# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Code for backpropagation using the tape utilities.""" # TODO(b/159343581): Properly support CompositeTensor in all functions in this # file. from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import operator import sys import six from tensorflow.python import pywrap_tfe from tensorflow.python import _pywrap_utils from tensorflow.python.eager import backprop_util from tensorflow.python.eager import context from tensorflow.python.eager import execute from tensorflow.python.eager import imperative_grad from tensorflow.python.eager import tape from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_util from tensorflow.python.ops import default_gradient from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops.unconnected_gradients import UnconnectedGradients from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest from tensorflow.python.util import tf_contextlib from tensorflow.python.util import tf_inspect from tensorflow.python.util.lazy_loader import LazyLoader from tensorflow.python.util.tf_export import tf_export # Note that we need to lazy load the following two modules to avoid creating # circular dependencies. # TODO(b/119775953): fix the circular dependencies. pfor_ops = LazyLoader( "pfor_ops", globals(), "tensorflow.python.ops.parallel_for.control_flow_ops") np_arrays = LazyLoader( "np_arrays", globals(), "tensorflow.python.ops.numpy_ops.np_arrays") function = LazyLoader("function", globals(), "tensorflow.python.eager.function") _op_attr_type_cache = {} def op_attr_type(op_type, attr_name): try: return _op_attr_type_cache[(op_type, attr_name)] except KeyError: context.ensure_initialized() h = context.context()._handle # pylint: disable=protected-access attr_type = pywrap_tfe.TFE_OpNameGetAttrType(h, op_type, attr_name) _op_attr_type_cache[(op_type, attr_name)] = attr_type return attr_type def make_attr(attr_type, value): # pybind11 enums do not return the raw value like SWIG enums do. They are # useful when comparing amongst each other but not direct integers as we are # doing in most tests. # https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types # TODO(amitpatankar): After all SWIG transitions, convert the enum comparisons # from integer value to class. if attr_type == int(pywrap_tfe.TF_ATTR_TYPE): return dtypes.as_dtype(value) if attr_type == [int(pywrap_tfe.TF_ATTR_TYPE)]: return [dtypes.as_dtype(v) for v in value] if attr_type == int(pywrap_tfe.TF_ATTR_SHAPE): return tensor_shape.as_shape(value).as_proto() if attr_type == [int(pywrap_tfe.TF_ATTR_SHAPE)]: return [tensor_shape.as_shape(v).as_proto() for v in value] if isinstance(value, str): return value.encode() return value class _MockOp(object): """Pretends to be a tf.Operation for the gradient functions.""" def __init__(self, attrs, inputs, outputs, typ, skip_input_indices): self.attrs = attrs self.inputs = inputs self.outputs = outputs self.type = typ self.skip_input_indices = skip_input_indices def get_attr(self, attr): typ = op_attr_type(self.type, attr) for i in range(0, len(self.attrs), 2): if self.attrs[i] == attr: return make_attr(typ, self.attrs[i + 1]) raise KeyError(attr) def _get_control_flow_context(self): raise NotImplementedError( "tf.GradientTape.gradients() does not support graph control flow " "operations like tf.cond or tf.while at this time. Use tf.gradients() " "instead. If you need this feature, please file a feature request at " "https://github.com/tensorflow/tensorflow/issues/new" ) def _gradient_function(op_name, attr_tuple, num_inputs, inputs, outputs, out_grads, skip_input_indices, forward_pass_name_scope): """Calls the gradient function of the op. Args: op_name: the name of the op to be differentiated. attr_tuple: the attrs, as a tuple. num_inputs: the number of inputs to the op. inputs: inputs to the original operation. outputs: outputs to the original operation. out_grads: gradients of the operation wrt its outputs. skip_input_indices: a tuple that is passed to the gradient function, indicating which inputs to skip calculating the gradient for forward_pass_name_scope: the namescope of the op in the forward pass. Returns: The gradients with respect to the inputs of the function, as a list. """ mock_op = _MockOp(attr_tuple, inputs, outputs, op_name, skip_input_indices) grad_fn = ops._gradient_registry.lookup(op_name) # pylint: disable=protected-access if grad_fn is None: return [None] * num_inputs # This does not work with v1 TensorArrays. if ops.executing_eagerly_outside_functions( ) or control_flow_util.EnableControlFlowV2(ops.get_default_graph()): gradient_name_scope = "gradient_tape/" if forward_pass_name_scope: gradient_name_scope += forward_pass_name_scope + "/" with ops.name_scope(gradient_name_scope): return grad_fn(mock_op, *out_grads) else: return