"""Training-related part of the Keras engine. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import warnings import copy import numpy as np from .network import Network from .base_layer import Layer from . import training_utils from . import training_arrays from . import training_generator from .. import backend as K from .. import optimizers from .. import losses from .. import metrics as metrics_module from ..utils.generic_utils import slice_arrays from ..utils.generic_utils import to_list from ..utils.generic_utils import unpack_singleton from ..utils import losses_utils from ..legacy import interfaces class Model(Network): """The `Model` class adds training & evaluation routines to a `Network`. """ @K.symbolic def compile(self, optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, **kwargs): """Configures the model for training. # Arguments optimizer: String (name of optimizer) or optimizer instance. See [optimizers](/optimizers). loss: String (name of objective function) or objective function or `Loss` instance. See [losses](/losses). If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses. metrics: List of metrics to be evaluated by the model during training and testing. Typically you will use `metrics=['accuracy']`. To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as `metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}`. You can also pass a list (len = len(outputs)) of lists of metrics such as `metrics=[['accuracy'], ['accuracy', 'mse']]` or `metrics=['accuracy', ['accuracy', 'mse']]`. loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the *weighted sum* of all individual losses, weighted by the `loss_weights` coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a dict, it is expected to map output names (strings) to scalar coefficients. sample_weight_mode: If you need to do timestep-wise sample weighting (2D weights), set this to `"temporal"`. `None` defaults to sample-wise weights (1D). If the model has multiple outputs, you can use a different `sample_weight_mode` on each output by passing a dictionary or a list of modes. weighted_metrics: List of metrics to be evaluated and weighted by sample_weight or class_weight during training and testing. target_tensors: By default, Keras will create placeholders for the model's target, which will be fed with the target data during training. If instead you would like to use your own target tensors (in turn, Keras will not expect external Numpy data for these targets at training time), you can specify them via the `target_tensors` argument. It can be a single tensor (for a single-output model), a list of tensors, or a dict mapping output names to target tensors. **kwargs: When using the Theano/CNTK backends, these arguments are passed into `K.function`. When using the TensorFlow backend, these arguments are passed into `tf.Session.run`. # Raises ValueError: In case of invalid arguments for `optimizer`, `loss`, `metrics` or `sample_weight_mode`. """ self.optimizer = optimizers.get(optimizer) self.loss = loss or {} self._compile_metrics = metrics or [] self.loss_weights = loss_weights self.sample_weight_mode = sample_weight_mode self._compile_weighted_metrics = weighted_metrics # List of stateful metric functions. Used for resetting metric state during # training/eval. self._compile_metric_functions = [] # List of metric wrappers on output losses. self._output_loss_metrics = None if not self.built: # Model is not compilable because # it does not know its number of inputs # and outputs, nor their shapes and names. # We will compile after the first # time the model gets called on training data. return self._is_compiled = True # Prepare list of loss functions, same size as model outputs. self.loss_functions = training_utils.prepare_loss_functions( self.loss, self.output_names) self._feed_outputs = [] self._feed_output_names = [] self._feed_output_shapes = [] self._feed_loss_fns = [] # if loss function is None, then this output will be skipped during total # loss calculation and feed targets preparation. self.skip_target_indices = [] skip_target_weighing_indices = [] for i, loss_function in enumerate(self.loss_functions): if loss_function is None: self.skip_target_indices.append(i) skip_target_weighing_indices.append(i) # Prepare output masks. masks = self.compute_mask(self.inputs, mask=None) if masks is None: masks = [None for _ in self.outputs] masks = to_list(masks) # Prepare list loss weights, same size of model outputs. self.loss_weights_list = training_utils.prepare_loss_weights( self.output_names, loss_weights) # Prepare targets of model. self.targets = [] self._feed_targets = [] if target_tensors is not None: if isinstance(target_tensors, list): if len(target_tensors) != len(self.outputs): raise ValueError( 'When passing a list as `target_tensors`, ' 'it should have one entry per model output. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed target_tensors=' + str(target_tensors)) elif isinstance(target_tensors, dict): for name in target_tensors: if name not in self.output_names: raise ValueError('Unknown entry in `target_tensors` ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) tmp_target_tensors = [] for name in self.output_names: tmp_target_tensors.append(target_tensors.get(name, None)) target_tensors = tmp_target_tensors elif K.is_tensor(target_tensors): if len(self.outputs) != 1: raise ValueError('The model has ' + str(len(self.outputs)) + ' outputs, but you passed a single tensor as ' '`target_tensors`. Expected a list or a dict ' 'of tensors.') target_tensors = [target_tensors] else: raise TypeError('Expected `target_tensors` to be a tensor, ' 'a list of tensors, or dict of tensors, but got:', target_tensors) for i in range(len(self.outputs)): if i in self.skip_target_indices: self.targets.append(None) else: shape = K.int_shape(self.outputs[i]) name = self.output_names[i] if target_tensors is not None: target = target_tensors[i] else: target = None if target is None or K.is_placeholder(target): if target is None: target = K.placeholder( ndim=len(shape), name=name + '_target', sparse=K.is_sparse(self.outputs[i]), dtype=K.dtype(self.outputs[i])) self._feed_targets.append(target) self._feed_outputs.append(self.outputs[i]) self._feed_output_names.append(name) self._feed_output_shapes.append(shape) self._feed_loss_fns.append(self.loss_functions[i]) else: skip_target_weighing_indices.append(i) self.targets.append(target) # Prepare sample weights. self._set_sample_weight_attributes( sample_weight_mode, skip_target_weighing_indices) # Save all metric attributes per output of the model. self._cache_output_metric_attributes(metrics, weighted_metrics) # Set metric attributes on model. self._set_metric_attributes() # Invoke metric functions (unweighted) for all the outputs. self._handle_metrics( self.outputs, targets=self.targets, skip_target_masks=[l is None for l in self.loss_functions], sample_weights=self.sample_weights, masks=masks) # Compute total loss. # Used to keep track of the total loss value (stateless). # eg., total_loss = loss_weight_1 * output_1_loss_fn(...) + # loss_weight_2 * output_2_loss_fn(...) + # layer losses. self.total_loss = self._prepare_total_loss(masks) # Functions for train, test and predict will # be compiled lazily when required. # This saves time when the user is not using all functions. self._function_kwargs = kwargs self.train_function = None self.test_function = None self.predict_function = None # Collected trainable weights, sorted in topological order. trainable_weights = self.trainable_weights self._collected_trainable_weights = trainable_weights @property def metrics(self): """Returns the model's metrics added using `compile`, `add_metric` APIs.""" metrics = [] if self._is_compiled: metrics += self._compile_metric_functions metrics.extend(self._metrics) metrics.extend(_get_metrics_from_layers(self._layers)) return metrics @property def metrics_names(self): """Returns the model's display labels for all outputs.""" metrics_names = ['loss'] if self._is_compiled: # Add output loss metric names to the metric names list. if len(self.outputs) > 1: metrics_names.extend([ self.output_names[i] + '_loss' for i in range(len(self.outputs)) if i not in self.skip_target_indices ]) # Add compile metrics/weighted metrics' names to the metric names list. metrics_names.extend([m.name for m in self._compile_metric_functions]) # Add metric names from layers. for layer in self.layers: metrics_names += [m.name for m in layer._metrics] metrics_names += [m.name for m in self._metrics] return metrics_names def reset_metrics(self): """Resets the state of metrics.""" metrics = self._get_training_eval_metrics() for m in metrics: m.reset_states() def _check_trainable_weights_consistency(self): """Check trainable weights count consistency. This will raise a warning if `trainable_weights` and `_collected_trainable_weights` are inconsistent (i.e. have different number of parameters). Inconsistency will typically arise when one modifies `model.trainable` without calling `model.compile` again. """ if not hasattr(self, '_collected_trainable_weights'): return if (len(self.trainable_weights) != len(self._collected_trainable_weights)): warnings.warn(UserWarning( 'Discrepancy between trainable weights and collected trainable' ' weights, did you set `model.trainable` without calling' ' `model.compile` after ?')) def _make_train_function(self): if not hasattr(self, 'train_function'): raise RuntimeError('You must compile your model before using it.') self._check_trainable_weights_consistency() if self.train_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self._uses_dynamic_learning_phase(): inputs += [K.learning_phase()] with K.name_scope('training'): with K.name_scope(self.optimizer.__class__.__name__): training_updates = self.optimizer.get_updates( params=self._collected_trainable_weights, loss=self.total_loss) updates = self.updates + training_updates metrics = self._get_training_eval_metrics() metrics_tensors = [ m._call_result for m in metrics if hasattr(m, '_call_result') ] metrics_updates = [] for m in metrics: metrics_updates.extend(m.updates) # Gets loss and metrics. Updates weights at each call. self.train_function = K.function( inputs, [self.total_loss] + metrics_tensors, updates=updates + metrics_updates, name='train_function', **self._function_kwargs) def _make_test_function(self): if not hasattr(self, 'test_function'): raise RuntimeError('You must compile your model before using it.') if self.test_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self._uses_dynamic_learning_phase(): inputs += [K.learning_phase()] metrics = self._get_training_eval_metrics() metrics_tensors = [ m._call_result for m in metrics if hasattr(m, '_call_result') ] metrics_updates = [] for m in metrics: metrics_updates.extend(m.updates) # Return loss and metrics, no gradient updates. # Does update the network states. self.test_function = K.function( inputs, [self.total_loss] + metrics_tensors, updates=self.state_updates + metrics_updates, name='test_function', **self._function_kwargs) def _make_predict_function(self): if not hasattr(self, 'predict_function'): self.predict_function = None if self.predict_function is None: if self._uses_dynamic_learning_phase(): inputs = self._feed_inputs + [K.learning_phase()] else: inputs = self._feed_inputs # Gets network outputs. Does not update weights. # Does update the network states. kwargs = getattr(self, '_function_kwargs', {}) self.predict_function = K.function(inputs, self.outputs, updates=self.state_updates, name='predict_function', **kwargs) def _uses_dynamic_learning_phase(self): return (self.uses_learning_phase and not isinstance(K.learning_phase(), int)) def _set_inputs(self, inputs, outputs=None, training=None): """Set model's input and output specs based on the input data received. This is to be used for Model subclasses, which do not know at instantiation time what their inputs look like. # Arguments inputs: Single array, or list of arrays. The arrays could be placeholders, Numpy arrays, or data tensors. - if placeholders: the model is built on top of these placeholders, and we expect Numpy data to be fed for them when calling `fit`/etc. - if Numpy data: we create placeholders matching the shape of the Numpy arrays. We expect Numpy data to be fed for these placeholders when calling `fit`/etc. - if data tensors: the model is built on top of these tensors. We do not expect any Numpy data to be provided when calling `fit`/etc. outputs: Optional output tensors (if already computed by running the model). training: Boolean or None. Only relevant in symbolic mode. Specifies whether to build the model's graph in inference mode (False), training mode (True), or using the Keras learning phase (None). """ if self.