import datetime import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, date_range import pandas._testing as tm from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, ) def _compare_with_tz(a, b): tm.assert_frame_equal(a, b) # compare the zones on each element for c in a.columns: for i in a.index: a_e = a.loc[i, c] b_e = b.loc[i, c] if not (a_e == b_e and a_e.tz == b_e.tz): raise AssertionError( "invalid tz comparison [{a_e}] [{b_e}]".format(a_e=a_e, b_e=b_e) ) def test_append_with_timezones_dateutil(setup_path): from datetime import timedelta # use maybe_get_tz instead of dateutil.tz.gettz to handle the windows # filename issues. from pandas._libs.tslibs.timezones import maybe_get_tz gettz = lambda x: maybe_get_tz("dateutil/" + x) # as columns with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df_tz") df = DataFrame( dict( A=[ Timestamp("20130102 2:00:00", tz=gettz("US/Eastern")) + timedelta(hours=1) * i for i in range(5) ] ) ) store.append("df_tz", df, data_columns=["A"]) result = store["df_tz"] _compare_with_tz(result, df) tm.assert_frame_equal(result, df) # select with tz aware expected = df[df.A >= df.A[3]] result = store.select("df_tz", where="A>=df.A[3]") _compare_with_tz(result, expected) # ensure we include dates in DST and STD time here. _maybe_remove(store, "df_tz") df = DataFrame( dict( A=Timestamp("20130102", tz=gettz("US/Eastern")), B=Timestamp("20130603", tz=gettz("US/Eastern")), ), index=range(5), ) store.append("df_tz", df) result = store["df_tz"] _compare_with_tz(result, df) tm.assert_frame_equal(result, df) df = DataFrame( dict( A=Timestamp("20130102", tz=gettz("US/Eastern")), B=Timestamp("20130102", tz=gettz("EET")), ), index=range(5), ) with pytest.raises(ValueError): store.append("df_tz", df) # this is ok _maybe_remove(store, "df_tz") store.append("df_tz", df, data_columns=["A", "B"]) result = store["df_tz"] _compare_with_tz(result, df) tm.assert_frame_equal(result, df) # can't append with diff timezone df = DataFrame( dict( A=Timestamp("20130102", tz=gettz("US/Eastern")), B=Timestamp("20130102", tz=gettz("CET")), ), index=range(5), ) with pytest.raises(ValueError): store.append("df_tz", df) # as index with ensure_clean_store(setup_path) as store: # GH 4098 example df = DataFrame( dict( A=Series( range(3), index=date_range( "2000-1-1", periods=3, freq="H", tz=gettz("US/Eastern") ), ) ) ) _maybe_remove(store, "df") store.put("df", df) result = store.select("df") tm.assert_frame_equal(result, df) _maybe_remove(store, "df") store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) def test_append_with_timezones_pytz(setup_path): from datetime import timedelta # as columns with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df_tz") df = DataFrame( dict( A=[ Timestamp("20130102 2:00:00", tz="US/Eastern") + timedelta(hours=1) * i for i in range(5) ] ) ) store.append("df_tz", df, data_columns=["A"]) result = store["df_tz"] _compare_with_tz(result, df) tm.assert_frame_equal(result, df) # select with tz aware _compare_with_tz(store.select("df_tz", where="A>=df.A[3]"), df[df.A >= df.A[3]]) _maybe_remove(store, "df_tz") # ensure we include dates in DST and STD time here. df = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130603", tz="US/Eastern"), ), index=range(5), ) store.append("df_tz", df) result = store["df_tz"] _compare_with_tz(result, df) tm.assert_frame_equal(result, df) df = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130102", tz="EET"), ), index=range(5), ) with pytest.raises(ValueError): store.append("df_tz", df) # this is ok _maybe_remove(store, "df_tz") store.append("df_tz", df, data_columns=["A", "B"]) result = store["df_tz"] _compare_with_tz(result, df) tm.assert_frame_equal(result, df) # can't append with diff timezone df = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130102", tz="CET"), ), index=range(5), ) with pytest.raises(ValueError): store.append("df_tz", df) # as index with ensure_clean_store(setup_path) as store: # GH 4098 example df = DataFrame( dict( A=Series( range(3), index=date_range("2000-1-1", periods=3, freq="H", tz="US/Eastern"), ) ) ) _maybe_remove(store, "df") store.put("df", df) result = store.select("df") tm.assert_frame_equal(result, df) _maybe_remove(store, "df") store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) def test_tseries_select_index_column(setup_path): # GH7777 # selecting a UTC datetimeindex column did # not preserve UTC tzinfo set before storing # check that no tz still works rng = date_range("1/1/2000", "1/30/2000") frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(setup_path) as store: store.append("frame", frame) result = store.select_column("frame", "index") assert rng.tz == DatetimeIndex(result.values).tz # check utc rng = date_range("1/1/2000", "1/30/2000", tz="UTC") frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(setup_path) as store: store.append("frame", frame) result = store.select_column("frame", "index") assert rng.tz == result.dt.tz # double check non-utc rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern") frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(setup_path) as store: store.append("frame", frame) result = store.select_column("frame", "index") assert rng.tz == result.dt.tz def test_timezones_fixed(setup_path): with ensure_clean_store(setup_path) as store: # index rng = date_range("1/1/2000", "1/30/2000", tz="US/Eastern") df = DataFrame(np.random.randn(len(rng), 4), index=rng) store["df"] = df result = store["df"] tm.assert_frame_equal(result, df) # as data # GH11411 _maybe_remove(store, "df") df = DataFrame( { "A": rng, "B": rng.tz_convert("UTC").tz_localize(None), "C": rng.tz_convert("CET"), "D": range(len(rng)), }, index=rng, ) store["df"] = df result = store["df"] tm.assert_frame_equal(result, df) def test_fixed_offset_tz(setup_path): rng = date_range("1/1/2000 00:00:00-07:00", "1/30/2000 00:00:00-07:00") frame = DataFrame(np.random.randn(len(rng), 4), index=rng) with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_index_equal(recons.index, rng) assert rng.tz == recons.index.tz @td.skip_if_windows def test_store_timezone(setup_path): # GH2852 # issue storing datetime.date with a timezone as it resets when read # back in a new timezone # original method with ensure_clean_store(setup_path) as store: today = datetime.date(2013, 9, 10) df = DataFrame([1, 2, 3], index=[today, today, today]) store["obj1"] = df result = store["obj1"] tm.assert_frame_equal(result, df) # with tz setting with ensure_clean_store(setup_path) as store: with tm.set_timezone("EST5EDT"): today = datetime.date(2013, 9, 10) df = DataFrame([1, 2, 3], index=[today, today, today]) store["obj1"] = df with tm.set_timezone("CST6CDT"): result = store["obj1"] tm.assert_frame_equal(result, df) def test_legacy_datetimetz_object(datapath, setup_path): # legacy from < 0.17.0 # 8260 expected = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130603", tz="CET") ), index=range(5), ) with ensure_clean_store( datapath("io", "data", "legacy_hdf", "datetimetz_object.h5"), mode="r" ) as store: result = store["df"] tm.assert_frame_equal(result, expected) def test_dst_transitions(setup_path): # make sure we are not failing on transitions with ensure_clean_store(setup_path) as store: times = pd.date_range( "2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H", ambiguous="infer", ) for i in [times, times + pd.Timedelta("10min")]: _maybe_remove(store, "df") df = DataFrame({"A": range(len(i)), "B": i}, index=i) store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) def test_read_with_where_tz_aware_index(setup_path): # GH 11926 periods = 10 dts = pd.date_range("20151201", periods=periods, freq="D", tz="UTC") mi = pd.MultiIndex.from_arrays([dts, range(periods)], names=["DATE", "NO"]) expected = pd.DataFrame({"MYCOL": 0}, index=mi) key = "mykey" with ensure_clean_path(setup_path) as path: with pd.HDFStore(path) as store: store.append(key, expected, format="table", append=True) result = pd.read_hdf(path, key, where="DATE > 20151130") tm.assert_frame_equal(result, expected) def test_py2_created_with_datetimez(datapath, setup_path): # The test HDF5 file was created in Python 2, but could not be read in # Python 3. # # GH26443 index = [pd.Timestamp("2019-01-01T18:00").tz_localize("America/New_York")] expected = DataFrame({"data": 123}, index=index) with ensure_clean_store( datapath("io", "data", "legacy_hdf", "gh26443.h5"), mode="r" ) as store: result = store["key"] tm.assert_frame_equal(result, expected)