#define FORTRANOBJECT_C #include "fortranobject.h" #ifdef __cplusplus extern "C" { #endif #include #include /* This file implements: FortranObject, array_from_pyobj, copy_ND_array Author: Pearu Peterson $Revision: 1.52 $ $Date: 2005/07/11 07:44:20 $ */ int F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj) { if (obj==NULL) { fprintf(stderr, "Error loading %s\n", name); if (PyErr_Occurred()) { PyErr_Print(); PyErr_Clear(); } return -1; } return PyDict_SetItemString(dict, name, obj); } /************************* FortranObject *******************************/ typedef PyObject *(*fortranfunc)(PyObject *,PyObject *,PyObject *,void *); PyObject * PyFortranObject_New(FortranDataDef* defs, f2py_void_func init) { int i; PyFortranObject *fp = NULL; PyObject *v = NULL; if (init!=NULL) { /* Initialize F90 module objects */ (*(init))(); } fp = PyObject_New(PyFortranObject, &PyFortran_Type); if (fp == NULL) { return NULL; } if ((fp->dict = PyDict_New()) == NULL) { Py_DECREF(fp); return NULL; } fp->len = 0; while (defs[fp->len].name != NULL) { fp->len++; } if (fp->len == 0) { goto fail; } fp->defs = defs; for (i=0;ilen;i++) { if (fp->defs[i].rank == -1) { /* Is Fortran routine */ v = PyFortranObject_NewAsAttr(&(fp->defs[i])); if (v==NULL) { goto fail; } PyDict_SetItemString(fp->dict,fp->defs[i].name,v); Py_XDECREF(v); } else if ((fp->defs[i].data)!=NULL) { /* Is Fortran variable or array (not allocatable) */ if (fp->defs[i].type == NPY_STRING) { int n = fp->defs[i].rank-1; v = PyArray_New(&PyArray_Type, n, fp->defs[i].dims.d, NPY_STRING, NULL, fp->defs[i].data, fp->defs[i].dims.d[n], NPY_ARRAY_FARRAY, NULL); } else { v = PyArray_New(&PyArray_Type, fp->defs[i].rank, fp->defs[i].dims.d, fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL); } if (v==NULL) { goto fail; } PyDict_SetItemString(fp->dict,fp->defs[i].name,v); Py_XDECREF(v); } } return (PyObject *)fp; fail: Py_XDECREF(fp); return NULL; } PyObject * PyFortranObject_NewAsAttr(FortranDataDef* defs) { /* used for calling F90 module routines */ PyFortranObject *fp = NULL; fp = PyObject_New(PyFortranObject, &PyFortran_Type); if (fp == NULL) return NULL; if ((fp->dict = PyDict_New())==NULL) { PyObject_Del(fp); return NULL; } fp->len = 1; fp->defs = defs; return (PyObject *)fp; } /* Fortran methods */ static void fortran_dealloc(PyFortranObject *fp) { Py_XDECREF(fp->dict); PyObject_Del(fp); } /* Returns number of bytes consumed from buf, or -1 on error. */ static Py_ssize_t format_def(char *buf, Py_ssize_t size, FortranDataDef def) { char *p = buf; int i, n; n = PyOS_snprintf(p, size, "array(%" NPY_INTP_FMT, def.dims.d[0]); if (n < 0 || n >= size) { return -1; } p += n; size -= n; for (i = 1; i < def.rank; i++) { n = PyOS_snprintf(p, size, ",%" NPY_INTP_FMT, def.dims.d[i]); if (n < 0 || n >= size) { return -1; } p += n; size -= n; } if (size <= 0) { return -1; } *p++ = ')'; size--; if (def.data == NULL) { static const char notalloc[] = ", not allocated"; if ((size_t) size < sizeof(notalloc)) { return -1; } memcpy(p, notalloc, sizeof(notalloc)); } return p - buf; } static PyObject * fortran_doc(FortranDataDef def) { char *buf, *p; PyObject *s = NULL; Py_ssize_t n, origsize, size = 100; if (def.doc != NULL) { size += strlen(def.doc); } origsize = size; buf = p = (char *)PyMem_Malloc(size); if (buf == NULL) { return PyErr_NoMemory(); } if (def.rank == -1) { if (def.doc) { n = strlen(def.doc); if (n > size) { goto fail; } memcpy(p, def.doc, n); p += n; size -= n; } else { n = PyOS_snprintf(p, size, "%s - no docs available", def.name); if (n < 0 || n >= size) { goto fail; } p += n; size -= n; } } else { PyArray_Descr *d = PyArray_DescrFromType(def.type); n = PyOS_snprintf(p, size, "'%c'-", d->type); Py_DECREF(d); if (n < 0 || n >= size) { goto fail; } p += n; size -= n; if (def.data == NULL) { n = format_def(p, size, def) == -1; if (n < 0) { goto fail; } p += n; size -= n; } else if (def.rank > 0) { n = format_def(p, size, def); if (n < 0) { goto fail; } p += n; size -= n; } else { n = strlen("scalar"); if (size < n) { goto fail; } memcpy(p, "scalar", n); p += n; size -= n; } } if (size <= 1) { goto fail; } *p++ = '\n'; size--; /* p now points one beyond the last character of the string in buf */ s = PyUnicode_FromStringAndSize(buf, p - buf); PyMem_Free(buf); return s; fail: fprintf(stderr, "fortranobject.c: fortran_doc: len(p)=%zd>%zd=size:" " too long docstring required, increase size\n", p - buf, origsize); PyMem_Free(buf); return NULL; } static FortranDataDef *save_def; /* save pointer of an allocatable array */ static void set_data(char *d,npy_intp *f) { /* callback from Fortran */ if (*f) /* In fortran f=allocated(d) */ save_def->data = d; else save_def->data = NULL; /* printf("set_data: d=%p,f=%d\n",d,*f); */ } static PyObject * fortran_getattr(PyFortranObject *fp, char *name) { int i,j,k,flag; if (fp->dict != NULL) { PyObject *v = _PyDict_GetItemStringWithError(fp->dict, name); if (v == NULL && PyErr_Occurred()) { return NULL; } else if (v != NULL) { Py_INCREF(v); return v; } } for (i=0,j=1;ilen && (j=strcmp(name,fp->defs[i].name));i++); if (j==0) if (fp->defs[i].rank!=-1) { /* F90 allocatable array */ if (fp->defs[i].func==NULL) return NULL; for(k=0;kdefs[i].rank;++k) fp->defs[i].dims.d[k]=-1; save_def = &fp->defs[i]; (*(fp->defs[i].func))(&fp->defs[i].rank,fp->defs[i].dims.d,set_data,&flag); if (flag==2) k = fp->defs[i].rank + 1; else k = fp->defs[i].rank; if (fp->defs[i].data !=NULL) { /* array is allocated */ PyObject *v = PyArray_New(&PyArray_Type, k, fp->defs[i].dims.d, fp->defs[i].type, NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL); if (v==NULL) return NULL; /* Py_INCREF(v); */ return v; } else { /* array is not allocated */ Py_RETURN_NONE; } } if (strcmp(name,"__dict__")==0) { Py_INCREF(fp->dict); return fp->dict; } if (strcmp(name,"__doc__")==0) { PyObject *s = PyUnicode_FromString(""), *s2, *s3; for (i=0;ilen;i++) { s2 = fortran_doc(fp->defs[i]); s3 = PyUnicode_Concat(s, s2); Py_DECREF(s2); Py_DECREF(s); s = s3; } if (PyDict_SetItemString(fp->dict, name, s)) return NULL; return s; } if ((strcmp(name,"_cpointer")==0) && (fp->len==1)) { PyObject *cobj = F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data),NULL); if (PyDict_SetItemString(fp->dict, name, cobj)) return NULL; return cobj; } PyObject *str, *ret; str = PyUnicode_FromString(name); ret = PyObject_GenericGetAttr((PyObject *)fp, str); Py_DECREF(str); return ret; } static int fortran_setattr(PyFortranObject *fp, char *name, PyObject *v) { int i,j,flag; PyArrayObject *arr = NULL; for (i=0,j=1;ilen && (j=strcmp(name,fp->defs[i].name));i++); if (j==0) { if (fp->defs[i].rank==-1) { PyErr_SetString(PyExc_AttributeError,"over-writing fortran routine"); return -1; } if (fp->defs[i].func!=NULL) { /* is allocatable array */ npy_intp dims[F2PY_MAX_DIMS]; int k; save_def = &fp->defs[i]; if (v!