"""Built-in optimizer classes. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import copy import numpy as np from six.moves import zip from . import backend as K from .utils.generic_utils import serialize_keras_object from .utils.generic_utils import deserialize_keras_object from .legacy import interfaces if K.backend() == 'tensorflow': import tensorflow as tf def clip_norm(g, c, n): """Clip the gradient `g` if the L2 norm `n` exceeds `c`. # Arguments g: Tensor, the gradient tensor c: float >= 0. Gradients will be clipped when their L2 norm exceeds this value. n: Tensor, actual norm of `g`. # Returns Tensor, the gradient clipped if required. """ if c <= 0: # if clipnorm == 0 no need to add ops to the graph return g # tf require using a special op to multiply IndexedSliced by scalar if K.backend() == 'tensorflow': condition = n >= c then_expression = tf.scalar_mul(c / n, g) else_expression = g # saving the shape to avoid converting sparse tensor to dense if isinstance(then_expression, tf.Tensor): g_shape = copy.copy(then_expression.get_shape()) elif isinstance(then_expression, tf.IndexedSlices): g_shape = copy.copy(then_expression.dense_shape) if condition.dtype != tf.bool: condition = tf.cast(condition, 'bool') g = tf.cond(condition, lambda: then_expression, lambda: else_expression) if isinstance(then_expression, tf.Tensor): g.set_shape(g_shape) elif isinstance(then_expression, tf.IndexedSlices): g._dense_shape = g_shape else: g = K.switch(K.greater_equal(n, c), g * c / n, g) return g class Optimizer(object): """Abstract optimizer base class. Note: this is the parent class of all optimizers, not an actual optimizer that can be used for training models. All Keras optimizers support the following keyword arguments: clipnorm: float >= 0. Gradients will be clipped when their L2 norm exceeds this value. clipvalue: float >= 0. Gradients will be clipped when their absolute value exceeds this value. """ def __init__(self, **kwargs): allowed_kwargs = {'clipnorm', 'clipvalue'} for k in kwargs: if k not in allowed_kwargs: raise TypeError('Unexpected keyword argument ' 'passed to optimizer: ' + str(k)) self.__dict__.update(kwargs) self.updates = [] self.weights = [] @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): raise NotImplementedError def get_gradients(self, loss, params): grads = K.gradients(loss, params) if any(x is None for x in grads): raise ValueError('An operation has `None` for gradient. ' 'Please make sure that all of your ops have a ' 'gradient defined (i.e. are differentiable). ' 'Common ops without gradient: ' 'K.argmax, K.round, K.eval.') if hasattr(self, 'clipnorm') and self.clipnorm > 0: norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) grads = [clip_norm(g, self.clipnorm, norm) for g in grads] if hasattr(self, 'clipvalue') and self.clipvalue > 0: grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads] return grads def set_weights(self, weights): """Sets the weights of the optimizer, from Numpy arrays. Should only be called after computing the gradients (otherwise the optimizer has no weights). # Arguments weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the optimizer (i.e. it should match the output of `get_weights`). # Raises ValueError: in case of incompatible weight shapes. """ params = self.weights if len(params) != len(weights): raise ValueError('Length of the specified weight list (' + str(len(weights)) + ') does not match the number of weights ' + 'of the optimizer (' + str(len(params)) + ')') weight_value_tuples = [] param_values = K.batch_get_value(params) for pv, p, w in zip(param_values, params, weights): if pv.shape != w.shape: raise ValueError('Optimizer weight shape ' + str(pv.shape) + ' not compatible with ' 'provided weight shape ' + str(w.shape)) weight_value_tuples.append((p, w)) K.batch_set_value(weight_value_tuples) def get_weights(self): """Returns the current value of the weights of the optimizer. # Returns A list of numpy arrays. """ return K.batch_get_value(self.weights) def get_config(self): config = {} if hasattr(self, 'clipnorm'): config['clipnorm'] = self.clipnorm if hasattr(self, 'clipvalue'): config['clipvalue'] = self.clipvalue return config @classmethod def from_config(cls, config): return cls(**config) @property def lr(self): # Legacy support. return self.learning_rate class SGD(Optimizer): """Stochastic gradient descent optimizer. Includes support for momentum, learning rate decay, and Nesterov momentum. # Arguments learning_rate: float >= 0. Learning rate. momentum: float >= 0. Parameter that accelerates SGD in the relevant direction and