# test_efficiency.py - unit tests for the efficiency module # # Copyright 2015-2018 NetworkX developers. # # This file is part of NetworkX. # # NetworkX is distributed under a BSD license; see LICENSE.txt for more # information. """Unit tests for the :mod:`networkx.algorithms.efficiency` module.""" from __future__ import division from nose.tools import assert_equal import networkx as nx class TestEfficiency: def __init__(self): # G1 is a disconnected graph self.G1 = nx.Graph() self.G1.add_nodes_from([1, 2, 3]) # G2 is a cycle graph self.G2 = nx.cycle_graph(4) # G3 is the triangle graph with one additional edge self.G3 = nx.lollipop_graph(3, 1) def test_efficiency_disconnected_nodes(self): """ When nodes are disconnected, efficiency is 0 """ assert_equal(nx.efficiency(self.G1, 1, 2), 0) def test_local_efficiency_disconnected_graph(self): """ In a disconnected graph the efficiency is 0 """ assert_equal(nx.local_efficiency(self.G1), 0) def test_efficiency(self): assert_equal(nx.efficiency(self.G2, 0, 1), 1) assert_equal(nx.efficiency(self.G2, 0, 2), 1 / 2) def test_global_efficiency(self): assert_equal(nx.global_efficiency(self.G2), 5 / 6) def test_global_efficiency_complete_graph(self): """ Tests that the average global efficiency of the complete graph is one. """ for n in range(2, 10): G = nx.complete_graph(n) assert_equal(nx.global_efficiency(G), 1) def test_local_efficiency_complete_graph(self): """ Test that the local efficiency for a complete graph with at least 3 nodes should be one. For a graph with only 2 nodes, the induced subgraph has no edges. """ for n in range(3, 10): G = nx.complete_graph(n) assert_equal(nx.local_efficiency(G), 1) def test_using_ego_graph(self): """ Test that the ego graph is used when computing local efficiency. For more information, see GitHub issue #2710. """ assert_equal(nx.local_efficiency(self.G3), 7 / 12)