=Py_None) { /* set new value (reallocate if needed -- see f2py generated code for more details ) */ for(k=0;kdefs[i].rank;k++) dims[k]=-1; if ((arr = array_from_pyobj(fp->defs[i].type,dims,fp->defs[i].rank,F2PY_INTENT_IN,v))==NULL) return -1; (*(fp->defs[i].func))(&fp->defs[i].rank,PyArray_DIMS(arr),set_data,&flag); } else { /* deallocate */ for(k=0;kdefs[i].rank;k++) dims[k]=0; (*(fp->defs[i].func))(&fp->defs[i].rank,dims,set_data,&flag); for(k=0;kdefs[i].rank;k++) dims[k]=-1; } memcpy(fp->defs[i].dims.d,dims,fp->defs[i].rank*sizeof(npy_intp)); } else { /* not allocatable array */ if ((arr = array_from_pyobj(fp->defs[i].type,fp->defs[i].dims.d,fp->defs[i].rank,F2PY_INTENT_IN,v))==NULL) return -1; } if (fp->defs[i].data!=NULL) { /* copy Python object to Fortran array */ npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d,PyArray_NDIM(arr)); if (s==-1) s = PyArray_MultiplyList(PyArray_DIMS(arr),PyArray_NDIM(arr)); if (s<0 || (memcpy(fp->defs[i].data,PyArray_DATA(arr),s*PyArray_ITEMSIZE(arr)))==NULL) { if ((PyObject*)arr!=v) { Py_DECREF(arr); } return -1; } if ((PyObject*)arr!=v) { Py_DECREF(arr); } } else return (fp->defs[i].func==NULL?-1:0); return 0; /* successful */ } if (fp->dict == NULL) { fp->dict = PyDict_New(); if (fp->dict == NULL) return -1; } if (v == NULL) { int rv = PyDict_DelItemString(fp->dict, name); if (rv < 0) PyErr_SetString(PyExc_AttributeError,"delete non-existing fortran attribute"); return rv; } else return PyDict_SetItemString(fp->dict, name, v); } static PyObject* fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw) { int i = 0; /* printf("fortran call name=%s,func=%p,data=%p,%p\n",fp->defs[i].name, fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */ if (fp->defs[i].rank==-1) {/* is Fortran routine */ if (fp->defs[i].func==NULL) { PyErr_Format(PyExc_RuntimeError, "no function to call"); return NULL; } else if (fp->defs[i].data==NULL) /* dummy routine */ return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp,arg,kw,NULL); else return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp,arg,kw, (void *)fp->defs[i].data); } PyErr_Format(PyExc_TypeError, "this fortran object is not callable"); return NULL; } static PyObject * fortran_repr(PyFortranObject *fp) { PyObject *name = NULL, *repr = NULL; name = PyObject_GetAttrString((PyObject *)fp, "__name__"); PyErr_Clear(); if (name != NULL && PyUnicode_Check(name)) { repr = PyUnicode_FromFormat("", name); } else { repr = PyUnicode_FromString(""); } Py_XDECREF(name); return repr; } PyTypeObject PyFortran_Type = { PyVarObject_HEAD_INIT(NULL, 0) .tp_name ="fortran", .tp_basicsize = sizeof(PyFortranObject), .tp_dealloc = (destructor)fortran_dealloc, .tp_getattr = (getattrfunc)fortran_getattr, .tp_setattr = (setattrfunc)fortran_setattr, .tp_repr = (reprfunc)fortran_repr, .tp_call = (ternaryfunc)fortran_call, }; /************************* f2py_report_atexit *******************************/ #ifdef F2PY_REPORT_ATEXIT static int passed_time = 0; static int passed_counter = 0; static int passed_call_time = 0; static struct timeb start_time; static struct timeb stop_time; static struct timeb start_call_time; static struct timeb stop_call_time; static int cb_passed_time = 0; static int cb_passed_counter = 0; static int cb_passed_call_time = 0; static struct timeb cb_start_time; static struct timeb cb_stop_time; static struct timeb cb_start_call_time; static struct timeb cb_stop_call_time; extern void f2py_start_clock(void) { ftime(&start_time); } extern void f2py_start_call_clock(void) { f2py_stop_clock(); ftime(&start_call_time); } extern void f2py_stop_clock(void) { ftime(&stop_time); passed_time += 1000*(stop_time.time - start_time.time); passed_time += stop_time.millitm - start_time.millitm; } extern void