grad_fn(mock_op, *out_grads) pywrap_tfe.TFE_Py_RegisterGradientFunction(_gradient_function) def _must_record_gradient(): return not pywrap_tfe.TFE_Py_TapeSetIsEmpty() def _record_gradient(op_name, inputs, attrs, results): return pywrap_tfe.TFE_Py_RecordGradient(op_name, inputs, attrs, results, ops.get_name_scope()) execute.must_record_gradient = _must_record_gradient execute.record_gradient = _record_gradient def implicit_val_and_grad(f): """Returns a function which differentiates f with respect to variables. The wrapped function returns the value and the gradient of f when called with the same arguments. The gradient is with respect to all trainable TFE variables accessed by `f`. This function is useful when the exact set of variables to differentiate with is not known ahead of time. Example: ```python dense_layer = tf.compat.v1.layers.Dense(1) def loss(x, y): return tf.reduce_sum(tf.square(dense_layer(x) - y)) # Obtain the gradient function. val_grad_fn = tfe.implicit_value_and_gradients(loss) # Invoke the gradient function with concrete values of x and y. x = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) y = tf.constant([[10.0], [20.0]]) value, grads_and_vars = val_grad_fn(x, y) print('Value of loss: %s' % value) # Apply the gradients to Variables. optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) optimizer.apply_gradients(grads_and_vars) ``` Args: f: function to be differentiated. If `f` returns a scalar, this scalar will be differentiated. If `f` returns a tensor or list of tensors, by default a scalar will be computed by adding all their values to produce a single scalar. Returns: A function which, when called, returns a tuple pair. Its first element is the value to which the function evaluates. Its second element is list of (gradient, variable) pairs. Raises: ValueError: if `f` returns None. """ # TODO(cais): Remove calls to tf.constant() once the gradients functions # accept lists and np.ndarrays. def grad_fn(*args, **kwds): """Computes the gradient of the wrapped function.""" this_tape = tape.push_new_tape() try: end_node = f(*args, **kwds) if end_node is None: raise ValueError("Cannot differentiate a function that returns None; " "did you forget to return a value from {}?".format( f.__name__)) finally: tape.pop_tape(this_tape) # Note: variables are returned in construction order. This ensures unique # order across executions. variables = this_tape.watched_variables() if not variables: raise ValueError("No trainable variables were accessed while the " "function was being computed.") sources = [v.handle for v in variables] for s in sources: if getattr(s, "is_packed", False): raise ValueError( "GradientTape.gradient is not supported on packed EagerTensors yet." ) grad = imperative_grad.imperative_grad(this_tape, nest.flatten(end_node), sources) return end_node, list(zip(grad, variables)) return grad_fn def implicit_grad(f): """Returns a function which differentiates f with respect to variables. The wrapped function returns the gradient of f when called with the same arguments. The gradient is with respect to all trainable TFE variables accessed by `f`. This function is useful when the exact set of variables to differentiate with is not known ahead of time. Example: ```python dense_layer = tf.compat.v1.layers.Dense(1) def loss(x, y): return tf.reduce_sum(tf.square(dense_layer(x) - y)) # Obtain the gradient function. grad_fn = tfe.implicit_gradients(loss) # Invoke the gradient function with concrete values of x and y. x = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) y = tf.constant([[10.0], [20.0]]) grads_and_vars = grad_fn(x, y) # Apply the gradients to Variables. optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.1) optimizer.apply_gradients(grads_and_vars) ``` Args: f: function to be differentiated. If `f` returns a scalar, this scalar will be differentiated. If `f` returns a tensor or list of tensors, by default a scalar will be computed by adding all their values to produce a single scalar. Returns: A function which, when called, returns a list of (gradient, variable) pairs. """ # TODO(cais): Remove calls to tf.constant() once the gradients functions # accept lists and np.ndarrays. def grad_fn(*args, **kwds): """Computes the gradient of the wrapped function.""" return implicit_val_and_grad(f)(*args, **kwds)[1] return grad_fn def _get_arg_spec(f, params, param_args): """The positions of the parameters of f to be differentiated in param_args.""" try: args = tf_inspect.getfullargspec(f).args except TypeError as e: # TypeError can happen when f is a callable object. if params is None: return range(len(param_args)) elif all(isinstance(x, int) for x in params): return params raise ValueError("Either callable provided is not a function or could not " "inspect its arguments by name: %s. Original