# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Miscellaneous utilities that don't fit anywhere else.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import math_ops def alias_tensors(*args): """Wraps any Tensor arguments with an identity op. Any other argument, including Variables, is returned unchanged. Args: *args: Any arguments. Must contain at least one element. Returns: Same as *args, with Tensor instances replaced as described. Raises: ValueError: If args doesn't meet the requirements. """ def alias_if_tensor(a): return array_ops.identity(a) if isinstance(a, ops.Tensor) else a # TODO(mdan): Recurse into containers? # TODO(mdan): Anything we can do about variables? Fake a scope reuse? if len(args) > 1: return (alias_if_tensor(a) for a in args) elif len(args) == 1: return alias_if_tensor(args[0]) raise ValueError('at least one argument required') def get_range_len(start, limit, delta): dist = ops.convert_to_tensor(limit - start) unadjusted_len = dist // delta adjustment = math_ops.cast( gen_math_ops.not_equal(dist % delta, array_ops.zeros_like(unadjusted_len)), dist.dtype) final_len = unadjusted_len + adjustment return gen_math_ops.maximum(final_len, array_ops.zeros_like(final_len))