f2py_stop_call_clock(void) { ftime(&stop_call_time); passed_call_time += 1000*(stop_call_time.time - start_call_time.time); passed_call_time += stop_call_time.millitm - start_call_time.millitm; passed_counter += 1; f2py_start_clock(); } extern void f2py_cb_start_clock(void) { ftime(&cb_start_time); } extern void f2py_cb_start_call_clock(void) { f2py_cb_stop_clock(); ftime(&cb_start_call_time); } extern void f2py_cb_stop_clock(void) { ftime(&cb_stop_time); cb_passed_time += 1000*(cb_stop_time.time - cb_start_time.time); cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm; } extern void f2py_cb_stop_call_clock(void) { ftime(&cb_stop_call_time); cb_passed_call_time += 1000*(cb_stop_call_time.time - cb_start_call_time.time); cb_passed_call_time += cb_stop_call_time.millitm - cb_start_call_time.millitm; cb_passed_counter += 1; f2py_cb_start_clock(); } static int f2py_report_on_exit_been_here = 0; extern void f2py_report_on_exit(int exit_flag,void *name) { if (f2py_report_on_exit_been_here) { fprintf(stderr," %s\n",(char*)name); return; } f2py_report_on_exit_been_here = 1; fprintf(stderr," /-----------------------\\\n"); fprintf(stderr," < F2PY performance report >\n"); fprintf(stderr," \\-----------------------/\n"); fprintf(stderr,"Overall time spent in ...\n"); fprintf(stderr,"(a) wrapped (Fortran/C) functions : %8d msec\n", passed_call_time); fprintf(stderr,"(b) f2py interface, %6d calls : %8d msec\n", passed_counter,passed_time); fprintf(stderr,"(c) call-back (Python) functions : %8d msec\n", cb_passed_call_time); fprintf(stderr,"(d) f2py call-back interface, %6d calls : %8d msec\n", cb_passed_counter,cb_passed_time); fprintf(stderr,"(e) wrapped (Fortran/C) functions (actual) : %8d msec\n\n", passed_call_time-cb_passed_call_time-cb_passed_time); fprintf(stderr,"Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n"); fprintf(stderr,"Exit status: %d\n",exit_flag); fprintf(stderr,"Modules : %s\n",(char*)name); } #endif /********************** report on array copy ****************************/ #ifdef F2PY_REPORT_ON_ARRAY_COPY static void f2py_report_on_array_copy(PyArrayObject* arr) { const npy_intp arr_size = PyArray_Size((PyObject *)arr); if (arr_size>F2PY_REPORT_ON_ARRAY_COPY) { fprintf(stderr,"copied an array: size=%ld, elsize=%"NPY_INTP_FMT"\n", arr_size, (npy_intp)PyArray_ITEMSIZE(arr)); } } static void f2py_report_on_array_copy_fromany(void) { fprintf(stderr,"created an array from object\n"); } #define F2PY_REPORT_ON_ARRAY_COPY_FROMARR f2py_report_on_array_copy((PyArrayObject *)arr) #define F2PY_REPORT_ON_ARRAY_COPY_FROMANY f2py_report_on_array_copy_fromany() #else #define F2PY_REPORT_ON_ARRAY_COPY_FROMARR #define F2PY_REPORT_ON_ARRAY_COPY_FROMANY #endif /************************* array_from_obj *******************************/ /* * File: array_from_pyobj.c * * Description: * ------------ * Provides array_from_pyobj function that returns a contiguous array * object with the given dimensions and required storage order, either * in row-major (C) or column-major (Fortran) order. The function * array_from_pyobj is very flexible about its Python object argument * that can be any number, list, tuple, or array. * * array_from_pyobj is used in f2py generated Python extension * modules. * * Author: Pearu Peterson * Created: 13-16 January 2002 * $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $ */ static int check_and_fix_dimensions(const PyArrayObject* arr, const int rank, npy_intp *dims); static int count_negative_dimensions(const int rank, const npy_intp *dims) { int i=0,r=0; while (iflags,size); printf("\tstrides = "); dump_dims(rank,arr->strides); printf("\tdimensions = "); dump_dims(rank,arr->dimensions); } #endif #define SWAPTYPE(a,b,t) {t c; c = (a); (a) = (b); (b) = c; } static int swap_arrays(PyArrayObject* obj1, PyArrayObject* obj2) { PyArrayObject_fields *arr1 = (PyArrayObject_fields*) obj1, *arr2 = (PyArrayObject_fields*) obj2; SWAPTYPE(arr1->data,arr2->data,char*); SWAPTYPE(arr1->nd,arr2->nd,int); SWAPTYPE(arr1->dimensions,arr2->dimensions,npy_intp*); SWAPTYPE(arr1->strides,arr2->strides,npy_intp*); SWAPTYPE(arr1->base,arr2->base,PyObject*); SWAPTYPE(arr1->descr,arr2->descr,PyArray_Descr*); SWAPTYPE(arr1->flags,arr2->flags,int); /* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */ return 0; } #define ARRAY_ISCOMPATIBLE(arr,type_num) \ ( (PyArray_ISINTEGER(arr) && PyTypeNum_ISINTEGER(type_num)) \ ||(PyArray_ISFLOAT(arr) && PyTypeNum_ISFLOAT(type_num)) \ ||(PyArray_ISCOMPLEX(arr) && PyTypeNum_ISCOMPLEX(type_num)) \ ||(PyArray_ISBOOL(arr) && PyTypeNum_ISBOOL(type_num)) \ ) extern PyArrayObject* array_from_pyobj(const int type_num, npy_intp *dims, const int rank, const int intent, PyObject *obj) { /* * Note about reference counting * ----------------------------- * If the caller returns the array to Python, it must be done with * Py_BuildValue("N",arr). * Otherwise, if obj!=arr then the caller must call Py_DECREF(arr). * * Note on intent(cache,out,..) * --------------------- * Don't expect correct data when returning intent(cache) array. * */ char mess[200]; PyArrayObject *arr = NULL; PyArray_Descr *descr; char typechar; int elsize; if ((intent & F2PY_INTENT_HIDE) || ((intent & F2PY_INTENT_CACHE) && (obj==Py_None)) || ((intent & F2PY_OPTIONAL) && (obj==Py_None)) ) { /* intent(cache), optional, intent(hide) */ if (count_negative_dimensions(rank,dims) > 0) { int i; strcpy(mess, "failed to create intent(cache|hide)|optional array" "-- must have defined dimensions but got ("); for(i=0;ielsize = 1; descr->type = NPY_CHARLTR; } elsize = descr->elsize; typechar = descr->type; Py_DECREF(descr); if (PyArray_Check(obj)) { arr = (PyArrayObject *)obj; if (intent & F2PY_INTENT_CACHE) { /* intent(cache) */ if (PyArray_ISONESEGMENT(arr) && PyArray_ITEMSIZE(arr)>=elsize) { if (check_and_fix_dimensions(arr, rank, dims)) { return NULL; } if (intent & F2PY_INTENT_OUT) Py_INCREF(arr); return arr; } strcpy(mess, "failed to initialize intent(cache) array"); if (!PyArray_ISONESEGMENT(arr)) strcat(mess, " -- input must be in one segment"); if (PyArray_ITEMSIZE(arr)type,typechar); if (!(F2PY_CHECK_ALIGNMENT(arr, intent))) sprintf(mess+strlen(mess)," -- input not %d-aligned", F2PY_GET_ALIGNMENT(intent)); PyErr_SetString(PyExc_ValueError,mess); return NULL; } /* here we have always intent(in) or intent(inplace) */ { PyArrayObject * retarr; retarr = (PyArrayObject *) \ PyArray_New(&PyArray_Type, PyArray_NDIM(arr), PyArray_DIMS(arr), type_num, NULL,NULL,1, !(intent&F2PY_INTENT_C), NULL); if (retarr==NULL) return NULL; F2PY_REPORT_ON_ARRAY_COPY_FROMARR; if (PyArray_CopyInto(retarr, arr)) { Py_DECREF(retarr); return NULL; } if (intent & F2PY_INTENT_INPLACE) { if (swap_arrays(arr,retarr)) return NULL; /* XXX: set exception */ Py_XDECREF(retarr); if (intent & F2PY_INTENT_OUT) Py_INCREF(arr); } else { arr = retarr; } } return arr; } if ((intent & F2PY_INTENT_INOUT) || (intent & F2PY_INTENT_INPLACE) || (intent & F2PY_INTENT_CACHE)) { PyErr_Format(PyExc_TypeError, "failed to initialize intent(inout|inplace|cache) " "array, input '%s' object is not an array", Py_TYPE(obj)->tp_name); return NULL; } { PyArray_Descr * descr = PyArray_DescrFromType(type_num); /* compatibility with NPY_CHAR */ if (type_num == NPY_STRING) { PyArray_DESCR_REPLACE(descr); if (descr == NULL) { return NULL; } descr->elsize = 1; descr->type = NPY_CHARLTR; } F2PY_REPORT_ON_ARRAY_COPY_FROMANY; arr = (PyArrayObject *) \ PyArray_FromAny(obj, descr, 0,0, ((intent & F2PY_INTENT_C)?NPY_ARRAY_CARRAY:NPY_ARRAY_FARRAY) \ | NPY_ARRAY_FORCECAST, NULL); if (arr==NULL) return NULL; if (check_and_fix_dimensions(arr, rank, dims)) { return NULL; } return arr; } } /*****************************************/ /* Helper functions for array_from_pyobj */ /*****************************************/ static int check_and_fix_dimensions(const PyArrayObject* arr, const int rank, npy_intp *dims) { /* * This function fills in blanks (that are -1's) in dims list using * the dimensions from arr. It also checks that non-blank dims will * match with the corresponding values in arr dimensions. * * Returns 0 if the function is successful. * * If an error condition is detected, an exception is set and 1 is returned. */ const npy_intp arr_size = (PyArray_NDIM(arr))?PyArray_Size((PyObject *)arr):1; #ifdef DEBUG_COPY_ND_ARRAY dump_attrs(arr); printf("check_and_fix_dimensions:init: dims="); dump_dims(rank,dims); #endif if (rank > PyArray_NDIM(arr)) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */ npy_intp new_size = 1; int free_axe = -1; int i; npy_intp d; /* Fill dims where -1 or 0; check dimensions; calc new_size; */ for(i=0;i= 0) { if (d>1 && dims[i]!=d) { PyErr_Format(PyExc_ValueError, "%d-th dimension must be fixed to %" NPY_INTP_FMT " but got %" NPY_INTP_FMT "\n", i, dims[i], d); return 1; } if (!dims[i]) dims[i] = 1; } else { dims[i] = d ? d : 1; } new_size *= dims[i]; } for(i=PyArray_NDIM(arr);i1) { PyErr_Format(PyExc_ValueError, "%d-th dimension must be %" NPY_INTP_FMT " but got 0 (not defined).\n", i, dims[i]); return 1; } else if (free_axe<0) free_axe = i; else dims[i] = 1; if (free_axe>=0) { dims[free_axe] = arr_size/new_size; new_size *= dims[free_axe]; } if (new_size != arr_size) { PyErr_Format(PyExc_ValueError, "unexpected array size: new_size=%" NPY_INTP_FMT ", got array with arr_size=%" NPY_INTP_FMT " (maybe too many free indices)\n", new_size, arr_size); return 1; } } else if (rank==PyArray_NDIM(arr)) { npy_intp new_size = 1; int i; npy_intp d; for (i=0; i=0) { if (d > 1 && d!=dims[i]) { PyErr_Format(PyExc_ValueError, "%d-th dimension must be fixed to %" NPY_INTP_FMT " but got %" NPY_INTP_FMT "\n", i, dims[i], d); return 1; } if (!dims[i]) dims[i] = 1; } else dims[i] = d; new_size *= dims[i]; } if (new_size != arr_size) { PyErr_Format(PyExc_ValueError, "unexpected array size: new_size=%" NPY_INTP_FMT ", got array with arr_size=%" NPY_INTP_FMT "\n", new_size, arr_size); return 1; } } else { /* [[1,2]] -> [[1],[2]] */ int i,j; npy_intp d; int effrank; npy_intp size; for (i=0,effrank=0;i1) ++effrank; if (dims[rank-1]>=0) if (effrank>rank) { PyErr_Format(PyExc_ValueError, "too many axes: %d (effrank=%d), " "expected rank=%d\n", PyArray_NDIM(arr), effrank, rank); return 1; } for (i=0,j=0;i=PyArray_NDIM(arr)) d = 1; else d = PyArray_DIM(arr,j++); if (dims[i]>=0) { if (d>1 && d!=dims[i]) { PyErr_Format(PyExc_ValueError, "%d-th dimension must be fixed to %" NPY_INTP_FMT " but got %" NPY_INTP_FMT " (real index=%d)\n", i, dims[i], d, j-1); return 1; } if (!dims[i]) dims[i] = 1; } else dims[i] = d; } for (i=rank;i [1,2,3,4] */ while (j=PyArray_NDIM(arr)) d = 1; else d = PyArray_DIM(arr,j++); dims[rank-1] *= d; } for (i=0,size=1;i