# -*- coding: utf-8 -*- # Natural Language Toolkit: IBM Model 5 # # Copyright (C) 2001-2018 NLTK Project # Author: Tah Wei Hoon # URL: # For license information, see LICENSE.TXT """ Translation model that keeps track of vacant positions in the target sentence to decide where to place translated words. Translation can be viewed as a process where each word in the source sentence is stepped through sequentially, generating translated words for each source word. The target sentence can be viewed as being made up of ``m`` empty slots initially, which gradually fill up as generated words are placed in them. Models 3 and 4 use distortion probabilities to decide how to place translated words. For simplicity, these models ignore the history of which slots have already been occupied with translated words. Consider the placement of the last translated word: there is only one empty slot left in the target sentence, so the distortion probability should be 1.0 for that position and 0.0 everywhere else. However, the distortion probabilities for Models 3 and 4 are set up such that all positions are under consideration. IBM Model 5 fixes this deficiency by accounting for occupied slots during translation. It introduces the vacancy function v(j), the number of vacancies up to, and including, position j in the target sentence. Terminology: Maximum vacancy: The number of valid slots that a word can be placed in. This is not necessarily the same as the number of vacant slots. For example, if a tablet contains more than one word, the head word cannot be placed at the last vacant slot because there will be no space for the other words in the tablet. The number of valid slots has to take into account the length of the tablet. Non-head words cannot be placed before the head word, so vacancies to the left of the head word are ignored. Vacancy difference: For a head word: (v(j) - v(center of previous cept)) Can be positive or negative. For a non-head word: (v(j) - v(position of previously placed word)) Always positive, because successive words in a tablet are assumed to appear to the right of the previous word. Positioning of target words fall under three cases: (1) Words generated by NULL are distributed uniformly (2) For a head word t, its position is modeled by the probability v_head(dv | max_v,word_class_t(t)) (3) For a non-head word t, its position is modeled by the probability v_non_head(dv | max_v,word_class_t(t)) dv and max_v are defined differently for head and non-head words. The EM algorithm used in Model 5 is: E step - In the training data, collect counts, weighted by prior probabilities. (a) count how many times a source language word is translated into a target language word (b) for a particular word class and maximum vacancy, count how many times a head word and the previous cept's center have a particular difference in number of vacancies (b) for a particular word class and maximum vacancy, count how many times a non-head word and the previous target word have a particular difference in number of vacancies (d) count how many times a source word is aligned to phi number of target words (e) count how many times NULL is aligned to a target word M step - Estimate new probabilities based on the counts from the E step Like Model 4, there are too many possible alignments to consider. Thus, a hill climbing approach is used to sample good candidates. In addition, pruning is used to weed out unlikely alignments based on Model 4 scores. Notations: i: Position in the source sentence Valid values are 0 (for NULL), 1, 2, ..., length of source sentence j: Position in the target sentence Valid values are 1, 2, ..., length of target sentence l: Number of words in the source sentence, excluding NULL m: Number of words in the target sentence s: A word in the source language t: A word in the target language phi: Fertility, the number of target words produced by a source word p1: Probability that a target word produced by a source word is accompanied by another target word that is aligned to NULL p0: 1 - p1 max_v: Maximum vacancy dv: Vacancy difference, Δv The definition of v_head here differs from GIZA++, section 4.7 of [Brown et al., 1993], and [Koehn, 2010]. In the latter cases, v_head is v_head(v(j) | v(center of previous cept),max_v,word_class(t)). Here, we follow appendix B of [Brown et al., 1993] and combine v(j) with v(center of previous cept) to obtain dv: v_head(v(j) - v(center of previous cept) | max_v,word_class(t)). References: Philipp Koehn. 