user specified or which would be larger. """ def set_default(x, default): return x if x is not None else default # Figure out what the absolute tolerance should be. ``self.abs`` is # either None or a value specified by the user. absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE) if absolute_tolerance < 0: raise ValueError( "absolute tolerance can't be negative: {}".format(absolute_tolerance) ) if math.isnan(absolute_tolerance): raise ValueError("absolute tolerance can't be NaN.") # If the user specified an absolute tolerance but not a relative one, # just return the absolute tolerance. if self.rel is None: if self.abs is not None: return absolute_tolerance # Figure out what the relative tolerance should be. ``self.rel`` is # either None or a value specified by the user. This is done after # we've made sure the user didn't ask for an absolute tolerance only, # because we don't want to raise errors about the relative tolerance if # we aren't even going to use it. relative_tolerance = set_default( self.rel, self.DEFAULT_RELATIVE_TOLERANCE ) * abs(self.expected) if relative_tolerance < 0: raise ValueError( "relative tolerance can't be negative: {}".format(absolute_tolerance) ) if math.isnan(relative_tolerance): raise ValueError("relative tolerance can't be NaN.") # Return the larger of the relative and absolute tolerances. return max(relative_tolerance, absolute_tolerance) class ApproxDecimal(ApproxScalar): """ Perform approximate comparisons where the expected value is a decimal. """ DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12") DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6") def approx(expected, rel=None, abs=None, nan_ok=False): """ Assert that two numbers (or two sets of numbers) are equal to each other within some tolerance. Due to the `intricacies of floating-point arithmetic`__, numbers that we would intuitively expect to be equal are not always so:: >>> 0.1 + 0.2 == 0.3 False __ https://docs.python.org/3/tutorial/floatingpoint.html This problem is commonly encountered when writing tests, e.g. when making sure that floating-point values are what you expect them to be. One way to deal with this problem is to assert that two floating-point numbers are equal to within some appropriate tolerance:: >>> abs((0.1 + 0.2) - 0.3) < 1e-6 True However, comparisons like this are tedious to write and difficult to understand. Furthermore, absolute comparisons like the one above are usually discouraged because there's no tolerance that works well for all situations. ``1e-6`` is good for numbers around ``1``, but too small for very big numbers and too big for very small ones. It's better to express the tolerance as a fraction of the expected value, but relative comparisons like that are even more difficult to write correctly and concisely. The ``approx`` class performs floating-point comparisons using a syntax that's as intuitive as possible:: >>> from pytest import approx >>> 0.1 + 0.2 == approx(0.3) True The same syntax also works for sequences of numbers:: >>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6)) True Dictionary *values*:: >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6}) True ``numpy`` arrays:: >>> import numpy as np # doctest: +SKIP >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP True And for a ``numpy`` array against a scalar:: >>> import numpy as np # doctest: +SKIP >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP True By default, ``approx`` considers numbers within a relative tolerance of ``1e-6`` (i.e. one part in a million) of its expected value to be equal. This treatment would lead to surprising results if the expected value was ``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``. To handle this case less surprisingly, ``approx`` also considers numbers within an absolute tolerance of ``1e-12`` of its expected value to be equal. Infinity and NaN are special cases. Infinity is only considered equal to itself, regardless of the relative tolerance. NaN is not considered equal to anything by default, but you can make it be equal to itself by setting the ``nan_ok`` argument to True. (This is meant to facilitate comparing arrays that use NaN to mean "no data".) Both the relative and absolute tolerances can be changed by passing arguments to the ``approx`` constructor:: >>> 1.0001 == approx(1) False >>> 1.0001 == approx(1, rel=1e-3) True >>> 1.0001 == approx(1, abs=1e-3) True If you specify ``abs`` but not ``rel``, the comparison will not consider the relative tolerance at all. In other words, two numbers that are within the default relative tolerance of ``1e-6`` will still be considered unequal if they exceed the specified absolute tolerance. If you specify both ``abs`` and ``rel``, the numbers will be considered equal if either tolerance is met:: >>> 