dampens oscillations. nesterov: boolean. Whether to apply Nesterov momentum. """ def __init__(self, learning_rate=0.01, momentum=0., nesterov=False, **kwargs): learning_rate = kwargs.pop('lr', learning_rate) self.initial_decay = kwargs.pop('decay', 0.0) super(SGD, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.learning_rate = K.variable(learning_rate, name='learning_rate') self.momentum = K.variable(momentum, name='momentum') self.decay = K.variable(self.initial_decay, name='decay') self.nesterov = nesterov @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.learning_rate if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) # momentum shapes = [K.int_shape(p) for p in params] moments = [K.zeros(shape, name='moment_' + str(i)) for (i, shape) in enumerate(shapes)] self.weights = [self.iterations] + moments for p, g, m in zip(params, grads, moments): v = self.momentum * m - lr * g # velocity self.updates.append(K.update(m, v)) if self.nesterov: new_p = p + self.momentum * v - lr * g else: new_p = p + v # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'momentum': float(K.get_value(self.momentum)), 'decay': float(K.get_value(self.decay)), 'nesterov': self.nesterov} base_config = super(SGD, self).get_config() return dict(list(base_config.items()) + list(config.items())) class RMSprop(Optimizer): """RMSProp optimizer. It is recommended to leave the parameters of this optimizer at their default values (except the learning rate, which can be freely tuned). # Arguments learning_rate: float >= 0. Learning rate. rho: float >= 0. # References - [rmsprop: Divide the gradient by a running average of its recent magnitude ](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) """ def __init__(self, learning_rate=0.001, rho=0.9, **kwargs): self.initial_decay = kwargs.pop('decay', 0.0) self.epsilon = kwargs.pop('epsilon', K.epsilon()) learning_rate = kwargs.pop('lr', learning_rate) super(RMSprop, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.learning_rate = K.variable(learning_rate, name='learning_rate') self.rho = K.variable(rho, name='rho') self.decay = K.variable(self.initial_decay, name='decay') self.iterations = K.variable(0, dtype='int64', name='iterations') @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) accumulators = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='accumulator_' + str(i)) for (i, p) in enumerate(params)] self.weights = [self.iterations] + accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.learning_rate if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a in zip(params, grads, accumulators): # update accumulator new_a = self.rho * a + (1. - self.rho) * K.square(g) self.updates.append(K.update(a, new_a)) new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon) # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def set_weights(self, weights): params = self.weights # Override set_weights for backward compatibility of Keras 2.2.4 optimizer # since it does not include iteration at head of the weight list. Set # iteration to 0. if len(params) == len(weights) + 1: weights = [np.array(0)] + weights super(RMSprop, self).set_weights(weights) def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'rho': float(K.get_value(self.rho)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon} base_config = super(RMSprop, self).get_config() return dict(list(base_config.items()) + list(config.items())) class Adagrad(Optimizer): """Adagrad optimizer. Adagrad is an optimizer with parameter-specific learning rates, which are adapted relative to how frequently a parameter gets updated during training. The more updates a parameter receives, the smaller the learning rate. It is recommended to leave the parameters of this optimizer at their default values. # Arguments learning_rate: float >= 0. Initial learning rate. # References - [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) """ def __init__(self, learning_rate=0.01, **kwargs): self.initial_decay = kwargs.pop('decay', 0.0) self.epsilon = kwargs.pop('epsilon', K.epsilon()) learning_rate = kwargs.pop('lr', learning_rate) super(Adagrad, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.learning_rate = K.variable(learning_rate, name='learning_rate') self.decay = K.variable(self.initial_decay, name='decay') self.iterations = K.variable(0, dtype='int64', name='iterations') @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) shapes = [K.int_shape(p) for p in params] accumulators = [K.zeros(shape, name='accumulator_' + str(i)) for (i, shape) in enumerate(shapes)] self.weights = [self.iterations] + accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.learning_rate if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a in zip(params, grads, accumulators): new_a = a + K.square(g) # update accumulator self.updates.append(K.update(a, new_a)) new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon) # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def set_weights(self, weights): params = self.weights # Override set_weights for backward compatibility of Keras 2.2.4 optimizer # since it does not include iteration at head of the weight list. Set # iteration to 0. if len(params) == len(weights) + 1: weights = [np.array(0)] + weights super(Adagrad, self).set_weights(weights) def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon} base_config = super(Adagrad, self).get_config() return dict(list(base_config.items()) + list(config.items())) class Adadelta(Optimizer): """Adadelta optimizer. Adadelta is a more robust extension of Adagrad that adapts learning rates based on a moving window of gradient updates, instead of accumulating all past gradients. This way, Adadelta continues learning even when many updates have been done. Compared to Adagrad, in the original version of Adadelta you don't have to set an initial learning rate. In this version, initial learning rate and decay factor can be set, as in most other Keras optimizers. It is recommended to leave the parameters of this optimizer at their default values. # Arguments learning_rate: float >= 0. Initial learning rate, defaults to 1. It is recommended to leave it at the default value. rho: float >= 0. Adadelta decay factor, corresponding to fraction of gradient to keep at each time step. # References - [Adadelta - an adaptive learning rate method]( https://arxiv.org/abs/1212.5701) """ def __init__(self, learning_rate=1.0, rho=0.95, **kwargs): self.initial_decay = kwargs.pop('decay', 0.0) self.epsilon = kwargs.pop('epsilon', K.epsilon()) learning_rate = kwargs.pop('lr', learning_rate) super(Adadelta, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.learning_rate = K.variable(learning_rate, name='learning_rate') self.decay = K.variable(self.initial_decay, name='decay') self.iterations = K.variable(0, dtype='int64', name='iterations') self.rho = rho @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) shapes = [K.int_shape(p) for p in params] accumulators = [K.zeros(shape, name='accumulator_' + str(i)) for (i, shape) in enumerate(shapes)] delta_accumulators = [K.zeros(shape, name='delta_accumulator_' + str(i)) for (i, shape) in enumerate(shapes)] self.weights = [self.iterations] + accumulators + delta_accumulators self.updates = [K.update_add(self.iterations, 1)] lr = self.learning_rate if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) for p, g, a, d_a in zip(params, grads, accumulators, delta_accumulators): # update accumulator new_a = self.rho * a + (1. - self.rho) * K.square(g) self.updates.append(K.update(a, new_a)) # use the new accumulator and the *old* delta_accumulator update = g * K.sqrt(d_a + self.epsilon) / K.sqrt(new_a + self.epsilon) new_p = p - lr * update # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) # update delta_accumulator new_d_a = self.rho * d_a + (1 - self.rho) * K.square(update) self.updates.append(K.update(d_a, new_d_a)) return self.updates def set_weights(self, weights): params = self.weights # Override set_weights for backward compatibility of Keras 2.2.4 optimizer # since it does not include iteration at head of the weight list. Set # iteration to 0. if len(params) == len(weights) + 1: weights = [np.array(0)] + weights super(Adadelta, self).set_weights(weights) def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'rho': self.rho, 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon} base_config = super(Adadelta, self).get_config() return dict(list(base_config.items()) + list(config.items())) class Adam(Optimizer): """Adam optimizer. Default parameters follow those provided in the original paper. # Arguments learning_rate: float >= 0. Learning rate. beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. amsgrad: boolean. Whether to apply the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond". # References - [Adam - A Method for Stochastic Optimization]( https://arxiv.org/abs/1412.6980v8) - [On the Convergence of Adam and Beyond]( https://openreview.net/forum?id=ryQu7f-RZ) """ def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False, **kwargs): self.initial_decay = kwargs.pop('decay', 0.0) self.epsilon = kwargs.pop('epsilon', K.epsilon()) learning_rate = kwargs.pop('lr', learning_rate) super(Adam, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.learning_rate = K.variable(learning_rate, name='learning_rate') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.decay = K.variable(self.initial_decay, name='decay') self.amsgrad = amsgrad @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.learning_rate if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='m_' + str(i)) for (i, p) in enumerate(params)] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='v_' + str(i)) for (i, p) in enumerate(params)] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p), name='vhat_' + str(i)) for (i, p) in enumerate(params)] else: vhats = [K.zeros(1, name='vhat_' + str(i)) for i in range(len(params))] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = p - lr_t * m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = p - lr_t * m_t / (K.sqrt(v_t) + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon, 'amsgrad': self.amsgrad} base_config = super(Adam, self).get_config() return dict(list(base_config.items()) + list(config.items())) class Adamax(Optimizer): """Adamax optimizer from Adam paper's Section 7. It is a variant of Adam based on the infinity norm. Default parameters follow those provided in the paper. # Arguments learning_rate: float >= 0. Learning rate. beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. # References - [Adam - A Method for Stochastic Optimization]( https://arxiv.org/abs/1412.6980v8) """ def __init__(self, learning_rate=0.002, beta_1=0.9, beta_2=0.999, **kwargs): self.initial_decay = kwargs.pop('decay', 0.0) self.epsilon = kwargs.pop('epsilon', K.epsilon()) learning_rate = kwargs.pop('lr', learning_rate) super(Adamax, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.learning_rate = K.variable(learning_rate, name='learning_rate') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') self.decay = K.variable(self.initial_decay, name='decay') @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] lr = self.learning_rate if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) t = K.cast(self.iterations, K.floatx()) + 1 lr_t = lr / (1. - K.pow(self.beta_1, t)) shapes = [K.int_shape(p) for p in params] # zero init of 1st moment ms = [K.zeros(shape, name='m_' + str(i)) for (i, shape) in enumerate(shapes)] # zero init of exponentially weighted infinity norm us = [K.zeros(shape, name='u_' + str(i)) for (i, shape) in enumerate(shapes)] self.weights = [self.iterations] + ms + us for p, g, m, u in zip(params, grads, ms, us): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g u_t = K.maximum(self.beta_2 * u, K.abs(g)) p_t = p - lr_t * m_t / (u_t + self.epsilon) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(u, u_t)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon} base_config = super(Adamax, self).get_config() return dict(list(base_config.items()) + list(config.items())) class Nadam(Optimizer): """Nesterov Adam optimizer. Much like Adam is essentially RMSprop with momentum, Nadam is RMSprop with Nesterov momentum. Default parameters follow those provided in the paper. It is recommended to leave the parameters of this optimizer at their default values. # Arguments learning_rate: float >= 0. Learning rate. beta_1: float, 0 < beta < 1. Generally close to 1. beta_2: float, 0 < beta < 1. Generally close to 1. # References - [Nadam report](http://cs229.stanford.edu/proj2015/054_report.pdf) - [On the importance of initialization and momentum in deep learning]( http://www.cs.toronto.edu/~fritz/absps/momentum.pdf) """ def __init__(self, learning_rate=0.002, beta_1=0.9, beta_2=0.999, **kwargs): self.schedule_decay = kwargs.pop('schedule_decay', 0.004) self.epsilon = kwargs.pop('epsilon', K.epsilon()) learning_rate = kwargs.pop('lr', learning_rate) super(Nadam, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.m_schedule = K.variable(1., name='m_schedule') self.learning_rate = K.variable(learning_rate, name='learning_rate') self.beta_1 = K.variable(beta_1, name='beta_1') self.beta_2 = K.variable(beta_2, name='beta_2') @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] t = K.cast(self.iterations, K.floatx()) + 1 # Due to the recommendations in [2], i.e. warming momentum schedule momentum_cache_t = self.beta_1 * (1. - 0.5 * ( K.pow(K.cast_to_floatx(0.96), t * self.schedule_decay))) momentum_cache_t_1 = self.beta_1 * (1. - 0.5 * ( K.pow(K.cast_to_floatx(0.96), (t + 1) * self.schedule_decay))) m_schedule_new = self.m_schedule * momentum_cache_t m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1 self.updates.append((self.m_schedule, m_schedule_new)) shapes = [K.int_shape(p) for