__class__.__name__ == 'Sequential': # Note: we can't test whether the model # is `Sequential` via `isinstance` # since `Sequential` depends on `Model`. if isinstance(inputs, list): assert len(inputs) == 1 inputs = inputs[0] self.build(input_shape=(None,) + inputs.shape[1:]) return if self.inputs: raise ValueError('Model inputs are already set.') # On-the-fly setting of symbolic model inputs # (either by using the tensor provided, # or by creating a placeholder if Numpy data was provided). self.inputs = [] self.input_names = [] self._feed_inputs = [] self._feed_input_names = [] self._feed_input_shapes = [] inputs = to_list(inputs, allow_tuple=True) for i, v in enumerate(inputs): name = 'input_%d' % (i + 1) self.input_names.append(name) if isinstance(v, list): v = np.asarray(v) if v.ndim == 1: v = np.expand_dims(v, 1) if isinstance(v, (np.ndarray)): # We fix the placeholder shape except the batch size. # This is suboptimal, but it is the best we can do with the info # we have. The user should call `model._set_inputs(placeholders)` # to specify custom placeholders if the need arises. shape = (None,) + v.shape[1:] placeholder = K.placeholder(shape=shape, name=name) self.inputs.append(placeholder) self._feed_inputs.append(placeholder) self._feed_input_names.append(name) self._feed_input_shapes.append(shape) else: # Assumed tensor - TODO(fchollet) additional type check? self.inputs.append(v) if K.is_placeholder(v): self._feed_inputs.append(v) self._feed_input_names.append(name) self._feed_input_shapes.append(K.int_shape(v)) if outputs is None: # Obtain symbolic outputs by calling the model. if self._expects_training_arg: outputs = self.call(unpack_singleton(self.inputs), training=training) else: outputs = self.call(unpack_singleton(self.inputs)) outputs = to_list(outputs, allow_tuple=True) self.outputs = outputs self.output_names = [ 'output_%d' % (i + 1) for i in range(len(self.outputs))] self.built = True def _standardize_user_data(self, x, y=None, sample_weight=None, class_weight=None, check_array_lengths=True, batch_size=None): all_inputs = [] if not self.built: # We need to use `x` to set the model inputs. # We type-check that `x` and `y` are either single arrays # or lists of arrays. if isinstance(x, (list, tuple)): if not all(isinstance(v, np.ndarray) or K.is_tensor(v) for v in x): raise ValueError('Please provide as model inputs ' 'either a single ' 'array or a list of arrays. ' 'You passed: x=' + str(x)) all_inputs += list(x) elif isinstance(x, dict): raise ValueError('Please do not pass a dictionary ' 'as model inputs.') else: if not isinstance(x, np.ndarray) and not K.is_tensor(x): raise ValueError('Please provide as model inputs ' 'either a single ' 'array or a list of arrays. ' 'You passed: x=' + str(x)) all_inputs.append(x) # Build the model using the retrieved inputs (value or symbolic). # If values, then in symbolic-mode placeholders will be created # to match the value shapes. if not self.inputs: self._set_inputs(x) if y is not None: if not self.optimizer: raise RuntimeError('You must compile a model before ' 'training/testing. ' 'Use `model.compile(optimizer, loss)`.') if not self._is_compiled: # On-the-fly compilation of the model. # We need to use `y` to set the model targets. if isinstance(y, (list, tuple)): if not all(isinstance(v, np.ndarray) or K.is_tensor(v) for v in y): raise ValueError('Please provide as model targets ' 'either a single ' 'array or a list of arrays. ' 'You passed: y=' + str(y)) elif isinstance(y, dict): raise ValueError('Please do not pass a dictionary ' 'as model targets.') else: if not isinstance(y, np.ndarray) and not K.is_tensor(y): raise ValueError('Please provide as model targets ' 'either a single ' 'array or a list of arrays. ' 'You passed: y=' + str(y)) # Typecheck that all inputs are *either* value *or* symbolic. if y is not None: all_inputs += to_list(y, allow_tuple=True) if any(K.is_tensor(v) for v in all_inputs): if not all(K.is_tensor(v) for v in all_inputs): raise ValueError('Do not pass inputs that mix Numpy ' 'arrays and symbolic tensors. ' 'You passed: x=' + str(x) + '; y=' + str(y)) # Handle target tensors if any passed. y = to_list(y, allow_tuple=True) target_tensors = [v for v in y if K.is_tensor(v)] if not target_tensors: target_tensors = None self.compile(optimizer=self.optimizer, loss=self.loss, metrics=self._compile_metrics, weighted_metrics=self._compile_weighted_metrics, loss_weights=self.loss_weights, target_tensors=target_tensors) # If `x` and `y` were all symbolic, # then the model should not be fed any inputs and targets. # Note: in this case, `any` and `all` are equivalent since we disallow # mixed symbolic/value inputs. if any(K.is_tensor(v) for v in all_inputs): return [], [], [] # What follows is input validation and standardization to list format, # in the case where all inputs are value arrays. if not self._is_graph_network: # Case: symbolic-mode subclassed network. # Do not do shape validation. feed_input_names = self._feed_input_names feed_input_shapes = None else: # Case: symbolic-mode graph network. # In this case, we run extensive shape validation checks. feed_input_names = self._feed_input_names feed_input_shapes = self._feed_input_shapes # Standardize the inputs. x = training_utils.standardize_input_data( x, feed_input_names, feed_input_shapes, check_batch_axis=False, # Don't enforce the batch size. exception_prefix='input') if y is not None: if not self._is_graph_network: feed_output_names = self._feed_output_names feed_output_shapes = None # Sample weighting not supported in this case. # TODO: consider supporting it. feed_sample_weight_modes = [None for _ in self.outputs] else: feed_output_names = self._feed_output_names feed_sample_weight_modes = self._feed_sample_weight_modes feed_output_shapes = [] for output_shape, loss_fn in zip(self._feed_output_shapes, self._feed_loss_fns): if ((isinstance(loss_fn, losses.LossFunctionWrapper) and loss_fn.fn == losses.sparse_categorical_crossentropy)) or ( isinstance( loss_fn, losses.SparseCategoricalCrossentropy)): if K.image_data_format() == 'channels_first' and len( output_shape) in [4, 5]: feed_output_shapes.append( (output_shape[0], 1) + output_shape[2:]) else: feed_output_shapes.append(output_shape[:-1] + (1,)) elif (not isinstance(loss_fn, losses.Loss) or (isinstance(loss_fn, losses.LossFunctionWrapper) and (getattr(losses, loss_fn.fn.__name__, None) is None))): # If the given loss is not an instance of the `Loss` class # (custom class) or if the loss function that is wrapped is # not in the `losses` module, then it is a user-defined loss # and we make no assumptions about it. feed_output_shapes.append(None) else: feed_output_shapes.append(output_shape) # Standardize the outputs. y = training_utils.standardize_input_data( y, feed_output_names, feed_output_shapes, check_batch_axis=False, # Don't enforce the batch size. exception_prefix='target') # Generate sample-wise weight values given the `sample_weight` and # `class_weight` arguments. sample_weights = training_utils.standardize_sample_weights( sample_weight, feed_output_names) class_weights = training_utils.standardize_class_weights( class_weight, feed_output_names) sample_weights = [ training_utils.standardize_weights(ref, sw, cw, mode) for (ref, sw, cw, mode) in zip(y, sample_weights, class_weights, feed_sample_weight_modes) ] # Check that all arrays have the same length. if check_array_lengths: training_utils.check_array_length_consistency(x, y, sample_weights) if self._is_graph_network: # Additional checks to avoid users mistakenly # using improper loss fns. training_utils.check_loss_and_target_compatibility( y, self._feed_loss_fns, feed_output_shapes) else: y = [] sample_weights = [] if self.stateful and batch_size: # Check that for stateful networks, number of samples is a multiple # of the static batch size. if x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples') return x, y, sample_weights def _prepare_total_loss(self, masks=None): """Computes total loss from loss functions. # Arguments skip_target_indices: A list of indices of model outputs where loss function is None. masks: List of mask values corresponding to each model output. # Returns A list of loss weights of python floats. """ total_loss = None with K.name_scope('loss'): zipped_inputs = zip(self.targets, self.outputs, self.loss_functions, self.sample_weights, masks, self.loss_weights_list) for i, (y_true, y_pred, loss_fn, sample_weight, mask, loss_weight) in enumerate(zipped_inputs): if i in self.skip_target_indices: continue loss_name = self.output_names[i] + '_loss' with K.name_scope(loss_name): if mask is not None: mask = K.cast(mask, y_pred.dtype) # Update weights with mask. if sample_weight is None: sample_weight = mask else: # Update dimensions of weights to match with mask. mask, _, sample_weight = ( losses_utils.squeeze_or_expand_dimensions( mask, None, sample_weight)) sample_weight *= mask output_loss = loss_fn( y_true, y_pred, sample_weight=sample_weight) if len(self.outputs) > 1: update_ops = self._output_loss_metrics[i].update_state( output_loss) with K.control_dependencies(update_ops): # For TF self._output_loss_metrics[i].result() if total_loss is None: total_loss = loss_weight * output_loss else: total_loss += loss_weight * output_loss if total_loss is None: if not self.losses: raise ValueError('The model cannot be compiled ' 'because it has no loss to optimize.') else: total_loss = 0. # Add regularization penalties and other layer-specific losses. for loss_tensor in self.losses: total_loss += loss_tensor return K.mean(total_loss) def _get_training_eval_metrics(self): """Returns all the metrics that are to be reported. This includes the output loss metrics, compile metrics/weighted metrics. """ metrics = [] if getattr(self, '_output_loss_metrics', None) is not None: metrics.extend(self._output_loss_metrics) if hasattr(self, 'metrics'): metrics.extend(self.metrics) return metrics def _cache_output_metric_attributes(self, metrics, weighted_metrics): """Caches metric name and function attributes for every model output.""" output_shapes = [] for output in self.outputs: if output is None: output_shapes.append(None) else: output_shapes.append(list(output.shape)) self._per_output_metrics = training_utils.collect_per_output_metric_info( metrics, self.output_names, output_shapes, self.loss_functions) self._per_output_weighted_metrics = ( training_utils.collect_per_output_metric_info( weighted_metrics, self.output_names, output_shapes, self.loss_functions, is_weighted=True)) def _add_unique_metric_name(self, metric_name, output_index): """Makes the metric name unique and adds it to the model's metric name list. If there are multiple outputs for which the metrics are calculated, the metric names have to be made unique by appending an integer. # Arguments metric_name: Metric name that corresponds to the metric specified by the user. For example: 'acc'. output_index: The index of the model output for which the metric name is being added. # Returns string, name of the model's unique metric name """ if len(self.output_names) > 1: metric_name = '%s_%s' % (self.output_names[output_index], metric_name) j = 1 base_metric_name = metric_name while metric_name in self.metrics_names: metric_name = '%s_%d' % (base_metric_name, j) j += 1 return metric_name def _set_per_output_metric_attributes(self, metrics_dict, output_index): """Sets the metric attributes on the model for the given output. # Arguments metrics_dict: A dict with metric names as keys and metric fns as values. output_index: The index of the model output for which the metric attributes are added. # Returns Metrics dict updated with unique metric names as keys. """ updated_metrics_dict = collections.OrderedDict() for metric_name, metric_fn in metrics_dict.items(): metric_name = self._add_unique_metric_name(metric_name, output_index) # Update the name on the metric class to be the unique generated name. metric_fn.name = metric_name updated_metrics_dict[metric_name] = metric_fn # Keep track of metric function. self._compile_metric_functions.append(metric_fn) return updated_metrics_dict def _set_metric_attributes(self): """Sets the metric attributes on the model for all the model outputs.""" updated_per_output_metrics = [] updated_per_output_weighted_metrics = [] for i in range(len(self.outputs)): if i in self.skip_target_indices: updated_per_output_metrics.append(self._per_output_metrics[i]) updated_per_output_weighted_metrics.append( self._per_output_weighted_metrics[i]) continue updated_per_output_metrics.append( self._set_per_output_metric_attributes( self._per_output_metrics[i], i)) updated_per_output_weighted_metrics.append( self._set_per_output_metric_attributes( self._per_output_weighted_metrics[i], i)) # Create