# -*- coding: utf-8 -*- # Natural Language Toolkit: IBM Model 4 # # Copyright (C) 2001-2018 NLTK Project # Author: Tah Wei Hoon # URL: # For license information, see LICENSE.TXT """ Translation model that reorders output words based on their type and distance from other related words in the output sentence. IBM Model 4 improves the distortion model of Model 3, motivated by the observation that certain words tend to be re-ordered in a predictable way relative to one another. For example, in English usually has its order flipped as in French. Model 4 requires words in the source and target vocabularies to be categorized into classes. This can be linguistically driven, like parts of speech (adjective, nouns, prepositions, etc). Word classes can also be obtained by statistical methods. The original IBM Model 4 uses an information theoretic approach to group words into 50 classes for each vocabulary. Terminology: Cept: A source word with non-zero fertility i.e. aligned to one or more target words. Tablet: The set of target word(s) aligned to a cept. Head of cept: The first word of the tablet of that cept. Center of cept: The average position of the words in that cept's tablet. If the value is not an integer, the ceiling is taken. For example, for a tablet with words in positions 2, 5, 6 in the target sentence, the center of the corresponding cept is ceil((2 + 5 + 6) / 3) = 5 Displacement: For a head word, defined as (position of head word - position of previous cept's center). Can be positive or negative. For a non-head word, defined as (position of non-head word - position of previous word in the same tablet). Always positive, because successive words in a tablet are assumed to appear to the right of the previous word. In contrast to Model 3 which reorders words in a tablet independently of other words, Model 4 distinguishes between three cases. (1) Words generated by NULL are distributed uniformly. (2) For a head word t, its position is modeled by the probability d_head(displacement | word_class_s(s),word_class_t(t)), where s is the previous cept, and word_class_s and word_class_t maps s and t to a source and target language word class respectively. (3) For a non-head word t, its position is modeled by the probability d_non_head(displacement | word_class_t(t)) The EM algorithm used in Model 4 is: E step - In the training data, collect counts, weighted by prior probabilities. (a) count how many times a source language word is translated into a target language word (b) for a particular word class, count how many times a head word is located at a particular displacement from the previous cept's center (c) for a particular word class, count how many times a non-head word is located at a particular displacement from the previous target word (d) count how many times a source word is aligned to phi number of target words (e) count how many times NULL is aligned to a target word M step - Estimate new probabilities based on the counts from the E step Like Model 3, there are too many possible alignments to consider. Thus, a hill climbing approach is used to sample good candidates. Notations: i: Position in the source sentence Valid values are 0 (for NULL), 1, 2, ..., length of source sentence j: Position in the target sentence Valid values are 1, 2, ..., length of target sentence l: Number of words in the source sentence, excluding NULL m: Number of words in the target sentence s: A word in the source language t: A word in the target language phi: Fertility, the number of target words produced by a source word p1: Probability that a target word produced by a source word is accompanied by another target word that is aligned to NULL p0: 1 - p1 dj: Displacement, Δj References: Philipp Koehn. 2010. Statistical Machine Translation. Cambridge University Press, New York. Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, 19 (2), 263-311. """ from __future__ import division from collections import defaultdict from math import factorial from nltk.translate import AlignedSent from nltk.translate import Alignment from nltk.translate import IBMModel from nltk.translate import IBMModel3 from nltk.translate.ibm_model import Counts from nltk.translate.ibm_model import longest_target_sentence_length import warnings class IBMModel4(IBMModel): """ Translation model that reorders output words based on their type and their distance from other related words in the output sentence >>> bitext = [] >>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small'])) >>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big'])) >>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small'])) >>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small'])) >>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house'])) >>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book'])) >>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book'])) >>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book'])) >>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize'])) >>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 } >>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 } >>> ibm4 = IBMModel4(bitext, 5, src_classes, trg_classes) >>> print(round(ibm4.translation_table['buch']['book'], 3)) 1.0 >>> print(round(ibm4.translation_table['das']['book'], 3)) 0.0 >>> print(round(ibm4.translation_table['ja'][None], 3)) 1.0 >>> print(round(ibm4.head_distortion_table[1][0][1], 3)) 1.0 >>> print(round(ibm4.head_distortion_table[2][0][1], 3)) 0.0 >>> print(round(ibm4.non_head_distortion_table[3][6], 3)) 0.5 >>> print(round(ibm4.fertility_table[2]['summarize'], 3)) 1.0 >>> print(round(ibm4.fertility_table[1]['book'], 3)) 1.0 >>> print(ibm4.p1) 0.033... >>> test_sentence = bitext[2] >>> test_sentence.words ['das', 'buch', 'ist', 'ja', 'klein'] >>> test_sentence.mots ['the', 'book', 'is', 'small'] >>> test_sentence.alignment Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)]) """ def __init__(self, sentence_aligned_corpus, iterations, source_word_classes, target_word_classes, probability_tables=None): """ Train on ``sentence_aligned_corpus`` and create a lexical translation model, distortion models, a fertility model, and a model for generating NULL-aligned words. Translation direction is from ``AlignedSent.mots`` to ``AlignedSent.words``. :param sentence_aligned_corpus: Sentence-aligned parallel corpus :type sentence_aligned_corpus: list(AlignedSent) :param iterations: Number of iterations to run training algorithm :type iterations: int :param source_word_classes: Lookup table that maps a source word to its word class, the latter represented by an integer id :type source_word_classes: dict[str]: int :param target_word_classes: Lookup table that maps a target word to its word class, the latter represented by an integer id :type target_word_classes: dict[str]: int :param probability_tables: Optional. Use this to pass in custom probability values. If not specified, probabilities will be set to a uniform distribution, or some other sensible value. If specified, all the following entries must be present: ``translation_table``, ``alignment_table``, ``fertility_table``, ``p1``, ``head_distortion_table``, ``non_head_distortion_table``. See ``IBMModel`` and ``IBMModel4`` for the type and purpose of these tables. :type probability_tables: dict[str]: object """ super(IBMModel4, self).__init__(sentence_aligned_corpus) self.reset_probabilities() self.src_classes = source_word_classes self.trg_classes = target_word_classes if probability_tables is None: # Get probabilities from IBM model 3 ibm3 = IBMModel3(sentence_aligned_corpus, iterations) self.translation_table = ibm3.translation_table self.alignment_table = ibm3.alignment_table self.fertility_table = ibm3.fertility_table self.p1 = ibm3.p1 self.set_uniform_probabilities(sentence_aligned_corpus) else: # Set user-defined probabilities self.translation_table = probability_tables['translation_table'] self.alignment_table = probability_tables['alignment_table'] self.fertility_table = probability_tables['fertility_table'] self.p1 = probability_tables['p1'] self.head_distortion_table = probability_tables[ 'head_distortion_table'] self.non_head_distortion_table = probability_tables[ 'non_head_distortion_table'] for n in range(0, iterations): self.train(sentence_aligned_corpus) def reset_probabilities(self): super(IBMModel4, self).reset_probabilities() self.head_distortion_table = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))) """ dict[int][int][int]: float. Probability(displacement of head word | word class of previous cept,target word class). Values accessed as ``distortion_table[dj][src_class][trg_class]``. """ self.non_head_distortion_table = defaultdict( lambda: defaultdict(lambda: self.MIN_PROB)) """ dict[int][int]: float. Probability(displacement of non-head word | target word class). Values accessed as ``distortion_table[dj][trg_class]``. """ def set_uniform_probabilities(self, sentence_aligned_corpus): """ Set distortion probabilities uniformly to 1 / cardinality of displacement values """ max_m = longest_target_sentence_length(sentence_aligned_corpus) # The maximum displacement is m-1, when a word is in the last # position m of the target sentence and the previously placed # word is in the first position. # Conversely, the minimum displacement is -(m-1). # Thus, the displacement range is (m-1) - (-(m-1)). Note that # displacement cannot be zero and is not included in the range. if max_m <= 1: initial_prob = IBMModel.MIN_PROB else: initial_prob = 1 / (2 * (max_m - 1)) if initial_prob < IBMModel.MIN_PROB: warnings.warn("A target sentence is too long (" + str(max_m) + " words). Results may be less accurate.") for dj in range(1, max_m): self.head_distortion_table[dj] = defaultdict( lambda: defaultdict(lambda: initial_prob)) self.head_distortion_table[-dj] = defaultdict( lambda: defaultdict(lambda: initial_prob)) self.non_head_distortion_table[dj] = defaultdict( lambda: initial_prob) self.non_head_distortion_table[-dj] = defaultdict( lambda: initial_prob) def train(self, parallel_corpus): counts = Model4Counts() for aligned_sentence in parallel_corpus: m = len(aligned_sentence.words) # Sample the alignment space sampled_alignments, best_alignment = self.sample(aligned_sentence) # Record the most probable alignment aligned_sentence.alignment = Alignment( best_alignment.zero_indexed_alignment()) # E step (a): Compute normalization factors to weigh counts total_count = self.prob_of_alignments(sampled_alignments) # E step (b): Collect counts for alignment_info in sampled_alignments: count = self.prob_t_a_given_s(alignment_info) normalized_count = count / total_count for j in range(1, m + 