"""MobileNet v2 models for Keras. MobileNetV2 is a general architecture and can be used for multiple use cases. Depending on the use case, it can use different input layer size and different width factors. This allows different width models to reduce the number of multiply-adds and thereby reduce inference cost on mobile devices. MobileNetV2 is very similar to the original MobileNet, except that it uses inverted residual blocks with bottlenecking features. It has a drastically lower parameter count than the original MobileNet. MobileNets support any input size greater than 32 x 32, with larger image sizes offering better performance. The number of parameters and number of multiply-adds can be modified by using the `alpha` parameter, which increases/decreases the number of filters in each layer. By altering the image size and `alpha` parameter, all 22 models from the paper can be built, with ImageNet weights provided. The paper demonstrates the performance of MobileNets using `alpha` values of 1.0 (also called 100 % MobileNet), 0.35, 0.5, 0.75, 1.0, 1.3, and 1.4 For each of these `alpha` values, weights for 5 different input image sizes are provided (224, 192, 160, 128, and 96). The following table describes the performance of MobileNet on various input sizes: ------------------------------------------------------------------------ MACs stands for Multiply Adds Classification Checkpoint| MACs (M) | Parameters (M)| Top 1 Accuracy| Top 5 Accuracy --------------------------|------------|---------------|---------|----|------------- | [mobilenet_v2_1.4_224] | 582 | 6.06 | 75.0 | 92.5 | | [mobilenet_v2_1.3_224] | 509 | 5.34 | 74.4 | 92.1 | | [mobilenet_v2_1.0_224] | 300 | 3.47 | 71.8 | 91.0 | | [mobilenet_v2_1.0_192] | 221 | 3.47 | 70.7 | 90.1 | | [mobilenet_v2_1.0_160] | 154 | 3.47 | 68.8 | 89.0 | | [mobilenet_v2_1.0_128] | 99 | 3.47 | 65.3 | 86.9 | | [mobilenet_v2_1.0_96] | 56 | 3.47 | 60.3 | 83.2 | | [mobilenet_v2_0.75_224] | 209 | 2.61 | 69.8 | 89.6 | | [mobilenet_v2_0.75_192] | 153 | 2.61 | 68.7 | 88.9 | | [mobilenet_v2_0.75_160] | 107 | 2.61 | 66.4 | 87.3 | | [mobilenet_v2_0.75_128] | 69 | 2.61 | 63.2 | 85.3 | | [mobilenet_v2_0.75_96] | 39 | 2.61 | 58.8 | 81.6 | | [mobilenet_v2_0.5_224] | 97 | 1.95 | 65.4 | 86.4 | | [mobilenet_v2_0.5_192] | 71 | 1.95 | 63.9 | 85.4 | | [mobilenet_v2_0.5_160] | 50 | 1.95 | 61.0 | 83.2 | | [mobilenet_v2_0.5_128] | 32 | 1.95 | 57.7 | 80.8 | | [mobilenet_v2_0.5_96] | 18 | 1.95 | 51.2 | 75.8 | | [mobilenet_v2_0.35_224] | 59 | 1.66 | 60.3 | 82.9 | | [mobilenet_v2_0.35_192] | 43 | 1.66 | 58.2 | 81.2 | | [mobilenet_v2_0.35_160] | 30 | 1.66 | 55.7 | 79.1 | | [mobilenet_v2_0.35_128] | 20 | 1.66 | 50.8 | 75.0 | | [mobilenet_v2_0.35_96] | 11 | 1.66 | 45.5 | 70.4 | The weights for all 16 models are obtained and translated from the Tensorflow checkpoints from TensorFlow checkpoints found [here] (https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md). # Reference This file contains building code for MobileNetV2, based on [MobileNetV2: Inverted Residuals and Linear Bottlenecks] (https://arxiv.org/abs/1801.04381) (CVPR 2018) Tests comparing this model to the existing Tensorflow model can be found at [mobilenet_v2_keras] (https://github.com/JonathanCMitchell/mobilenet_v2_keras) """ from __future__ import print_function from __future__ import absolute_import from __future__ import division import os import warnings import numpy as np from . import correct_pad from . import get_submodules_from_kwargs from . import imagenet_utils from .imagenet_utils import decode_predictions from .imagenet_utils import _obtain_input_shape # TODO Change path to v1.1 BASE_WEIGHT_PATH = ('https://github.com/JonathanCMitchell/mobilenet_v2_keras/' 'releases/download/v1.1/') backend = None layers = None models = None keras_utils = None def preprocess_input(x, **kwargs): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf', **kwargs) # This function is taken from the original tf repo. # It ensures that all layers have a channel number that is divisible by 8 # It can be seen here: # https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def MobileNetV2(input_shape=None, alpha=1.0, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000, **kwargs): """Instantiates