a metric wrapper for each output loss. This computes mean of an # output loss across mini-batches (irrespective of how we reduce within a # batch). if len(self.outputs) > 1: self._output_loss_metrics = [ metrics_module.Mean(name=self.output_names[i] + '_loss') for i in range(len(self.loss_functions)) ] self._per_output_metrics = updated_per_output_metrics self._per_output_weighted_metrics = updated_per_output_weighted_metrics def _handle_per_output_metrics(self, metrics_dict, y_true, y_pred, mask, weights=None): """Calls metric functions for a single output. # Arguments metrics_dict: A dict with metric names as keys and metric fns as values. y_true: Target output. y_pred: Predicted output. mask: Computed mask value for the current output. weights: Weights to be applied on the current output. """ for metric_name, metric_fn in metrics_dict.items(): with K.name_scope(metric_name): training_utils.call_metric_function( metric_fn, y_true, y_pred, weights=weights, mask=mask) def _handle_metrics(self, outputs, targets=None, skip_target_masks=None, sample_weights=None, masks=None): """Handles calling metric functions. # Arguments outputs: List of outputs (predictions). targets: List of targets. skip_target_masks: Optional. List of boolean for whether the corresponding target should be ignored or not. sample_weights: Optional list of sample weight arrays. masks: List of computed output mask values. """ skip_target_masks = skip_target_masks or [False] * len(outputs) with K.name_scope('metrics'): # Invoke all metrics added using `compile`. for i in range(len(outputs)): if skip_target_masks[i]: continue output = outputs[i] if outputs else None target = targets[i] if targets else None output_mask = masks[i] if masks else None self._handle_per_output_metrics( self._per_output_metrics[i], target, output, output_mask) self._handle_per_output_metrics( self._per_output_weighted_metrics[i], target, output, output_mask, weights=sample_weights[i] if sample_weights else None) def _get_callback_model(self): """Returns the Callback Model for this Model.""" if hasattr(self, 'callback_model') and self.callback_model: return self.callback_model return self def _validate_or_infer_batch_size(self, batch_size, steps, x): """Validates that the `batch_size` provided is consistent with InputLayer. It's possible that the user specified a static batch size in their InputLayer. If so, this method checks the provided `batch_size` and `x` arguments are consistent with this static batch size. Also, if `batch_size` is `None`, this method will attempt to infer the batch size from the static batch size of the InputLayer. Lastly, ValueError will be raised if `x` is a generator or `Sequence` instance and `batch_size` is specified as we expect users to provide batched datasets. # Arguments batch_size: The batch_size provided as an argument to fit/evaluate/predict. steps: The steps provided as an argument to fit/evaluate/predict. x: The data passed as `x` to fit/evaluate/predict. # Returns The validated batch_size, auto-inferred from the first layer if not provided. # Raises ValueError: if a batch size is specified and a generator/Sequence is passed, or if the specified batch size does not match the exepected size defined in the Input Layer. """ if batch_size is not None and training_utils.is_generator_or_sequence(x): raise ValueError('The `batch_size` argument must not be specified when' ' using a generator or Sequence as an input.') layers = super(Model, self).layers # Avoids the override in Sequential. if layers: first_layer = layers[0] static_batch_size = training_utils.get_static_batch_size(first_layer) if static_batch_size is not None: # Check `batch_size` argument is consistent with InputLayer. if batch_size is not None and batch_size != static_batch_size: raise ValueError('The `batch_size` argument value {} is ' 'incompatible with the specified batch ' 'size of your Input Layer: {}' .format(batch_size, static_batch_size)) # Set inferred batch size from the InputLayer. if steps is None: batch_size = static_batch_size if batch_size is None and steps is None: # Backwards compatibility batch_size = 32 return batch_size def _set_sample_weight_attributes(self, sample_weight_mode, skip_target_weighing_indices): """Sets sample weight related attributes on the model.""" sample_weights, sample_weight_modes = training_utils.prepare_sample_weights( self.output_names, sample_weight_mode, skip_target_weighing_indices) self.sample_weights = sample_weights self.sample_weight_modes = sample_weight_modes self._feed_sample_weight_modes = [ sample_weight_modes[i] for i in range(len(self.outputs)) if i not in skip_target_weighing_indices ] self._feed_sample_weights = [ sample_weights[i] for i in range(len(sample_weights)) if i not in skip_target_weighing_indices ] def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False, **kwargs): """Trains the model for a fixed number of epochs (iterations on a dataset). # Arguments x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`. - None (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). y: Target data. Like the input data `x`, it could be either Numpy array(s), framework-native tensor(s), list of Numpy arrays (if the model has multiple outputs) or None (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). If output layers in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. If `x` is a generator, or `keras.utils.Sequence` instance, `y` should not be specified (since targets will be obtained from `x`). batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 32. Do not specify the `batch_size` if your data is in the form of symbolic tensors, generators, or `Sequence` instances (since they generate batches). epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire `x` and `y` data provided. Note that in conjunction with `initial_epoch`, `epochs` is to be understood as "final epoch". The model is not trained for a number of iterations given by `epochs`, but merely until the epoch of index `epochs` is reached. verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during training and validation (if ). See [callbacks](/callbacks). validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling. This argument is not supported when `x` is a generator or `Sequence` instance. validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`. `validation_data` could be: - tuple `(x_val, y_val)` of Numpy arrays or tensors - tuple `(x_val, y_val, val_sample_weights)` of Numpy arrays - dataset or a dataset iterator For the first two cases, `batch_size` must be provided. For the last case, `validation_steps` must be provided. shuffle: Boolean (whether to shuffle the training data before each epoch) or str (for 'batch'). 