// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Benoit Jacob // Copyright (C) 2014 Gael Guennebaud // // Copyright (C) 2013 Gauthier Brun // Copyright (C) 2013 Nicolas Carre // Copyright (C) 2013 Jean Ceccato // Copyright (C) 2013 Pierre Zoppitelli // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SVDBASE_H #define EIGEN_SVDBASE_H namespace Eigen { namespace internal { template struct traits > : traits { typedef MatrixXpr XprKind; typedef SolverStorage StorageKind; typedef int StorageIndex; enum { Flags = 0 }; }; } /** \ingroup SVD_Module * * * \class SVDBase * * \brief Base class of SVD algorithms * * \tparam Derived the type of the actual SVD decomposition * * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product * \f[ A = U S V^* \f] * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left * and right \em singular \em vectors of \a A respectively. * * Singular values are always sorted in decreasing order. * * * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. * * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to * terminate in finite (and reasonable) time. * \sa class BDCSVD, class JacobiSVD */ template class SVDBase : public SolverBase > { public: template friend struct internal::solve_assertion; typedef typename internal::traits::MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef typename Eigen::internal::traits::StorageIndex StorageIndex; typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), MatrixOptions = MatrixType::Options }; typedef Matrix MatrixUType; typedef Matrix MatrixVType; typedef typename internal::plain_diag_type::type SingularValuesType; Derived& derived() { return *static_cast(this); } const Derived& derived() const { return *static_cast(this); } /** \returns the \a U matrix. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. * * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. * * This method asserts that you asked for \a U to be computed. */ const MatrixUType& matrixU() const { eigen_assert(m_isInitialized && "SVD is not initialized."); eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); return m_matrixU; } /** \returns the \a V matrix. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. * * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. * * This method asserts that you asked for \a V to be computed. */ const MatrixVType& matrixV() const { eigen_assert(m_isInitialized && "SVD is not initialized."); eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); return m_matrixV; } /** \returns the vector of singular values. * * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the * returned vector has size \a m. Singular values are always sorted in decreasing order. */ const SingularValuesType& singularValues() const { eigen_assert(m_isInitialized && "SVD is not initialized."); return m_singularValues; } /** \returns the number of singular values that are not exactly 0 */ Index nonzeroSingularValues() const { eigen_assert(m_isInitialized && "SVD is not initialized."); return m_nonzeroSingularValues; } /** \returns the rank of the matrix of which \c *this is the SVD. * * \note This method has to determine which singular values should be considered nonzero. * For that, it uses the threshold value that you can control by calling * setThreshold(const RealScalar&). */ inline Index rank() const { using std::abs; eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); if(m_singularValues.size()==0) return 0; RealScalar premultiplied_threshold = numext::maxi(m_singularValues.coeff(0) * threshold(), (std::numeric_limits::min)()); Index i = m_nonzeroSingularValues-1; while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; return i+1; } /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), * which need to determine when singular values are to be considered nonzero. * This is not used for the SVD decomposition itself. * * When it needs to get the threshold value, Eigen calls threshold(). * The default is \c NumTraits::epsilon() * * \param threshold The new value to use as the threshold. * * A singular value will be considered nonzero if its value is strictly greater than * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. * * If you want to come back to the default behavior, call setThreshold(Default_t) */ Derived& setThreshold(const RealScalar& threshold) { m_usePrescribedThreshold = true; m_prescribedThreshold = threshold; return derived(); } /** Allows to come back to the default behavior, letting Eigen use its default formula for * determining the threshold. * * You should pass the special object