1 + 1e-8 == approx(1) True >>> 1 + 1e-8 == approx(1, abs=1e-12) False >>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12) True If you're thinking about using ``approx``, then you might want to know how it compares to other good ways of comparing floating-point numbers. All of these algorithms are based on relative and absolute tolerances and should agree for the most part, but they do have meaningful differences: - ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``: True if the relative tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute tolerance is met. Because the relative tolerance is calculated w.r.t. both ``a`` and ``b``, this test is symmetric (i.e. neither ``a`` nor ``b`` is a "reference value"). You have to specify an absolute tolerance if you want to compare to ``0.0`` because there is no tolerance by default. Only available in python>=3.5. `More information...`__ __ https://docs.python.org/3/library/math.html#math.isclose - ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference between ``a`` and ``b`` is less that the sum of the relative tolerance w.r.t. ``b`` and the absolute tolerance. Because the relative tolerance is only calculated w.r.t. ``b``, this test is asymmetric and you can think of ``b`` as the reference value. Support for comparing sequences is provided by ``numpy.allclose``. `More information...`__ __ http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.isclose.html - ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b`` are within an absolute tolerance of ``1e-7``. No relative tolerance is considered and the absolute tolerance cannot be changed, so this function is not appropriate for very large or very small numbers. Also, it's only available in subclasses of ``unittest.TestCase`` and it's ugly because it doesn't follow PEP8. `More information...`__ __ https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual - ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative tolerance is met w.r.t. ``b`` or if the absolute tolerance is met. Because the relative tolerance is only calculated w.r.t. ``b``, this test is asymmetric and you can think of ``b`` as the reference value. In the special case that you explicitly specify an absolute tolerance but not a relative tolerance, only the absolute tolerance is considered. .. warning:: .. versionchanged:: 3.2 In order to avoid inconsistent behavior, ``TypeError`` is raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons. The example below illustrates the problem:: assert approx(0.1) > 0.1 + 1e-10 # calls approx(0.1).__gt__(0.1 + 1e-10) assert 0.1 + 1e-10 > approx(0.1) # calls approx(0.1).__lt__(0.1 + 1e-10) In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)`` to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to comparison. This is because the call hierarchy of rich comparisons follows a fixed behavior. `More information...`__ __ https://docs.python.org/3/reference/datamodel.html#object.__ge__ """ # Delegate the comparison to a class that knows how to deal with the type # of the expected value (e.g. int, float, list, dict, numpy.array, etc). # # The primary responsibility of these classes is to implement ``__eq__()`` # and ``__repr__()``. The former is used to actually check if some # "actual" value is equivalent to the given expected value within the # allowed tolerance. The latter is used to show the user the expected # value and tolerance, in the case that a test failed. # # The actual logic for making approximate comparisons can be found in # ApproxScalar, which is used to compare individual numbers. All of the # other Approx classes eventually delegate to this class. The ApproxBase # class provides some convenient methods and overloads, but isn't really # essential. __tracebackhide__ = True if isinstance(expected, Decimal): cls = ApproxDecimal elif isinstance(expected, Number): cls = ApproxScalar elif isinstance(expected, Mapping): cls = ApproxMapping elif isinstance(expected, Sequence) and not isinstance(expected, STRING_TYPES): cls = ApproxSequence elif _is_numpy_array(expected): cls = ApproxNumpy else: raise _non_numeric_type_error(expected, at=None) return cls(expected, rel, abs, nan_ok) def _is_numpy_array(obj): """ Return true if the given object is a numpy array. Make a special effort to avoid importing numpy unless it's really necessary. """ import sys np = sys.modules.get("numpy") if np is not None: return isinstance(obj, np.ndarray) return False # builtin pytest.raises helper def raises(expected_exception, *args, **kwargs): r""" Assert that a code block/function call raises ``expected_exception`` and raise a failure exception otherwise. :arg message: if specified, provides a custom failure message if the exception is not raised :arg match: if specified, asserts that the exception matches a text or regex This helper produces a ``ExceptionInfo()`` object (see below). You may use this function as a context manager:: >>> with raises(ZeroDivisionError): ... 