'batch' is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-sized chunks. Has no effect when `steps_per_epoch` is not `None`. class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class. sample_weight: Optional Numpy array of weights for the training samples, used for weighting the loss function (during training only). You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape `(samples, sequence_length)`, to apply a different weight to every timestep of every sample. In this case you should make sure to specify `sample_weight_mode="temporal"` in `compile()`. This argument is not supported when `x` generator, or `Sequence` instance, instead provide the sample_weights as the third element of `x`. initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run). steps_per_epoch: Integer or `None`. Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. When training with input tensors such as TensorFlow data tensors, the default `None` is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined. validation_steps: Only relevant if `steps_per_epoch` is specified. Total number of steps (batches of samples) to validate before stopping. validation_steps: Only relevant if `validation_data` is provided and is a generator. Total number of steps (batches of samples) to draw before stopping when performing validation at the end of every epoch. validation_freq: Only relevant if validation data is provided. Integer or list/tuple/set. If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a list, tuple, or set, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. max_queue_size: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. Used for generator or `keras.utils.Sequence` input only. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. **kwargs: Used for backwards compatibility. # Returns A `History` object. Its `History.history` attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable). # Raises RuntimeError: If the model was never compiled. ValueError: In case of mismatch between the provided input data and what the model expects. """ # Legacy support if 'nb_epoch' in kwargs: warnings.warn('The `nb_epoch` argument in `fit` ' 'has been renamed `epochs`.', stacklevel=2) epochs = kwargs.pop('nb_epoch') if kwargs: raise TypeError('Unrecognized keyword arguments: ' + str(kwargs)) if x is None and y is None and steps_per_epoch is None: raise ValueError('If fitting from data tensors, ' 'you should specify the `steps_per_epoch` ' 'argument.') batch_size = self._validate_or_infer_batch_size( batch_size, steps_per_epoch, x) # Case 1: generator-like. Input is Python generator, # or Sequence object, or iterator. if training_utils.is_generator_or_sequence(x): training_utils.check_generator_arguments( y, sample_weight, validation_split=validation_split) return self.fit_generator( x, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, validation_freq=validation_freq, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, shuffle=shuffle, initial_epoch=initial_epoch) # Case 2: Symbolic tensors or Numpy array-like. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size) # Prepare validation data. do_validation = False if validation_data: do_validation = True if len(validation_data) == 2: val_x, val_y = validation_data val_sample_weight = None elif len(validation_data) == 3: val_x, val_y, val_sample_weight = validation_data else: raise ValueError('When passing validation_data, ' 'it must contain 2 (x_val, y_val) ' 'or 3 (x_val, y_val, val_sample_weights) ' 'items, however it contains %d items' % len(validation_data)) val_x, val_y, val_sample_weights = self._standardize_user_data( val_x, val_y, sample_weight=val_sample_weight, batch_size=batch_size) if self._uses_dynamic_learning_phase(): val_inputs = val_x + val_y + val_sample_weights + [0] else: val_inputs = val_x + val_y + val_sample_weights elif validation_split and 0. < validation_split < 1.: if any(K.is_tensor(t) for t in x): raise ValueError( 'If your data is in the form of symbolic tensors, ' 'you cannot use `validation_split`.') do_validation = True if hasattr(x[0], 'shape'): split_at = int(int(x[0].shape[0]) * (1. - validation_split)) else: split_at = int(len(x[0]) * (1. - validation_split)) x, val_x = (slice_arrays(x, 0, split_at), slice_arrays(x, split_at)) y, val_y = (slice_arrays(y, 0, split_at), slice_arrays(y, split_at)) sample_weights, val_sample_weights = ( slice_arrays(sample_weights, 0, split_at), slice_arrays(sample_weights, split_at)) if self._uses_dynamic_learning_phase(): val_inputs = val_x + val_y + val_sample_weights + [0] else: val_inputs = val_x + val_y + val_sample_weights elif validation_steps: do_validation = True if self._uses_dynamic_learning_phase(): val_inputs = [0] # Prepare input arrays and training function. if self._uses_dynamic_learning_phase(): fit_inputs = x + y + sample_weights + [1] else: fit_inputs = x + y + sample_weights self._make_train_function() fit_function = self.train_function # Prepare display labels. out_labels = self.metrics_names if do_validation: self._make_test_function() val_function = self.test_function else: val_function = None val_inputs = [] # Delegate logic to `fit_loop`. return training_arrays.fit_loop(self, fit_function, fit_inputs, out_labels=out_labels, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_function=val_function, val_inputs=val_inputs, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq) def evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False): """Returns the loss value & metrics values for the model in test mode. Computation is done in batches. # Arguments x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`. - None (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). y: Target data. Like the input data `x`, it could be either Numpy array(s), framework-native tensor(s), list of Numpy arrays (if the model has multiple outputs) or None (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). If output layers in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. If `x` is a generator, or `keras.utils.Sequence` instance, `y` should not be specified (since targets will be obtained from `x`). batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 32. Do not specify the `batch_size` if your data is in the form of symbolic tensors, generators, or `keras.utils.Sequence` instances (since they generate batches). verbose: 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar. sample_weight: Optional Numpy array of weights for the test samples, used for weighting the loss function. You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape `(samples, sequence_length)`, to apply a different weight to every timestep of every sample. In this case you should make sure to specify `sample_weight_mode="temporal"` in `compile()`. steps: Integer or `None`. Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of `None`. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during evaluation. See [callbacks](/callbacks). max_queue_size: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. Used for generator or `keras.utils.Sequence` input only. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. # Raises ValueError: in case of invalid arguments. # Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ batch_size = self._validate_or_infer_batch_size(batch_size, steps, x) # Case 1: generator-like. Input is Python generator, or Sequence object. if training_utils.is_generator_or_sequence(x): training_utils.check_generator_arguments(y, sample_weight) return self.evaluate_generator( x, steps=steps, verbose=verbose, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) # Case 2: Symbolic tensors or Numpy array-like. if x is None and y is None and steps is None: raise ValueError('If evaluating from data tensors, ' 'you should specify the `steps` ' 'argument.') # Validate user data. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size) # Prepare inputs, delegate logic to `test_loop`. if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [0] else: ins = x + y + sample_weights self._make_test_function() f = self.test_function return training_arrays.test_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks) def predict(self, x, batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False): """Generates output predictions for the input samples. Computation is done in batches. # Arguments x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs). - A dict mapping input names to the corresponding array/tensors, if the model has named inputs. - A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`. - None (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 32. Do not specify the `batch_size` if your data is in the form of symbolic tensors, generators, or `keras.utils.Sequence` instances (since they generate batches). verbose: Verbosity mode, 0 or 1. steps: Total number of steps (batches of samples) before declaring the prediction round finished. Ignored with the default value of `None`. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during prediction. See [callbacks](/callbacks). max_queue_size: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Used for generator or `keras.utils.Sequence` input only. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. Used for generator or `keras.utils.Sequence` input only. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. # Returns Numpy array(s) of predictions. # Raises ValueError: In case of mismatch between the provided input data and the model's expectations, or in case a stateful model receives a number of samples that is not a multiple of the batch size. """ batch_size = self._validate_or_infer_batch_size(batch_size, steps, x) # Case 1: generator-like. Input is Python generator, or Sequence object. if training_utils.is_generator_or_sequence(x): return self.predict_generator( x, steps=steps, verbose=verbose, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) if x is None and steps is None: raise ValueError('If predicting from data tensors, ' 'you should specify the `steps` ' 'argument.') # Case 2: Symbolic tensors or Numpy array-like. x, _, _ = self._standardize_user_data(x) if self.stateful: if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples. ' 'Batch size: ' + str(batch_size) + '.') # Prepare inputs, delegate logic to `predict_loop`. if self._uses_dynamic_learning_phase(): ins = x + [0] else: ins = x self._make_predict_function() f = self.predict_function return training_arrays.predict_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks) def train_on_batch(self, x, y, sample_weight=None, class_weight=None, reset_metrics=True): """Runs a single gradient update on a single batch of data. # Arguments x: Numpy array of training data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model's loss for the samples from this class during training. This can be useful to tell the model to "pay more attention" to samples from an under-represented class. reset_metrics: If `True`, the metrics returned will be only for this batch. If `False`, the metrics will be statefully accumulated across batches. # Returns Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight) if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [1] else: ins = x + y + sample_weights self._make_train_function() outputs = self.train_function(ins) if reset_metrics: self.reset_metrics() return unpack_singleton(outputs) def test_on_batch(self, x, y, sample_weight=None, reset_metrics=True): """Test the model on a single batch of samples. # Arguments x: Numpy array of test data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). reset_metrics: If `True`, the metrics returned will be only for this batch. If `False`, the metrics will be statefully accumulated across batches. # Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight) if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [0] else: ins = x + y + sample_weights self._make_test_function() outputs = self.test_function(ins) if reset_metrics: self.reset_metrics() return unpack_singleton(outputs) def predict_on_batch(self, x): """Returns predictions for a single batch of samples. # Arguments x: Input samples, as a Numpy array. # Returns Numpy array(s) of predictions. """ x, _, _ = self._standardize_user_data(x) if self._uses_dynamic_learning_phase(): ins = x + [0] else: ins = x self._make_predict_function() outputs = self.predict_function(ins) return