Eigen::Default as parameter here. * \code svd.setThreshold(Eigen::Default); \endcode * * See the documentation of setThreshold(const RealScalar&). */ Derived& setThreshold(Default_t) { m_usePrescribedThreshold = false; return derived(); } /** Returns the threshold that will be used by certain methods such as rank(). * * See the documentation of setThreshold(const RealScalar&). */ RealScalar threshold() const { eigen_assert(m_isInitialized || m_usePrescribedThreshold); // this temporary is needed to workaround a MSVC issue Index diagSize = (std::max)(1,m_diagSize); return m_usePrescribedThreshold ? m_prescribedThreshold : RealScalar(diagSize)*NumTraits::epsilon(); } /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ inline bool computeU() const { return m_computeFullU || m_computeThinU; } /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ inline bool computeV() const { return m_computeFullV || m_computeThinV; } inline Index rows() const { return m_rows; } inline Index cols() const { return m_cols; } #ifdef EIGEN_PARSED_BY_DOXYGEN /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. * * \param b the right-hand-side of the equation to solve. * * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. * * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. */ template inline const Solve solve(const MatrixBase& b) const; #endif #ifndef EIGEN_PARSED_BY_DOXYGEN template void _solve_impl(const RhsType &rhs, DstType &dst) const; template void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; #endif protected: static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } template void _check_solve_assertion(const Rhs& b) const { EIGEN_ONLY_USED_FOR_DEBUG(b); eigen_assert(m_isInitialized && "SVD is not initialized."); eigen_assert(computeU() && computeV() && "SVDBase::solve(): Both unitaries U and V are required to be computed (thin unitaries suffice)."); eigen_assert((Transpose_?cols():rows())==b.rows() && "SVDBase::solve(): invalid number of rows of the right hand side matrix b"); } // return true if already allocated bool allocate(Index rows, Index cols, unsigned int computationOptions) ; MatrixUType m_matrixU; MatrixVType m_matrixV; SingularValuesType m_singularValues; bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; bool m_computeFullU, m_computeThinU; bool m_computeFullV, m_computeThinV; unsigned int m_computationOptions; Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; RealScalar m_prescribedThreshold; /** \brief Default Constructor. * * Default constructor of SVDBase */ SVDBase() : m_isInitialized(false), m_isAllocated(false), m_usePrescribedThreshold(false), m_computeFullU(false), m_computeThinU(false), m_computeFullV(false), m_computeThinV(false), m_computationOptions(0), m_rows(-1), m_cols(-1), m_diagSize(0) { check_template_parameters(); } }; #ifndef EIGEN_PARSED_BY_DOXYGEN template template void SVDBase::_solve_impl(const RhsType &rhs, DstType &dst) const { // A = U S V^* // So A^{-1} = V S^{-1} U^* Matrix tmp; Index l_rank = rank(); tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs; tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; dst = m_matrixV.leftCols(l_rank) * tmp; } template template void SVDBase::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const { // A = U S V^* // So A^{-*} = U S^{-1} V^* // And A^{-T} = U_conj S^{-1} V^T Matrix tmp; Index l_rank = rank(); tmp.noalias() = m_matrixV.leftCols(l_rank).transpose().template conjugateIf() * rhs; tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; dst = m_matrixU.template conjugateIf().leftCols(l_rank) * tmp; } #endif template bool SVDBase::allocate(Index rows, Index cols, unsigned int computationOptions) { eigen_assert(rows >= 0 && cols >= 0); if (m_isAllocated && rows == m_rows && cols == m_cols && computationOptions == m_computationOptions) { return true; } m_rows = rows; m_cols = cols; m_isInitialized = false; m_isAllocated = true; m_computationOptions = computationOptions; m_computeFullU = (computationOptions & ComputeFullU) != 0; m_computeThinU = (computationOptions & ComputeThinU) != 0; m_computeFullV = (computationOptions & ComputeFullV) != 0; m_computeThinV = (computationOptions & ComputeThinV) != 0; eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); m_diagSize = (std::min)(m_rows, m_cols); m_singularValues.resize(m_diagSize); if(RowsAtCompileTime==Dynamic) m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); if(ColsAtCompileTime==Dynamic) m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); return false; } }// end namespace #endif // EIGEN_SVDBASE_H