1/0 .. versionchanged:: 2.10 In the context manager form you may use the keyword argument ``message`` to specify a custom failure message:: >>> with raises(ZeroDivisionError, message="Expecting ZeroDivisionError"): ... pass Traceback (most recent call last): ... Failed: Expecting ZeroDivisionError .. note:: When using ``pytest.raises`` as a context manager, it's worthwhile to note that normal context manager rules apply and that the exception raised *must* be the final line in the scope of the context manager. Lines of code after that, within the scope of the context manager will not be executed. For example:: >>> value = 15 >>> with raises(ValueError) as exc_info: ... if value > 10: ... raise ValueError("value must be <= 10") ... assert exc_info.type == ValueError # this will not execute Instead, the following approach must be taken (note the difference in scope):: >>> with raises(ValueError) as exc_info: ... if value > 10: ... raise ValueError("value must be <= 10") ... >>> assert exc_info.type == ValueError Since version ``3.1`` you can use the keyword argument ``match`` to assert that the exception matches a text or regex:: >>> with raises(ValueError, match='must be 0 or None'): ... raise ValueError("value must be 0 or None") >>> with raises(ValueError, match=r'must be \d+$'): ... raise ValueError("value must be 42") **Legacy forms** The forms below are fully supported but are discouraged for new code because the context manager form is regarded as more readable and less error-prone. It is possible to specify a callable by passing a to-be-called lambda:: >>> raises(ZeroDivisionError, lambda: 1/0) or you can specify an arbitrary callable with arguments:: >>> def f(x): return 1/x ... >>> raises(ZeroDivisionError, f, 0) >>> raises(ZeroDivisionError, f, x=0) It is also possible to pass a string to be evaluated at runtime:: >>> raises(ZeroDivisionError, "f(0)") The string will be evaluated using the same ``locals()`` and ``globals()`` at the moment of the ``raises`` call. .. currentmodule:: _pytest._code Consult the API of ``excinfo`` objects: :class:`ExceptionInfo`. .. note:: Similar to caught exception objects in Python, explicitly clearing local references to returned ``ExceptionInfo`` objects can help the Python interpreter speed up its garbage collection. Clearing those references breaks a reference cycle (``ExceptionInfo`` --> caught exception --> frame stack raising the exception --> current frame stack --> local variables --> ``ExceptionInfo``) which makes Python keep all objects referenced from that cycle (including all local variables in the current frame) alive until the next cyclic garbage collection run. See the official Python ``try`` statement documentation for more detailed information. """ __tracebackhide__ = True for exc in filterfalse(isclass, always_iterable(expected_exception, BASE_TYPE)): msg = ( "exceptions must be old-style classes or" " derived from BaseException, not %s" ) raise TypeError(msg % type(exc)) message = "DID NOT RAISE {}".format(expected_exception) match_expr = None if not args: if "message" in kwargs: message = kwargs.pop("message") if "match" in kwargs: match_expr = kwargs.pop("match") if kwargs: msg = "Unexpected keyword arguments passed to pytest.raises: " msg += ", ".join(kwargs.keys()) raise TypeError(msg) return RaisesContext(expected_exception, message, match_expr) elif isinstance(args[0], str): code, = args assert isinstance(code, str) frame = sys._getframe(1) loc = frame.f_locals.copy() loc.update(kwargs) # print "raises frame scope: %r" % frame.f_locals try: code = _pytest._code.Source(code).compile() six.exec_(code, frame.f_globals, loc) # XXX didn't mean f_globals == f_locals something special? # this is destroyed here ... except expected_exception: return _pytest._code.ExceptionInfo() else: func = args[0] try: func(*args[1:], **kwargs) except expected_exception: return _pytest._code.ExceptionInfo() fail(message) raises.Exception = fail.Exception class RaisesContext(object): def __init__(self, expected_exception, message, match_expr): self.expected_exception = expected_exception self.message = message self.match_expr = match_expr self.excinfo = None def __enter__(self): self.excinfo = object.__new__(_pytest._code.ExceptionInfo) return self.excinfo def __exit__(self, *tp): __tracebackhide__ = True if tp[0] is None: fail(self.message) self.excinfo.__init__(tp) suppress_exception = issubclass(self.excinfo.type, self.expected_exception) if sys.version_info[0] == 2 and suppress_exception: sys.exc_clear() if self.match_expr and suppress_exception: self.excinfo.match(self.match_expr) return suppress_exception