# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Logging and debugging utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import traceback # TODO(mdan): Use a custom logger class. from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import tf_export VERBOSITY_VAR_NAME = 'AUTOGRAPH_VERBOSITY' DEFAULT_VERBOSITY = 0 verbosity_level = None # vlog-like. Takes precedence over the env variable. echo_log_to_stdout = False # In interactive Python, logging echo is enabled by default. if hasattr(sys, 'ps1') or hasattr(sys, 'ps2'): echo_log_to_stdout = True @tf_export('autograph.set_verbosity') def set_verbosity(level, alsologtostdout=False): """Sets the AutoGraph verbosity level. _Debug logging in AutoGraph_ More verbose logging is useful to enable when filing bug reports or doing more in-depth debugging. There are two means to control the logging verbosity: * The `set_verbosity` function * The `AUTOGRAPH_VERBOSITY` environment variable `set_verbosity` takes precedence over the environment variable. For example: ```python import os import tensorflow as tf os.environ['AUTOGRAPH_VERBOSITY'] = 5 # Verbosity is now 5 tf.autograph.set_verbosity(0) # Verbosity is now 0 os.environ['AUTOGRAPH_VERBOSITY'] = 1 # No effect, because set_verbosity was already called. ``` Logs entries are output to [absl](https://abseil.io)'s [default output](https://abseil.io/docs/python/guides/logging), with `INFO` level. Logs can be mirrored to stdout by using the `alsologtostdout` argument. Mirroring is enabled by default when Python runs in interactive mode. Args: level: int, the verbosity level; larger values specify increased verbosity; 0 means no logging. When reporting bugs, it is recommended to set this value to a larger number, like 10. alsologtostdout: bool, whether to also output log messages to `sys.stdout`. """ global verbosity_level global echo_log_to_stdout verbosity_level = level echo_log_to_stdout = alsologtostdout @tf_export('autograph.trace') def trace(*args): """Traces argument information at compilation time. `trace` is useful when debugging, and it always executes during the tracing phase, that is, when the TF graph is constructed. _Example usage_ ```python import tensorflow as tf for i in tf.range(10): tf.autograph.trace(i) # Output: ``` Args: *args: Arguments to print to `sys.stdout`. """ print(*args) def get_verbosity(): global verbosity_level if verbosity_level is not None: return verbosity_level return int(os.getenv(VERBOSITY_VAR_NAME, DEFAULT_VERBOSITY)) def has_verbosity(level): return get_verbosity() >= level def _output_to_stdout(msg, *args, **kwargs): print(msg % args) if kwargs.get('exc_info', False): traceback.print_exc() def error(level, msg, *args, **kwargs): if has_verbosity(level): logging.error(msg, *args, **kwargs) if echo_log_to_stdout: _output_to_stdout('ERROR: ' + msg, *args, **kwargs) def log(level, msg, *args, **kwargs): if has_verbosity(level): logging.info(msg, *args, **kwargs) if echo_log_to_stdout: _output_to_stdout(msg, *args, **kwargs) def warn(msg, *args, **kwargs): logging.warn(msg, *args, **kwargs) if echo_log_to_stdout: _output_to_stdout('WARNING: ' + msg, *args, **kwargs) sys.stdout.flush()