# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Progress tracker for uploader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib from datetime import datetime import sys import time def readable_time_string(): """Get a human-readable time string for the present.""" return datetime.now().strftime("%Y-%m-%dT%H:%M:%S") def readable_bytes_string(bytes): """Get a human-readable string for number of bytes.""" if bytes >= 2 ** 20: return "%.1f MB" % (float(bytes) / 2 ** 20) elif bytes >= 2 ** 10: return "%.1f kB" % (float(bytes) / 2 ** 10) else: return "%d B" % bytes class UploadStats(object): """Statistics of uploading.""" def __init__(self): self._last_summarized_timestamp = time.time() self._last_data_added_timestamp = 0 self._num_scalars = 0 self._num_tensors = 0 self._num_tensors_skipped = 0 self._tensor_bytes = 0 self._tensor_bytes_skipped = 0 self._num_blobs = 0 self._num_blobs_skipped = 0 self._blob_bytes = 0 self._blob_bytes_skipped = 0 self._plugin_names = set() def add_scalars(self, num_scalars): """Add a batch of scalars. Args: num_scalars: Number of scalars uploaded in this batch. """ self._refresh_last_data_added_timestamp() self._num_scalars += num_scalars def add_tensors( self, num_tensors, num_tensors_skipped, tensor_bytes, tensor_bytes_skipped, ): """Add a batch of tensors. Args: num_tensors: Number of tensors encountered in this batch, including the ones skipped due to reasons such as large exceeding limit. num_tensors: Number of tensors skipped. This describes a subset of `num_tensors` and hence must be `<= num_tensors`. tensor_bytes: Total byte size of tensors encountered in this batch, including the skipped ones. tensor_bytes_skipped: Total byte size of the tensors skipped due to reasons such as size exceeding limit. """ assert num_tensors_skipped <= num_tensors assert tensor_bytes_skipped <= tensor_bytes self._refresh_last_data_added_timestamp() self._num_tensors += num_tensors self._num_tensors_skipped += num_tensors_skipped self._tensor_bytes += tensor_bytes self._tensor_bytes_skipped = tensor_bytes_skipped def add_blob(self, blob_bytes, is_skipped): """Add a blob. Args: blob_bytes: Byte size of the blob. is_skipped: Whether the uploading of the blob is skipped due to reasons such as size exceeding limit. """ self._refresh_last_data_added_timestamp() self._num_blobs += 1 self._blob_bytes += blob_bytes if is_skipped: self._num_blobs_skipped += 1 self._blob_bytes_skipped += blob_bytes def add_plugin(self, plugin_name): """Add a plugin. Args: plugin_name: Name of the plugin. """ self._refresh_last_data_added_timestamp() self._plugin_names.add(plugin_name) @property def num_scalars(self): return self._num_scalars @property def num_tensors(self): return self._num_tensors @property def num_tensors_skipped(self): return self._num_tensors_skipped @property def tensor_bytes(self): return self._tensor_bytes @property def tensor_bytes_skipped(self): return self._tensor_bytes_skipped @property def num_blobs(self): return self._num_blobs @property def num_blobs_skipped(self): return self._num_blobs_skipped @property def blob_bytes(self): return self._blob_bytes @property def blob_bytes_skipped(self): return self._blob_bytes_skipped @property def plugin_names(self): return self._plugin_names def has_data(self): """Has any data been tracked by this instance. This counts the tensor and blob data that have been scanned but skipped. Returns: Whether this stats tracking object has tracked any data. """ return ( self._num_scalars > 0 or self._num_tensors > 0 or self._num_blobs > 0 ) def summarize(self): """Get a summary string for actually-uploaded and skipped data. Calling this property also marks the "last_summarized" timestamp, so that the has_new_data_since_last_summarize() will be able to report the correct value later. Returns: A tuple with two items: - A string summarizing all data uploaded so far. - If any data was skipped, a string for all skipped data. Else, `None`. """ self._last_summarized_timestamp = time.time() string_pieces = [] string_pieces.append("%d scalars" % self._num_scalars) uploaded_tensor_count = self._num_tensors - self._num_tensors_skipped uploaded_tensor_bytes = self._tensor_bytes - self._tensor_bytes_skipped string_pieces.append( "0 tensors" if not uploaded_tensor_count else ( "%d tensors (%s)" % ( uploaded_tensor_count, readable_bytes_string(uploaded_tensor_bytes), ) ) ) uploaded_blob_count = self._num_blobs - self._num_blobs_skipped uploaded_blob_bytes = self._blob_bytes - self._blob_bytes_skipped string_pieces.append( "0 binary objects" if not uploaded_blob_count else ( "%d binary objects (%s)" % ( uploaded_blob_count, readable_bytes_string(uploaded_blob_bytes), ) ) ) skipped_string = ( self._skipped_summary() if self._skipped_any() else None ) return ", ".join(string_pieces), skipped_string def _skipped_any(self): """Whether any data was skipped.""" return self._num_tensors_skipped or self._num_blobs_skipped def has_new_data_since_last_summarize(self): return self._last_data_added_timestamp > self._last_summarized_timestamp def _skipped_summary(self): """Get a