2010. Statistical Machine Translation. Cambridge University Press, New York. Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, 19 (2), 263-311. """ from __future__ import division from collections import defaultdict from math import factorial from nltk.translate import AlignedSent from nltk.translate import Alignment from nltk.translate import IBMModel from nltk.translate import IBMModel4 from nltk.translate.ibm_model import Counts from nltk.translate.ibm_model import longest_target_sentence_length import warnings class IBMModel5(IBMModel): """ Translation model that keeps track of vacant positions in the target sentence to decide where to place translated words >>> bitext = [] >>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small'])) >>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big'])) >>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small'])) >>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small'])) >>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house'])) >>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book'])) >>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book'])) >>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book'])) >>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize'])) >>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 } >>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 } >>> ibm5 = IBMModel5(bitext, 5, src_classes, trg_classes) >>> print(round(ibm5.head_vacancy_table[1][1][1], 3)) 1.0 >>> print(round(ibm5.head_vacancy_table[2][1][1], 3)) 0.0 >>> print(round(ibm5.non_head_vacancy_table[3][3][6], 3)) 1.0 >>> print(round(ibm5.fertility_table[2]['summarize'], 3)) 1.0 >>> print(round(ibm5.fertility_table[1]['book'], 3)) 1.0 >>> print(ibm5.p1) 0.033... >>> test_sentence = bitext[2] >>> test_sentence.words ['das', 'buch', 'ist', 'ja', 'klein'] >>> test_sentence.mots ['the', 'book', 'is', 'small'] >>> test_sentence.alignment Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)]) """ MIN_SCORE_FACTOR = 0.2 """ Alignments with scores below this factor are pruned during sampling """ def __init__(self, sentence_aligned_corpus, iterations, source_word_classes, target_word_classes, probability_tables=None): """ Train on ``sentence_aligned_corpus`` and create a lexical translation model, vacancy models, a fertility model, and a model for generating NULL-aligned words. Translation direction is from ``AlignedSent.mots`` to ``AlignedSent.words``. :param sentence_aligned_corpus: Sentence-aligned parallel corpus :type sentence_aligned_corpus: list(AlignedSent) :param iterations: Number of iterations to run training algorithm :type iterations: int :param source_word_classes: Lookup table that maps a source word to its word class, the latter represented by an integer id :type source_word_classes: dict[str]: int :param target_word_classes: Lookup table that maps a target word to its word class, the latter represented by an integer id :type target_word_classes: dict[str]: int :param probability_tables: Optional. Use this to pass in custom probability values. If not specified, probabilities will be set to a uniform distribution, or some other sensible value. If specified, all the following entries must be present: ``translation_table``, ``alignment_table``, ``fertility_table``, ``p1``, ``head_distortion_table``, ``non_head_distortion_table``, ``head_vacancy_table``, ``non_head_vacancy_table``. See ``IBMModel``, ``IBMModel4``, and ``IBMModel5`` for the type and purpose of these tables. :type probability_tables: dict[str]: object """ super(IBMModel5, self).__init__(sentence_aligned_corpus) self.reset_probabilities() self.src_classes = source_word_classes self.trg_classes = target_word_classes if probability_tables is None: # Get probabilities from IBM model 4 ibm4 = IBMModel4(sentence_aligned_corpus, iterations, source_word_classes, target_word_classes) self.translation_table = ibm4.translation_table self.alignment_table = ibm4.alignment_table self.fertility_table = ibm4.fertility_table self.p1 = ibm4.p1 self.head_distortion_table = ibm4.head_distortion_table self.non_head_distortion_table = ibm4.non_head_distortion_table self.set_uniform_probabilities(sentence_aligned_corpus) else: # Set user-defined probabilities