the MobileNetV2 architecture. # Arguments input_shape: optional shape tuple, to be specified if you would like to use a model with an input img resolution that is not (224, 224, 3). It should have exactly 3 inputs channels (224, 224, 3). You can also omit this option if you would like to infer input_shape from an input_tensor. If you choose to include both input_tensor and input_shape then input_shape will be used if they match, if the shapes do not match then we will throw an error. E.g. `(160, 160, 3)` would be one valid value. alpha: controls the width of the network. This is known as the width multiplier in the MobileNetV2 paper, but the name is kept for consistency with MobileNetV1 in Keras. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape or invalid alpha, rows when weights='imagenet' """ global backend, layers, models, keras_utils backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs) if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top` ' 'as true, `classes` should be 1000') # Determine proper input shape and default size. # If both input_shape and input_tensor are used, they should match if input_shape is not None and input_tensor is not None: try: is_input_t_tensor = backend.is_keras_tensor(input_tensor) except ValueError: try: is_input_t_tensor = backend.is_keras_tensor( keras_utils.get_source_inputs(input_tensor)) except ValueError: raise ValueError('input_tensor: ', input_tensor, 'is not type input_tensor') if is_input_t_tensor: if backend.image_data_format == 'channels_first': if backend.int_shape(input_tensor)[1] != input_shape[1]: raise ValueError('input_shape: ', input_shape, 'and input_tensor: ', input_tensor, 'do not meet the same shape requirements') else: if backend.int_shape(input_tensor)[2] != input_shape[1]: raise ValueError('input_shape: ', input_shape, 'and input_tensor: ', input_tensor, 'do not meet the same shape requirements') else: raise ValueError('input_tensor specified: ', input_tensor, 'is not a keras tensor') # If input_shape is None, infer shape from input_tensor if input_shape is None and input_tensor is not None: try: backend.is_keras_tensor(input_tensor) except ValueError: raise ValueError('input_tensor: ', input_tensor, 'is type: ', type(input_tensor), 'which is not a valid type') if input_shape is None and not backend.is_keras_tensor(input_tensor): default_size = 224 elif input_shape is None and backend.is_keras_tensor(input_tensor): if backend.image_data_format() == 'channels_first': rows = backend.int_shape(input_tensor)[2] cols = backend.int_shape(input_tensor)[3] else: rows = backend.int_shape(input_tensor)[1] cols = backend.int_shape(input_tensor)[2] if rows == cols and rows in [96, 128, 160, 192, 224]: default_size = rows else: default_size = 224 # If input_shape is None and no input_tensor elif input_shape is None: default_size = 224 # If input_shape is not None, assume default size else: if backend.image_data_format() == 'channels_first': rows = input_shape[1] cols = input_shape[2] else: rows = input_shape[0] cols = input_shape[1] if rows == cols and rows in [96, 128, 160, 192, 224]: default_size = rows else: default_size = 224 input_shape = _obtain_input_shape(input_shape, default_size=default_size, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if backend.image_data_format() == 'channels_last': row_axis, col_axis = (0, 1) else: row_axis, col_axis = (1, 2) rows = input_shape[row_axis] cols = input_shape[col_axis] if weights == 'imagenet': if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]: raise ValueError('If imagenet weights are being loaded, ' 'alpha can be one of `0.35`, `0.50`, `0.75`, ' '`1.0`, `1.3` or `1.4` only.') if rows != cols or rows not in [96, 128, 160, 192, 224]: rows = 224 warnings.warn('`input_shape` is undefined or non-square, ' 'or `rows` is not in [96, 128, 160, 192, 224].' ' Weights for input shape (224, 224) will be' ' loaded as the default.') if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 first_block_filters = _make_divisible(32 * alpha, 8) x = layers.ZeroPadding2D(padding=correct_pad(backend, img_input, 3), name='Conv1_pad')(img_input) x = layers.Conv2D(first_block_filters, kernel_size=3, strides=(2, 