# Natural Language Toolkit: Interface to Megam Classifier # # Copyright (C) 2001-2018 NLTK Project # Author: Edward Loper # URL: # For license information, see LICENSE.TXT """ A set of functions used to interface with the external megam_ maxent optimization package. Before megam can be used, you should tell NLTK where it can find the megam binary, using the ``config_megam()`` function. Typical usage: >>> from nltk.classify import megam >>> megam.config_megam() # pass path to megam if not found in PATH # doctest: +SKIP [Found megam: ...] Use with MaxentClassifier. Example below, see MaxentClassifier documentation for details. nltk.classify.MaxentClassifier.train(corpus, 'megam') .. _megam: http://www.umiacs.umd.edu/~hal/megam/index.html """ from __future__ import print_function import subprocess from six import string_types from nltk import compat from nltk.internals import find_binary try: import numpy except ImportError: numpy = None ###################################################################### #{ Configuration ###################################################################### _megam_bin = None def config_megam(bin=None): """ Configure NLTK's interface to the ``megam`` maxent optimization package. :param bin: The full path to the ``megam`` binary. If not specified, then nltk will search the system for a ``megam`` binary; and if one is not found, it will raise a ``LookupError`` exception. :type bin: str """ global _megam_bin _megam_bin = find_binary( 'megam', bin, env_vars=['MEGAM'], binary_names=['megam.opt', 'megam', 'megam_686', 'megam_i686.opt'], url='http://www.umiacs.umd.edu/~hal/megam/index.html') ###################################################################### #{ Megam Interface Functions ###################################################################### def write_megam_file(train_toks, encoding, stream, bernoulli=True, explicit=True): """ Generate an input file for ``megam`` based on the given corpus of classified tokens. :type train_toks: list(tuple(dict, str)) :param train_toks: Training data, represented as a list of pairs, the first member of which is a feature dictionary, and the second of which is a classification label. :type encoding: MaxentFeatureEncodingI :param encoding: A feature encoding, used to convert featuresets into feature vectors. May optionally implement a cost() method in order to assign different costs to different class predictions. :type stream: stream :param stream: The stream to which the megam input file should be written. :param bernoulli: If true, then use the 'bernoulli' format. I.e., all joint features have binary values, and are listed iff they are true. Otherwise, list feature values explicitly. If ``bernoulli=False``, then you must call ``megam`` with the ``-fvals`` option. :param explicit: If true, then use the 'explicit' format. I.e., list the features that would fire for any of the possible labels, for each token. If ``explicit=True``, then you must call ``megam`` with the ``-explicit`` option. """ # Look up the set of labels. labels = encoding.labels() labelnum = dict((label, i) for (i, label) in enumerate(labels)) # Write the file, which contains one line per instance. for featureset, label in train_toks: # First, the instance number (or, in the weighted multiclass case, the cost of each label). if hasattr(encoding, 'cost'): stream.write(':'.join(str(encoding.cost(featureset, label, l)) for l in labels)) else: stream.write('%d' % labelnum[label]) # For implicit file formats, just list the features that fire # for this instance's actual label. if not explicit: _write_megam_features(encoding.encode(featureset, label), stream, bernoulli) # For explicit formats, list the features that would fire for # any of the possible labels. else: for l in labels: stream.write(' #') _write_megam_features(encoding.encode(featureset, l), stream, bernoulli) # End of the instance. stream.write('\n') def parse_megam_weights(s, features_count, explicit=True): """ Given the stdout output generated by ``megam`` when training a model, return a ``numpy`` array containing the corresponding weight vector. This function does not currently handle bias features. """ if numpy is None: raise ValueError('This function requires that numpy be installed') assert explicit, 'non-explicit not supported yet' lines = s.strip().split('\n') weights = numpy.zeros(features_count, 'd') for line in lines: if line.strip(): fid, weight = line.split() weights[int(fid)] = float(weight) return weights def _write_megam_features(vector, stream, bernoulli): if not vector: raise ValueError('MEGAM classifier requires the use of an ' 'always-on feature.') for (fid, fval) in vector: if bernoulli: if fval == 1: stream.write(' %s' % fid) elif fval != 0: raise ValueError('If bernoulli=True, then all' 'features must be binary.') else: stream.write(' %s %s' % (fid, fval)) def call_megam(args): """ Call the ``megam`` binary with the given arguments. """ if isinstance(args, string_types): raise TypeError('args should be a list of strings') if _megam_bin is None: config_megam() # Call megam via a subprocess cmd = [_megam_bin] + args p = subprocess.Popen(cmd, stdout=subprocess.PIPE) (stdout, stderr) = p.communicate() # Check the return code. if p.returncode != 0: print() print(stderr) raise OSError('megam command failed!') if isinstance(stdout, string_types): return stdout else: return stdout.decode('utf-8')