self.translation_table = probability_tables['translation_table'] self.alignment_table = probability_tables['alignment_table'] self.fertility_table = probability_tables['fertility_table'] self.p1 = probability_tables['p1'] self.head_distortion_table = probability_tables[ 'head_distortion_table'] self.non_head_distortion_table = probability_tables[ 'non_head_distortion_table'] self.head_vacancy_table = probability_tables[ 'head_vacancy_table'] self.non_head_vacancy_table = probability_tables[ 'non_head_vacancy_table'] for n in range(0, iterations): self.train(sentence_aligned_corpus) def reset_probabilities(self): super(IBMModel5, self).reset_probabilities() self.head_vacancy_table = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))) """ dict[int][int][int]: float. Probability(vacancy difference | number of remaining valid positions,target word class). Values accessed as ``head_vacancy_table[dv][v_max][trg_class]``. """ self.non_head_vacancy_table = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))) """ dict[int][int][int]: float. Probability(vacancy difference | number of remaining valid positions,target word class). Values accessed as ``non_head_vacancy_table[dv][v_max][trg_class]``. """ def set_uniform_probabilities(self, sentence_aligned_corpus): """ Set vacancy probabilities uniformly to 1 / cardinality of vacancy difference values """ max_m = longest_target_sentence_length(sentence_aligned_corpus) # The maximum vacancy difference occurs when a word is placed in # the last available position m of the target sentence and the # previous word position has no vacancies. # The minimum is 1-max_v, when a word is placed in the first # available position and the previous word is placed beyond the # last available position. # Thus, the number of possible vacancy difference values is # (max_v) - (1-max_v) + 1 = 2 * max_v. if max_m > 0 and (1 / (2 * max_m)) < IBMModel.MIN_PROB: warnings.warn("A target sentence is too long (" + str(max_m) + " words). Results may be less accurate.") for max_v in range(1, max_m + 1): for dv in range(1, max_m + 1): initial_prob = 1 / (2 * max_v) self.head_vacancy_table[dv][max_v] = defaultdict( lambda: initial_prob) self.head_vacancy_table[-(dv-1)][max_v] = defaultdict( lambda: initial_prob) self.non_head_vacancy_table[dv][max_v] = defaultdict( lambda: initial_prob) self.non_head_vacancy_table[-(dv-1)][max_v] = defaultdict( lambda: initial_prob) def train(self, parallel_corpus): counts = Model5Counts() for aligned_sentence in parallel_corpus: l = len(aligned_sentence.mots) m = len(aligned_sentence.words) # Sample the alignment space sampled_alignments, best_alignment = self.sample(aligned_sentence) # Record the most probable alignment aligned_sentence.alignment = Alignment( best_alignment.zero_indexed_alignment()) # E step (a): Compute normalization factors to weigh counts total_count = self.prob_of_alignments(sampled_alignments) # E step (b): Collect counts for alignment_info in sampled_alignments: count = self.prob_t_a_given_s(alignment_info) normalized_count = count / total_count for j in range(1, m + 1): counts.update_lexical_translation( normalized_count, alignment_info, j) slots = Slots(m) for i in range(1, l + 1): counts.update_vacancy( normalized_count, alignment_info, i, self.trg_classes, slots) counts.update_null_generation(normalized_count, alignment_info) counts.update_fertility(normalized_count, alignment_info) # M step: Update probabilities with maximum likelihood estimates # If any probability is less than MIN_PROB, clamp it to MIN_PROB existing_alignment_table = self.alignment_table self.reset_probabilities() self.alignment_table = existing_alignment_table # don't retrain self.maximize_lexical_translation_probabilities(counts) self.maximize_vacancy_probabilities(counts) self.maximize_fertility_probabilities(counts) self.maximize_null_generation_probabilities(counts) def sample(self, sentence_pair): """ Sample the most probable alignments from the entire alignment space according to Model 4 Note that Model 4 scoring is used instead of Model 5 because the latter is too expensive to compute. First, determine the best alignment according to IBM Model 2. With this initial alignment, use hill climbing to determine the best alignment according to a IBM Model 4. Add this alignment and its neighbors to the sample set. Repeat this process with other initial alignments obtained by