p in params] ms = [K.zeros(shape, name='m_' + str(i)) for (i, shape) in enumerate(shapes)] vs = [K.zeros(shape, name='v_' + str(i)) for (i, shape) in enumerate(shapes)] self.weights = [self.iterations, self.m_schedule] + ms + vs for p, g, m, v in zip(params, grads, ms, vs): # the following equations given in [1] g_prime = g / (1. - m_schedule_new) m_t = self.beta_1 * m + (1. - self.beta_1) * g m_t_prime = m_t / (1. - m_schedule_next) v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g) v_t_prime = v_t / (1. - K.pow(self.beta_2, t)) m_t_bar = (1. - momentum_cache_t) * g_prime + ( momentum_cache_t_1 * m_t_prime) self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) p_t = (p - self.learning_rate * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)) new_p = p_t # Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates def set_weights(self, weights): params = self.weights # Override set_weights for backward compatibility of Keras 2.2.4 optimizer # since it does not include m_schedule at head of the weight list. Set # m_schedule to 1. if len(params) == len(weights) + 1: weights = [weights[0]] + [np.array(1.)] + weights[1:] super(Nadam, self).set_weights(weights) def get_config(self): config = {'learning_rate': float(K.get_value(self.learning_rate)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'epsilon': self.epsilon, 'schedule_decay': self.schedule_decay} base_config = super(Nadam, self).get_config() return dict(list(base_config.items()) + list(config.items())) class TFOptimizer(Optimizer): """Wrapper class for native TensorFlow optimizers. # Arguments optimizer: Selected optimizer """ def __init__(self, optimizer): self.optimizer = optimizer with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') @interfaces.legacy_get_updates_support @K.symbolic def get_updates(self, loss, params): if isinstance(self.optimizer, tf.keras.optimizers.Optimizer): return self.optimizer.get_updates(loss, params) else: grads = self.optimizer.compute_gradients(loss, var_list=params) self.updates = [K.update_add(self.iterations, 1)] opt_update = self.optimizer.apply_gradients( grads, global_step=self.iterations) self.updates.append(opt_update) return self.updates @property def weights(self): if isinstance(self.optimizer, tf.keras.optimizers.Optimizer): return self.optimizer.weights raise NotImplementedError def get_config(self): if isinstance(self.optimizer, tf.keras.optimizers.Optimizer): return self.optimizer.get_config raise NotImplementedError @classmethod def from_config(cls, config): if tf.__version__.startswith('1.'): raise NotImplementedError return cls(**config) # Aliases. sgd = SGD rmsprop = RMSprop adagrad = Adagrad adadelta = Adadelta adam = Adam adamax = Adamax nadam = Nadam def serialize(optimizer): return serialize_keras_object(optimizer) def deserialize(config, custom_objects=None): """Inverse of the `serialize` function. # Arguments config: Optimizer configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. # Returns A Keras Optimizer instance. """ all_classes = { 'sgd': SGD, 'rmsprop': RMSprop, 'adagrad': Adagrad, 'adadelta': Adadelta, 'adam': Adam, 'adamax': Adamax, 'nadam': Nadam, 'tfoptimizer': TFOptimizer, } # Make deserialization case-insensitive for built-in optimizers. if config['class_name'].lower() in all_classes: config['class_name'] = config['class_name'].lower() return deserialize_keras_object(config, module_objects=all_classes, custom_objects=custom_objects, printable_module_name='optimizer') def get(identifier): """Retrieves a Keras Optimizer instance. # Arguments identifier: Optimizer identifier, one of - String: name of an optimizer - Dictionary: configuration dictionary. - Keras Optimizer instance (it will be returned unchanged). - TensorFlow Optimizer instance (it will be wrapped as a Keras Optimizer). # Returns A Keras Optimizer instance. # Raises ValueError: If `identifier` cannot be interpreted. """ if K.backend() == 'tensorflow': # Wrap TF optimizer instances if tf.__version__.startswith('1.'): try: TFOpt = tf.compat.v1.train.Optimizer except AttributeError: TFOpt = tf.train.Optimizer if isinstance(identifier, TFOpt): return TFOptimizer(identifier) elif isinstance(identifier, tf.keras.optimizers.Optimizer): return TFOptimizer(identifier) if isinstance(identifier, dict): return deserialize(identifier) elif isinstance(identifier, six.string_types): config = {'class_name': str(identifier), 'config': {}} return deserialize(config) if isinstance(identifier, Optimizer): return identifier else: raise ValueError('Could not interpret optimizer identifier: ' + str(identifier))