2), padding='valid', use_bias=False, name='Conv1')(x) x = layers.BatchNormalization(axis=channel_axis, epsilon=1e-3, momentum=0.999, name='bn_Conv1')(x) x = layers.ReLU(6., name='Conv1_relu')(x) x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1, expansion=1, block_id=0) x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2, expansion=6, block_id=1) x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1, expansion=6, block_id=2) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2, expansion=6, block_id=3) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=4) x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1, expansion=6, block_id=5) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=2, expansion=6, block_id=6) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=7) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=8) x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1, expansion=6, block_id=9) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=10) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=11) x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1, expansion=6, block_id=12) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=2, expansion=6, block_id=13) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, expansion=6, block_id=14) x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1, expansion=6, block_id=15) x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1, expansion=6, block_id=16) # no alpha applied to last conv as stated in the paper: # if the width multiplier is greater than 1 we # increase the number of output channels if alpha > 1.0: last_block_filters = _make_divisible(1280 * alpha, 8) else: last_block_filters = 1280 x = layers.Conv2D(last_block_filters, kernel_size=1, use_bias=False, name='Conv_1')(x) x = layers.BatchNormalization(axis=channel_axis, epsilon=1e-3, momentum=0.999, name='Conv_1_bn')(x) x = layers.ReLU(6., name='out_relu')(x) if include_top: x = layers.GlobalAveragePooling2D()(x) x = layers.Dense(classes, activation='softmax', use_bias=True, name='Logits')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = keras_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = models.Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows)) # Load weights. if weights == 'imagenet': if include_top: model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' + str(alpha) + '_' + str(rows) + '.h5') weight_path = BASE_WEIGHT_PATH + model_name weights_path = keras_utils.get_file( model_name, weight_path, cache_subdir='models') else: model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' + str(alpha) + '_' + str(rows) + '_no_top' + '.h5') weight_path = BASE_WEIGHT_PATH + model_name weights_path = keras_utils.get_file( model_name, weight_path, cache_subdir='models') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id): channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1 in_channels = backend.int_shape(inputs)[channel_axis] pointwise_conv_filters = int(filters * alpha) pointwise_filters = _make_divisible(pointwise_conv_filters, 8) x = inputs prefix = 'block_{}_'.format(block_id) if block_id: # Expand x = layers.Conv2D(expansion * in_channels, kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'expand')(x) x = layers.BatchNormalization(axis=channel_axis, epsilon=1e-3, momentum=0.999, name=prefix + 'expand_BN')(x) x = layers.ReLU(6., name=prefix + 'expand_relu')(x) else: prefix = 'expanded_conv_' # Depthwise if stride == 2: x = layers.ZeroPadding2D(padding=correct_pad(backend, x, 3), name=prefix + 'pad')(x) x = layers.DepthwiseConv2D(kernel_size=3, strides=stride, activation=None, use_bias=False, padding='same' if stride == 1 else 'valid', name=prefix + 'depthwise')(x) x = layers.BatchNormalization(axis=channel_axis, epsilon=1e-3, momentum=0.999, name=prefix + 'depthwise_BN')(x) x = layers.ReLU(6., name=prefix + 'depthwise_relu')(x) # Project x = layers.Conv2D(pointwise_filters, kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'project')(x) x = layers.BatchNormalization(axis=channel_axis, epsilon=1e-3, momentum=0.999, name=prefix + 'project_BN')(x) if in_channels == pointwise_filters and stride == 1: return layers.Add(name=prefix + 'add')([inputs, x]) return x