from __future__ import division, print_function, absolute_import import sys import numpy as np from numpy.testing import assert_equal, assert_allclose import pytest from scipy.special._ufuncs import _sinpi as sinpi from scipy.special._ufuncs import _cospi as cospi def test_integer_real_part(): x = np.arange(-100, 101) y = np.hstack((-np.linspace(310, -30, 10), np.linspace(-30, 310, 10))) x, y = np.meshgrid(x, y) z = x + 1j*y # In the following we should be *exactly* right res = sinpi(z) assert_equal(res.real, 0.0) res = cospi(z) assert_equal(res.imag, 0.0) def test_half_integer_real_part(): x = np.arange(-100, 101) + 0.5 y = np.hstack((-np.linspace(310, -30, 10), np.linspace(-30, 310, 10))) x, y = np.meshgrid(x, y) z = x + 1j*y # In the following we should be *exactly* right res = sinpi(z) assert_equal(res.imag, 0.0) res = cospi(z) assert_equal(res.real, 0.0) def test_intermediate_overlow(): # Make sure we avoid overflow in situations where cosh/sinh would # overflow but the product with sin/cos would not sinpi_pts = [complex(1 + 1e-14, 227), complex(1e-35, 250), complex(1e-301, 445)] # Data generated with mpmath sinpi_std = [complex(-8.113438309924894e+295, -np.inf), complex(1.9507801934611995e+306, np.inf), complex(2.205958493464539e+306, np.inf)] for p, std in zip(sinpi_pts, sinpi_std): assert_allclose(sinpi(p), std) # Test for cosine, less interesting because cos(0) = 1. p = complex(0.5 + 1e-14, 227) std = complex(-8.113438309924894e+295, -np.inf) assert_allclose(cospi(p), std) @pytest.mark.xfail('win32' in sys.platform and np.intp(0).itemsize < 8 and sys.version_info < (3, 5), reason="fails on 32-bit Windows with old MSVC") def test_zero_sign(): y = sinpi(-0.0) assert y == 0.0 assert np.signbit(y) y = sinpi(0.0) assert y == 0.0 assert not np.signbit(y) y = cospi(0.5) assert y == 0.0 assert not np.signbit(y)