# -*- coding: utf-8 -*- """Layers that operate regularization via the addition of noise. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..engine.base_layer import Layer from .. import backend as K import numpy as np from ..legacy import interfaces class GaussianNoise(Layer): """Apply additive zero-centered Gaussian noise. This is useful to mitigate overfitting (you could see it as a form of random data augmentation). Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time. # Arguments stddev: float, standard deviation of the noise distribution. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as input. """ @interfaces.legacy_gaussiannoise_support def __init__(self, stddev, **kwargs): super(GaussianNoise, self).__init__(**kwargs) self.supports_masking = True self.stddev = stddev def call(self, inputs, training=None): def noised(): return inputs + K.random_normal(shape=K.shape(inputs), mean=0., stddev=self.stddev) return K.in_train_phase(noised, inputs, training=training) def get_config(self): config = {'stddev': self.stddev} base_config = super(GaussianNoise, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class GaussianDropout(Layer): """Apply multiplicative 1-centered Gaussian noise. As it is a regularization layer, it is only active at training time. # Arguments rate: float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as input. # References - [Dropout: A Simple Way to Prevent Neural Networks from Overfitting]( http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf) """ @interfaces.legacy_gaussiandropout_support def __init__(self, rate, **kwargs): super(GaussianDropout, self).__init__(**kwargs) self.supports_masking = True self.rate = rate def call(self, inputs, training=None): if 0 < self.rate < 1: def noised(): stddev = np.sqrt(self.rate / (1.0 - self.rate)) return inputs * K.random_normal(shape=K.shape(inputs), mean=1.0, stddev=stddev) return K.in_train_phase(noised, inputs, training=training) return inputs def get_config(self): config = {'rate': self.rate} base_config = super(GaussianDropout, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape class AlphaDropout(Layer): """Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units by randomly setting activations to the negative saturation value. # Arguments rate: float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. noise_shape: A 1-D `Tensor` of type `int32`, representing the shape for randomly generated keep/drop flags. seed: A Python integer to use as random seed. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as input. # References - [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super(AlphaDropout, self).__init__(**kwargs) self.rate = rate self.noise_shape = noise_shape self.seed = seed self.supports_masking = True def _get_noise_shape(self, inputs): return self.noise_shape if self.noise_shape else K.shape(inputs) def call(self, inputs, training=None): if 0. < self.rate < 1.: noise_shape = self._get_noise_shape(inputs) def dropped_inputs(inputs=inputs, rate=self.rate, seed=self.seed): alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = K.greater_equal(K.random_uniform(noise_shape, seed=seed), rate) kept_idx = K.cast(kept_idx, K.floatx()) # Get affine transformation params a = ((1 - rate) * (1 + rate * alpha_p ** 2)) ** -0.5 b = -a * alpha_p * rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) # Do affine transformation return a * x + b return K.in_train_phase(dropped_inputs, inputs, training=training) return inputs def get_config(self): config = {'rate': self.rate} base_config = super(AlphaDropout, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape