"""Test how the ufuncs in special handle nan inputs. """ from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import assert_array_equal, assert_ import pytest import scipy.special as sc from scipy._lib._numpy_compat import suppress_warnings KNOWNFAILURES = {} POSTPROCESSING = { sc.hyp2f0: lambda x, y: x # Second argument is an error estimate } def _get_ufuncs(): ufuncs = [] ufunc_names = [] for name in sorted(sc.__dict__): obj = sc.__dict__[name] if not isinstance(obj, np.ufunc): continue msg = KNOWNFAILURES.get(obj) if msg is None: ufuncs.append(obj) ufunc_names.append(name) else: fail = pytest.mark.xfail(run=False, reason=msg) ufuncs.append(pytest.param(obj, marks=fail)) ufunc_names.append(name) return ufuncs, ufunc_names UFUNCS, UFUNC_NAMES = _get_ufuncs() @pytest.mark.parametrize("func", UFUNCS, ids=UFUNC_NAMES) def test_nan_inputs(func): args = (np.nan,)*func.nin with suppress_warnings() as sup: # Ignore warnings about unsafe casts from legacy wrappers sup.filter(RuntimeWarning, "floating point number truncated to an integer") try: res = func(*args) except TypeError: # One of the arguments doesn't take real inputs return if func in POSTPROCESSING: res = POSTPROCESSING[func](*res) msg = "got {} instead of nan".format(res) assert_array_equal(np.isnan(res), True, err_msg=msg) def test_legacy_cast(): with suppress_warnings() as sup: sup.filter(RuntimeWarning, "floating point number truncated to an integer") res = sc.bdtrc(np.nan, 1, 0.5) assert_(np.isnan(res))