""" Stacked area plot for 1D arrays inspired by Douglas Y'barbo's stackoverflow answer: http://stackoverflow.com/questions/2225995/how-can-i-create-stacked-line-graph-with-matplotlib (http://stackoverflow.com/users/66549/doug) """ import numpy as np import matplotlib.cbook as cbook __all__ = ['stackplot'] def stackplot(axes, x, *args, labels=(), colors=None, baseline='zero', **kwargs): """ Draw a stacked area plot. Parameters ---------- x : 1d array of dimension N y : 2d array (dimension MxN), or sequence of 1d arrays (each dimension 1xN) The data is assumed to be unstacked. Each of the following calls is legal:: stackplot(x, y) # where y is MxN stackplot(x, y1, y2, y3, y4) # where y1, y2, y3, y4, are all 1xNm baseline : {'zero', 'sym', 'wiggle', 'weighted_wiggle'} Method used to calculate the baseline: - ``'zero'``: Constant zero baseline, i.e. a simple stacked plot. - ``'sym'``: Symmetric around zero and is sometimes called 'ThemeRiver'. - ``'wiggle'``: Minimizes the sum of the squared slopes. - ``'weighted_wiggle'``: Does the same but weights to account for size of each layer. It is also called 'Streamgraph'-layout. More details can be found at http://leebyron.com/streamgraph/. labels : Length N sequence of strings Labels to assign to each data series. colors : Length N sequence of colors A list or tuple of colors. These will be cycled through and used to colour the stacked areas. **kwargs All other keyword arguments are passed to `.Axes.fill_between`. Returns ------- list of `.PolyCollection` A list of `.PolyCollection` instances, one for each element in the stacked area plot. """ y = np.row_stack(args) labels = iter(labels) if colors is not None: axes.set_prop_cycle(color=colors) # Assume data passed has not been 'stacked', so stack it here. # We'll need a float buffer for the upcoming calculations. stack = np.cumsum(y, axis=0, dtype=np.promote_types(y.dtype, np.float32)) cbook._check_in_list(['zero', 'sym', 'wiggle', 'weighted_wiggle'], baseline=baseline) if baseline == 'zero': first_line = 0. elif baseline == 'sym': first_line = -np.sum(y, 0) * 0.5 stack += first_line[None, :] elif baseline == 'wiggle': m = y.shape[0] first_line = (y * (m - 0.5 - np.arange(m)[:, None])).sum(0) first_line /= -m stack += first_line elif baseline == 'weighted_wiggle': total = np.sum(y, 0) # multiply by 1/total (or zero) to avoid infinities in the division: inv_total = np.zeros_like(total) mask = total > 0 inv_total[mask] = 1.0 / total[mask] increase = np.hstack((y[:, 0:1], np.diff(y))) below_size = total - stack below_size += 0.5 * y move_up = below_size * inv_total move_up[:, 0] = 0.5 center = (move_up - 0.5) * increase center = np.cumsum(center.sum(0)) first_line = center - 0.5 * total stack += first_line # Color between x = 0 and the first array. color = axes._get_lines.get_next_color() coll = axes.fill_between(x, first_line, stack[0, :], facecolor=color, label=next(labels, None), **kwargs) coll.sticky_edges.y[:] = [0] r = [coll] # Color between array i-1 and array i for i in range(len(y) - 1): color = axes._get_lines.get_next_color() r.append(axes.fill_between(x, stack[i, :], stack[i + 1, :], facecolor=color, label=next(labels, None), **kwargs)) return r