summary string for skipped data.""" string_pieces = [] if self._num_tensors_skipped: string_pieces.append( "%d tensors (%s)" % ( self._num_tensors_skipped, readable_bytes_string(self._tensor_bytes_skipped), ) ) if self._num_blobs_skipped: string_pieces.append( "%d binary objects (%s)" % ( self._num_blobs_skipped, readable_bytes_string(self._blob_bytes_skipped), ) ) return ", ".join(string_pieces) def _refresh_last_data_added_timestamp(self): self._last_data_added_timestamp = time.time() _STYLE_RESET = "\033[0m" _STYLE_BOLD = "\033[1m" _STYLE_GREEN = "\033[32m" _STYLE_YELLOW = "\033[33m" _STYLE_DARKGRAY = "\033[90m" _STYLE_ERASE_LINE = "\033[2K" class UploadTracker(object): """Tracker for uploader progress and status.""" _SUPPORTED_VERBISITY_VALUES = (0, 1) def __init__(self, verbosity, one_shot=False): if verbosity not in self._SUPPORTED_VERBISITY_VALUES: raise ValueError( "Unsupported verbosity value %s (supported values: %s)" % (verbosity, self._SUPPORTED_VERBISITY_VALUES) ) self._verbosity = verbosity self._stats = UploadStats() self._send_count = 0 self._one_shot = one_shot def _dummy_generator(self): while True: # Yield an arbitrary value 0: The progress bar is indefinite. yield 0 def _overwrite_line_message(self, message, color_code=_STYLE_GREEN): """Overwrite the current line with a stylized message.""" if not self._verbosity: return message += "." * 3 sys.stdout.write( _STYLE_ERASE_LINE + color_code + message + _STYLE_RESET + "\r" ) sys.stdout.flush() def _single_line_message(self, message): """Write a timestamped single line, with newline, to stdout.""" if not self._verbosity: return start_message = "%s[%s]%s %s\n" % ( _STYLE_BOLD, readable_time_string(), _STYLE_RESET, message, ) sys.stdout.write(start_message) sys.stdout.flush() def has_data(self): """Determine if any data has been uploaded under the tracker's watch.""" return self._stats.has_data() def _update_cumulative_status(self): """Write an update summarizing the data uploaded since the start.""" if not self._verbosity: return if not self._stats.has_new_data_since_last_summarize(): return uploaded_str, skipped_str = self._stats.summarize() uploaded_message = "%s[%s]%s Total uploaded: %s\n" % ( _STYLE_BOLD, readable_time_string(), _STYLE_RESET, uploaded_str, ) sys.stdout.write(uploaded_message) if skipped_str: sys.stdout.write( "%sTotal skipped: %s\n%s" % (_STYLE_DARKGRAY, skipped_str, _STYLE_RESET) ) sys.stdout.flush() # TODO(cais): Add summary of what plugins have been involved, once it's # clear how to get canonical plugin names. def add_plugin_name(self, plugin_name): self._stats.add_plugin(plugin_name) @contextlib.contextmanager def send_tracker(self): """Create a context manager for a round of data sending.""" self._send_count += 1 if self._send_count == 1: self._single_line_message("Started scanning logdir.") try: # self._reset_bars() self._overwrite_line_message("Data upload starting") yield finally: self._update_cumulative_status() if self._one_shot: self._single_line_message("Done scanning logdir.") else: self._overwrite_line_message( "Listening for new data in logdir", color_code=_STYLE_YELLOW, ) @contextlib.contextmanager def scalars_tracker(self, num_scalars): """Create a context manager for tracking a scalar batch upload. Args: num_scalars: Number of scalars in the batch. """ self._overwrite_line_message("Uploading %d scalars" % num_scalars) try: yield finally: self._stats.add_scalars(num_scalars) @contextlib.contextmanager def tensors_tracker( self, num_tensors, num_tensors_skipped, tensor_bytes, tensor_bytes_skipped, ): """Create a context manager for tracking a tensor batch upload. Args: num_tensors: Total number of tensors in the batch. num_tensors_skipped: Number of tensors skipped (a subset of `num_tensors`). Hence this must be `<= num_tensors`. tensor_bytes: Total byte size of the tensors in the batch. tensor_bytes_skipped: Byte size of skipped tensors in the batch (a subset of `tensor_bytes`). Must be `<= tensor_bytes`. """ if num_tensors_skipped: message = "Uploading %d tensors (%s) (Skipping %d tensors, %s)" % ( num_tensors - num_tensors_skipped, readable_bytes_string(tensor_bytes - tensor_bytes_skipped), num_tensors_skipped, readable_bytes_string(tensor_bytes_skipped), ) else: message = "Uploading %d tensors (%s)" % ( num_tensors, readable_bytes_string(tensor_bytes), ) self._overwrite_line_message(message) try: yield finally: self._stats.add_tensors( num_tensors, num_tensors_skipped, tensor_bytes, tensor_bytes_skipped, ) @contextlib.contextmanager def blob_tracker(self, blob_bytes): """Creates context manager tracker for uploading a blob. Args: blob_bytes: Total byte size of the blob being uploaded. """ self._overwrite_line_message( "Uploading binary object (%s)" % readable_bytes_string(blob_bytes) ) try: yield _BlobTracker(self._stats, blob_bytes) finally: pass class _BlobTracker(object): def __init__(self, upload_stats, blob_bytes): self._upload_stats = upload_stats self._blob_bytes = blob_bytes def mark_uploaded(self, is_uploaded): self._upload_stats.add_blob( self._blob_bytes, is_skipped=(not is_uploaded) )