1): counts.update_lexical_translation( normalized_count, alignment_info, j) counts.update_distortion( normalized_count, alignment_info, j, self.src_classes, self.trg_classes) counts.update_null_generation(normalized_count, alignment_info) counts.update_fertility(normalized_count, alignment_info) # M step: Update probabilities with maximum likelihood estimates # If any probability is less than MIN_PROB, clamp it to MIN_PROB existing_alignment_table = self.alignment_table self.reset_probabilities() self.alignment_table = existing_alignment_table # don't retrain self.maximize_lexical_translation_probabilities(counts) self.maximize_distortion_probabilities(counts) self.maximize_fertility_probabilities(counts) self.maximize_null_generation_probabilities(counts) def maximize_distortion_probabilities(self, counts): head_d_table = self.head_distortion_table for dj, src_classes in counts.head_distortion.items(): for s_cls, trg_classes in src_classes.items(): for t_cls in trg_classes: estimate = (counts.head_distortion[dj][s_cls][t_cls] / counts.head_distortion_for_any_dj[s_cls][t_cls]) head_d_table[dj][s_cls][t_cls] = max(estimate, IBMModel.MIN_PROB) non_head_d_table = self.non_head_distortion_table for dj, trg_classes in counts.non_head_distortion.items(): for t_cls in trg_classes: estimate = (counts.non_head_distortion[dj][t_cls] / counts.non_head_distortion_for_any_dj[t_cls]) non_head_d_table[dj][t_cls] = max(estimate, IBMModel.MIN_PROB) def prob_t_a_given_s(self, alignment_info): """ Probability of target sentence and an alignment given the source sentence """ return IBMModel4.model4_prob_t_a_given_s(alignment_info, self) @staticmethod # exposed for Model 5 to use def model4_prob_t_a_given_s(alignment_info, ibm_model): probability = 1.0 MIN_PROB = IBMModel.MIN_PROB def null_generation_term(): # Binomial distribution: B(m - null_fertility, p1) value = 1.0 p1 = ibm_model.p1 p0 = 1 - p1 null_fertility = alignment_info.fertility_of_i(0) m = len(alignment_info.trg_sentence) - 1 value *= (pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility)) if value < MIN_PROB: return MIN_PROB # Combination: (m - null_fertility) choose null_fertility for i in range(1, null_fertility + 1): value *= (m - null_fertility - i + 1) / i return value def fertility_term(): value = 1.0 src_sentence = alignment_info.src_sentence for i in range(1, len(src_sentence)): fertility = alignment_info.fertility_of_i(i) value *= (factorial(fertility) * ibm_model.fertility_table[fertility][src_sentence[i]]) if value < MIN_PROB: return MIN_PROB return value def lexical_translation_term(j): t = alignment_info.trg_sentence[j] i = alignment_info.alignment[j] s = alignment_info.src_sentence[i] return ibm_model.translation_table[t][s] def distortion_term(j): t = alignment_info.trg_sentence[j] i = alignment_info.alignment[j] if i == 0: # case 1: t is aligned to NULL return 1.0 if alignment_info.is_head_word(j): # case 2: t is the first word of a tablet previous_cept = alignment_info.previous_cept(j) src_class = None if previous_cept is not None: previous_s = alignment_info.src_sentence[previous_cept] src_class = ibm_model.src_classes[previous_s] trg_class = ibm_model.trg_classes[t] dj = j - alignment_info.center_of_cept(previous_cept) return ibm_model.head_distortion_table[dj][src_class][trg_class] # case 3: t is a subsequent word of a tablet previous_position = alignment_info.previous_in_tablet(j) trg_class = ibm_model.trg_classes[t] dj = j - previous_position return ibm_model.non_head_distortion_table[dj][trg_class] # end nested functions # Abort computation whenever probability falls below MIN_PROB at # any point, since MIN_PROB can be considered as zero probability *= null_generation_term() if probability < MIN_PROB: return MIN_PROB probability *= fertility_term() if probability < MIN_PROB: return MIN_PROB for j in range(1, len(alignment_info.trg_sentence)): probability *= lexical_translation_term(j) if probability < MIN_PROB: return MIN_PROB probability *= distortion_term(j) if probability < MIN_PROB: return MIN_PROB return probability class Model4Counts(Counts): """ Data object to store counts of various parameters during training. Includes counts for distortion. """ def __init__(self): super(Model4Counts, self).__init__() self.head_distortion = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: 0.0))) self.head_distortion_for_any_dj = defaultdict( lambda: defaultdict(lambda: 0.0)) self.non_head_distortion = defaultdict( lambda: defaultdict(lambda: 0.0)) self.non_head_distortion_for_any_dj = defaultdict(lambda: 0.0) def update_distortion(self, count, alignment_info, j, src_classes, trg_classes): i = alignment_info.alignment[j] t = alignment_info.trg_sentence[j] if i == 0: # case 1: t is aligned to NULL pass elif alignment_info.is_head_word(j): # case 2: t is the first word of a tablet previous_cept = alignment_info.previous_cept(j) if previous_cept is not None: previous_src_word = alignment_info.src_sentence[previous_cept] src_class = src_classes[previous_src_word] else: src_class = None trg_class = trg_classes[t] dj = j - alignment_info.center_of_cept(previous_cept) self.head_distortion[dj][src_class][trg_class] += count self.head_distortion_for_any_dj[src_class][trg_class] += count else: # case 3: t is a subsequent word of a tablet previous_j = alignment_info.previous_in_tablet(j) trg_class = trg_classes[t] dj = j - previous_j self.non_head_distortion[dj][trg_class] += count self.non_head_distortion_for_any_dj[trg_class] += count