# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Counter Dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python import tf2 from tensorflow.python.data.experimental.ops import scan_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.util.tf_export import tf_export @tf_export("data.experimental.Counter", v1=[]) def CounterV2(start=0, step=1, dtype=dtypes.int64): """Creates a `Dataset` that counts from `start` in steps of size `step`. For example: ```python Dataset.count() == [0, 1, 2, ...) Dataset.count(2) == [2, 3, ...) Dataset.count(2, 5) == [2, 7, 12, ...) Dataset.count(0, -1) == [0, -1, -2, ...) Dataset.count(10, -1) == [10, 9, ...) ``` Args: start: (Optional.) The starting value for the counter. Defaults to 0. step: (Optional.) The step size for the counter. Defaults to 1. dtype: (Optional.) The data type for counter elements. Defaults to `tf.int64`. Returns: A `Dataset` of scalar `dtype` elements. """ with ops.name_scope("counter"): start = ops.convert_to_tensor(start, dtype=dtype, name="start") step = ops.convert_to_tensor(step, dtype=dtype, name="step") return dataset_ops.Dataset.from_tensors(0).repeat(None).apply( scan_ops.scan(start, lambda state, _: (state + step, state))) @tf_export(v1=["data.experimental.Counter"]) def CounterV1(start=0, step=1, dtype=dtypes.int64): return dataset_ops.DatasetV1Adapter(CounterV2(start, step, dtype)) CounterV1.__doc__ = CounterV2.__doc__ if tf2.enabled(): Counter = CounterV2 else: Counter = CounterV1