unpack_singleton(outputs) @interfaces.legacy_generator_methods_support def fit_generator(self, generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, validation_freq=1, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0): """Trains the model on data generated batch-by-batch by a Python generator (or an instance of `Sequence`). The generator is run in parallel to the model, for efficiency. For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU. The use of `keras.utils.Sequence` guarantees the ordering and guarantees the single use of every input per epoch when using `use_multiprocessing=True`. # Arguments generator: A generator or an instance of `Sequence` (`keras.utils.Sequence`) object in order to avoid duplicate data when using multiprocessing. The output of the generator must be either - a tuple `(inputs, targets)` - a tuple `(inputs, targets, sample_weights)`. This tuple (a single output of the generator) makes a single batch. Therefore, all arrays in this tuple must have the same length (equal to the size of this batch). Different batches may have different sizes. For example, the last batch of the epoch is commonly smaller than the others, if the size of the dataset is not divisible by the batch size. The generator is expected to loop over its data indefinitely. An epoch finishes when `steps_per_epoch` batches have been seen by the model. steps_per_epoch: Integer. Total number of steps (batches of samples) to yield from `generator` before declaring one epoch finished and starting the next epoch. It should typically be equal to `ceil(num_samples / batch_size)` Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire data provided, as defined by `steps_per_epoch`. Note that in conjunction with `initial_epoch`, `epochs` is to be understood as "final epoch". The model is not trained for a number of iterations given by `epochs`, but merely until the epoch of index `epochs` is reached. verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during training. See [callbacks](/callbacks). validation_data: This can be either - a generator or a `Sequence` object for the validation data - tuple `(x_val, y_val)` - tuple `(x_val, y_val, val_sample_weights)` on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. validation_steps: Only relevant if `validation_data` is a generator. Total number of steps (batches of samples) to yield from `validation_data` generator before stopping at the end of every epoch. It should typically be equal to the number of samples of your validation dataset divided by the batch size. Optional for `Sequence`: if unspecified, will use the `len(validation_data)` as a number of steps. validation_freq: Only relevant if validation data is provided. Integer or `collections.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class. max_queue_size: Integer. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch. Only used with instances of `Sequence` (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not `None`. initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run). # Returns A `History` object. Its `History.history` attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable). # Raises ValueError: In case the generator yields data in an invalid format. # Example ```python def generate_arrays_from_file(path): while True: with open(path) as f: for line in f: # create numpy arrays of input data # and labels, from each line in the file x1, x2, y = process_line(line) yield ({'input_1': x1, 'input_2': x2}, {'output': y}) model.fit_generator(generate_arrays_from_file('/my_file.txt'), steps_per_epoch=10000, epochs=10) ``` """ return training_generator.fit_generator( self, generator, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, validation_freq=validation_freq, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, shuffle=shuffle, initial_epoch=initial_epoch) @interfaces.legacy_generator_methods_support def evaluate_generator(self, generator, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0): """Evaluates the model on a data generator. The generator should return the same kind of data as accepted by `test_on_batch`. # Arguments generator: Generator yielding tuples (inputs, targets) or (inputs, targets, sample_weights) or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during training. See [callbacks](/callbacks). max_queue_size: maximum size for the generator queue workers: Integer. Maximum number of processes to spin up when using process based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: if True, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. # Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. # Raises ValueError: In case the generator yields data in an invalid format. """ return training_generator.evaluate_generator( self, generator, steps=steps, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose) @interfaces.legacy_generator_methods_support def predict_generator(self, generator, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0): """Generates predictions for the input samples from a data generator. The generator should return the same kind of data as accepted by `predict_on_batch`. # Arguments generator: Generator yielding batches of input samples or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during training. See [callbacks](/callbacks). max_queue_size: Maximum size for the generator queue. workers: Integer. Maximum number of processes to spin up when using process based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: If `True`, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. # Returns Numpy array(s) of predictions. # Raises ValueError: In case the generator yields data in an invalid format. """ return training_generator.predict_generator( self, generator, steps=steps, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose) def _get_metrics_from_layers(layers): """Returns list of metrics from the given layers. This will not include the `compile` metrics of a model layer. # Arguments layers: List of layers. # Returns List of metrics. """ metrics = [] for layer in layers: if isinstance(layer, Model): # We cannot call 'metrics' on the model because we do not want to # include the metrics that were added in compile API of a nested model. metrics.extend(layer._metrics) metrics.extend(_get_metrics_from_layers(layer.layers)) else: metrics.extend(layer.metrics) return metrics