# -*- coding: utf-8 -*- # # Author: Yuto Yamaguchi """Function for computing Local and global consistency algorithm by Zhou et al. References ---------- Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global consistency. Advances in neural information processing systems, 16(16), 321-328. """ import networkx as nx from networkx.utils.decorators import not_implemented_for from networkx.algorithms.node_classification.utils import ( _get_label_info, _init_label_matrix, _propagate, _predict, ) __all__ = ['local_and_global_consistency'] @not_implemented_for('directed') def local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name='label'): """Node classification by Local and Global Consistency Parameters ---------- G : NetworkX Graph alpha : float Clamping factor max_iter : int Maximum number of iterations allowed label_name : string Name of target labels to predict Raises ---------- `NetworkXError` if no nodes on `G` has `label_name`. Returns ---------- predicted : array, shape = [n_samples] Array of predicted labels Examples -------- >>> from networkx.algorithms import node_classification >>> G = nx.path_graph(4) >>> G.node[0]['label'] = 'A' >>> G.node[3]['label'] = 'B' >>> G.nodes(data=True) NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) >>> G.edges() EdgeView([(0, 1), (1, 2), (2, 3)]) >>> predicted = node_classification.local_and_global_consistency(G) >>> predicted ['A', 'A', 'B', 'B'] References ---------- Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global consistency. Advances in neural information processing systems, 16(16), 321-328. """ try: import numpy as np except ImportError: raise ImportError( "local_and_global_consistency() requires numpy: ", "http://scipy.org/ ") try: from scipy import sparse except ImportError: raise ImportError( "local_and_global_consistensy() requires scipy: ", "http://scipy.org/ ") def _build_propagation_matrix(X, labels, alpha): """Build propagation matrix of Local and global consistency Parameters ---------- X : scipy sparse matrix, shape = [n_samples, n_samples] Adjacency matrix labels : array, shape = [n_samples, 2] Array of pairs of node id and label id alpha : float Clamping factor Returns ---------- S : scipy sparse matrix, shape = [n_samples, n_samples] Propagation matrix """ degrees = X.sum(axis=0).A[0] degrees[degrees == 0] = 1 # Avoid division by 0 D2 = np.sqrt(sparse.diags((1.0 / degrees), offsets=0)) S = alpha * D2.dot(X).dot(D2) return S def _build_base_matrix(X, labels, alpha, n_classes): """Build base matrix of Local and global consistency Parameters ---------- X : scipy sparse matrix, shape = [n_samples, n_samples] Adjacency matrix labels : array, shape = [n_samples, 2] Array of pairs of node id and label id alpha : float Clamping factor n_classes : integer The number of classes (distinct labels) on the input graph Returns ---------- B : array, shape = [n_samples, n_classes] Base matrix """ n_samples = X.shape[0] B = np.zeros((n_samples, n_classes)) B[labels[:, 0], labels[:, 1]] = 1 - alpha return B X = nx.to_scipy_sparse_matrix(G) # adjacency matrix labels, label_dict = _get_label_info(G, label_name) if labels.shape[0] == 0: raise nx.NetworkXError( "No node on the input graph is labeled by '" + label_name + "'.") n_samples = X.shape[0] n_classes = label_dict.shape[0] F = _init_label_matrix(n_samples, n_classes) P = _build_propagation_matrix(X, labels, alpha) B = _build_base_matrix(X, labels, alpha, n_classes) remaining_iter = max_iter while remaining_iter > 0: F = _propagate(P, F, B) remaining_iter -= 1 predicted = _predict(F, label_dict) return predicted def setup_module(module): """Fixture for nose tests.""" from nose import SkipTest try: import numpy except ImportError: raise SkipTest("NumPy not available") try: import scipy except ImportError: raise SkipTest("SciPy not available")