pegging an alignment point. Finally, prune alignments that have substantially lower Model 4 scores than the best alignment. :param sentence_pair: Source and target language sentence pair to generate a sample of alignments from :type sentence_pair: AlignedSent :return: A set of best alignments represented by their ``AlignmentInfo`` and the best alignment of the set for convenience :rtype: set(AlignmentInfo), AlignmentInfo """ sampled_alignments, best_alignment = super( IBMModel5, self).sample(sentence_pair) return self.prune(sampled_alignments), best_alignment def prune(self, alignment_infos): """ Removes alignments from ``alignment_infos`` that have substantially lower Model 4 scores than the best alignment :return: Pruned alignments :rtype: set(AlignmentInfo) """ alignments = [] best_score = 0 for alignment_info in alignment_infos: score = IBMModel4.model4_prob_t_a_given_s(alignment_info, self) best_score = max(score, best_score) alignments.append((alignment_info, score)) threshold = IBMModel5.MIN_SCORE_FACTOR * best_score alignments = [a[0] for a in alignments if a[1] > threshold] return set(alignments) def hillclimb(self, alignment_info, j_pegged=None): """ Starting from the alignment in ``alignment_info``, look at neighboring alignments iteratively for the best one, according to Model 4 Note that Model 4 scoring is used instead of Model 5 because the latter is too expensive to compute. There is no guarantee that the best alignment in the alignment space will be found, because the algorithm might be stuck in a local maximum. :param j_pegged: If specified, the search will be constrained to alignments where ``j_pegged`` remains unchanged :type j_pegged: int :return: The best alignment found from hill climbing :rtype: AlignmentInfo """ alignment = alignment_info # alias with shorter name max_probability = IBMModel4.model4_prob_t_a_given_s(alignment, self) while True: old_alignment = alignment for neighbor_alignment in self.neighboring(alignment, j_pegged): neighbor_probability = IBMModel4.model4_prob_t_a_given_s( neighbor_alignment, self) if neighbor_probability > max_probability: alignment = neighbor_alignment max_probability = neighbor_probability if alignment == old_alignment: # Until there are no better alignments break alignment.score = max_probability return alignment def prob_t_a_given_s(self, alignment_info): """ Probability of target sentence and an alignment given the source sentence """ probability = 1.0 MIN_PROB = IBMModel.MIN_PROB slots = Slots(len(alignment_info.trg_sentence) - 1) def null_generation_term(): # Binomial distribution: B(m - null_fertility, p1) value = 1.0 p1 = self.p1 p0 = 1 - p1 null_fertility = alignment_info.fertility_of_i(0) m = len(alignment_info.trg_sentence) - 1 value *= (pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility)) if value < MIN_PROB: return MIN_PROB # Combination: (m - null_fertility) choose null_fertility for i in range(1, null_fertility + 1): value *= (m - null_fertility - i + 1) / i return value def fertility_term(): value = 1.0 src_sentence = alignment_info.src_sentence for i in range(1, len(src_sentence)): fertility = alignment_info.fertility_of_i(i) value *= (factorial(fertility) * self.fertility_table[fertility][src_sentence[i]]) if value < MIN_PROB: return MIN_PROB return value def lexical_translation_term(j): t = alignment_info.trg_sentence[j] i = alignment_info.alignment[j] s = alignment_info.src_sentence[i] return self.translation_table[t][s] def vacancy_term(i): value = 1.0 tablet = alignment_info.cepts[i] tablet_length = len(tablet) total_vacancies = slots.vacancies_at(len(slots)) # case 1: NULL-aligned words if tablet_length == 0: return value # case 2: head word j = tablet[0] previous_cept = alignment_info.previous_cept(j) previous_center = alignment_info.center_of_cept(previous_cept) dv = slots.vacancies_at(j) - slots.vacancies_at(previous_center) max_v = total_vacancies - tablet_length + 1 trg_class = self.trg_classes[alignment_info.trg_sentence[j]] value *= self.head_vacancy_table[dv][max_v][trg_class] slots.occupy(j) # mark position as occupied total_vacancies -= 1 if value < MIN_PROB: return MIN_PROB # case 3: non-head words for k in range(1, tablet_length): previous_position = tablet[k - 1] previous_vacancies = slots.vacancies_at(previous_position) j = tablet[k] dv = slots.vacancies_at(j) - previous_vacancies max_v = (total_vacancies - tablet_length + k + 1 - previous_vacancies) trg_class = self.trg_classes[alignment_info.trg_sentence[j]] value *= self.non_head_vacancy_table[dv][max_v][trg_class] slots.occupy(j) # mark position as occupied total_vacancies -= 1 if value < MIN_PROB: return MIN_PROB return value # end nested functions # Abort computation whenever probability falls below MIN_PROB at # any point, since MIN_PROB can be considered as zero probability *= null_generation_term() if probability < MIN_PROB: return MIN_PROB probability *= fertility_term() if probability < MIN_PROB: return MIN_PROB for j in range(1, len(alignment_info.trg_sentence)): probability *= lexical_translation_term(j) if probability < MIN_PROB: return MIN_PROB for i in range(1, len(alignment_info.src_sentence)): probability *= vacancy_term(i) if probability < MIN_PROB: return MIN_PROB return probability def maximize_vacancy_probabilities(self, counts): MIN_PROB = IBMModel.MIN_PROB head_vacancy_table = self.head_vacancy_table for dv, max_vs in counts.head_vacancy.items(): for max_v, trg_classes in max_vs.items(): for t_cls in trg_classes: estimate = (counts.head_vacancy[dv][max_v][t_cls] / counts.head_vacancy_for_any_dv[max_v][t_cls]) head_vacancy_table[dv][max_v][t_cls] = max(estimate, MIN_PROB) non_head_vacancy_table = self.non_head_vacancy_table for dv, max_vs in counts.non_head_vacancy.items(): for max_v, trg_classes in max_vs.items(): for t_cls in trg_classes: estimate = ( counts.non_head_vacancy[dv][max_v][t_cls] / counts.non_head_vacancy_for_any_dv[max_v][t_cls]) non_head_vacancy_table[dv][max_v][t_cls] = max(estimate, MIN_PROB) class Model5Counts(Counts): """ Data object to store counts of various parameters during training. Includes counts for vacancies. """ def __init__(self): super(Model5Counts, self).__init__() self.head_vacancy = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: 0.0))) self.head_vacancy_for_any_dv = defaultdict( lambda: defaultdict(lambda: 0.0)) self.non_head_vacancy = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: 0.0))) self.non_head_vacancy_for_any_dv = defaultdict( lambda: defaultdict(lambda: 0.0)) def update_vacancy(self, count, alignment_info, i, trg_classes, slots): """ :param count: Value to add to the vacancy counts :param alignment_info: Alignment under consideration :param i: Source word position under consideration :param trg_classes: Target word classes :param slots: Vacancy states of the slots in the target sentence. Output parameter that will be modified as new words are placed in the target sentence. """ tablet = alignment_info.cepts[i] tablet_length = len(tablet) total_vacancies = slots.vacancies_at(len(slots)) # case 1: NULL aligned words if tablet_length == 0: return # ignore zero fertility words # case 2: head word j = tablet[0] previous_cept = alignment_info.previous_cept(j) previous_center = alignment_info.center_of_cept(previous_cept) dv = slots.vacancies_at(j) - slots.vacancies_at(previous_center) max_v = total_vacancies - tablet_length + 1 trg_class = trg_classes[alignment_info.trg_sentence[j]] self.head_vacancy[dv][max_v][trg_class] += count self.head_vacancy_for_any_dv[max_v][trg_class] += count slots.occupy(j) # mark position as occupied total_vacancies -= 1 # case 3: non-head words for k in range(1, tablet_length): previous_position = tablet[k - 1] previous_vacancies = slots.vacancies_at(previous_position) j = tablet[k] dv = slots.vacancies_at(j) - previous_vacancies max_v = (total_vacancies - tablet_length + k + 1 - previous_vacancies) trg_class = trg_classes[alignment_info.trg_sentence[j]] self.non_head_vacancy[dv][max_v][trg_class] += count self.non_head_vacancy_for_any_dv[max_v][trg_class] += count slots.occupy(j) # mark position as occupied total_vacancies -= 1 class Slots(object): """ Represents positions in a target sentence. Used to keep track of which slot (position) is occupied. """ def __init__(self, target_sentence_length): self._slots = [False] * (target_sentence_length + 1) # 1-indexed def occupy(self, position): """ :return: Mark slot at ``position`` as occupied """ self._slots[position] = True def vacancies_at(self, position): """ :return: Number of vacant slots up to, and including, ``position`` """ vacancies = 0 for k in range(1, position + 1): if not self._slots[k]: vacancies += 1 return vacancies def __len__(self): return len(self._slots) - 1 # exclude dummy zeroeth element