error: %s" % (f, e)) if params is None: if not args: return range(len(param_args)) if args[0] == "self": return range(len(args) - 1) else: return range(len(args)) elif all(isinstance(x, six.string_types) for x in params): return [args.index(n) for n in params] elif all(isinstance(x, int) for x in params): return params else: raise ValueError( "params must be all strings or all integers; got %s." % params) def gradients_function(f, params=None): """Returns a function which differentiates f with respect to params. Example: ```python # f(x, y) = (x ^ 3) * y - x * (y ^ 2) # Therefore, the 1st order derivatives are: # df / dx = 3 * (x ^ 2) * y - y ^ 2 # df / dy = x ^ 3 - 2 * x * y # The 2nd order derivatives with respect to x is: # d^2 f / (dx)^2 = 6 * x * y def f(x, y): return x * x * x * y - x * y * y # Obtain a function that returns 1st order gradients. grad_fn = tfe.gradients_function(f) x = 2.0 y = 3.0 # Invoke the 1st order gradient function. x_grad, y_grad = grad_fn(x, y) assert x_grad.numpy() == 3 * (2 ** 2) * 3 - 3 ** 2 assert y_grad.numpy() == (2 ** 3) - 2 * 2 * 3 # Obtain a function that returns the 2nd order gradient with respect to x. gradgrad_fn = tfe.gradients_function(lambda x, y: grad_fn(x, y)[0]) # Invoke the 2nd order gradient function. x_gradgrad = gradgrad_fn(x, y)[0] assert x_gradgrad.numpy() == 6 * 2 * 3 # To obtain a callable that returns the gradient(s) of `f` with respect to a # subset of its inputs, use the `params` keyword argument with # `gradients_function()`. ygrad_fn = tfe.gradients_function(f, params=[1]) (y_grad,) = ygrad_fn(x, y) assert y_grad.numpy() == (2 ** 3) - 2 * 2 * 3 ``` Note that only tensors with real or complex dtypes are differentiable. Args: f: function to be differentiated. If `f` returns a scalar, this scalar will be differentiated. If `f` returns a tensor or list of tensors, by default a scalar will be computed by adding all their values to produce a single scalar. If desired, the tensors can be elementwise multiplied by the tensors passed as the `dy` keyword argument to the returned gradient function. params: list of parameter names of f or list of integers indexing the parameters with respect to which we'll differentiate. Passing None differentiates with respect to all parameters. Returns: function which, when called, returns the value of f and the gradient of `f` with respect to all of `params`. The function takes an extra optional keyword argument `dy`. Setting it allows computation of vector jacobian products for vectors other than the vector of ones. Raises: ValueError: if the params are not all strings or all integers. """ def decorated(*args, **kwds): """Computes the gradient of the decorated function.""" _, grad = val_and_grad_function(f, params=params)(*args, **kwds) return grad return decorated def _ensure_unique_tensor_objects(parameter_positions, args): """Make each of the parameter_positions in args a unique ops.Tensor object. Ensure that each parameter is treated independently. For example: def f(x, y): return x * y g = gradients_function(f) one = tf.constant(1.) g(one, one) should return [1., 1.] (even though the two arguments are the same Tensor object). Args: parameter_positions: List of indices into args defining the arguments to differentiate against. args: A list of arguments to the function to be differentiated. Returns: args, possibly edited in-place. """ s = set() for (i, t) in enumerate(args): if i in parameter_positions: tid = ops.tensor_id(t) if tid in s: args[i] = gen_array_ops.identity(args[i]) else: s.add(tid) return args def val_and_grad_function(f, params=None): """Returns a function that computes f and its derivative w.r.t. params. Example: ```python # f(x, y) = (x ^ 3) * y - x * (y ^ 2) # Therefore, the 1st order derivatives are: # df / dx = 3 * (x ^ 2) * y - y ^ 2 # df / dy = x ^ 3 - 2 * x * y def f(x, y): return x * x * x * y - x * y * y # Obtain a function that returns the function value and the 1st order # gradients. val_grads_fn = tfe.value_and_gradients_function(f) x = 2.0 y = 3.0 # Invoke the value-and-gradients function. f_val, (x_grad, y_grad) = val_grads_fn(x, y) assert f_val.numpy() == (2 ** 3) * 3 - 2 * (3 ** 2) assert x_grad.numpy() == 3 * (2 ** 2) * 3 - 3 ** 2 assert y_grad.numpy() == (2 ** 3) - 2 * 2 * 3 # To obtain a callable that returns the value of `f` and the gradient(s) of # `f` with respect to a subset of its inputs, use the `params` keyword # argument with `value_and_gradients_function()`. val_ygrad_fn = tfe.value_and_gradients_function(f, params=[1]) f_val, (y_grad,) = val_ygrad_fn(x, y) assert f_val.numpy() == (2 ** 3) * 3 - 2 * (3 ** 2) assert y_grad.numpy() == (2 ** 3) - 2 * 2 * 3 ``` Args: f: function to be differentiated. If `f` returns a scalar, this scalar will be differentiated. If `f` returns a tensor or list of tensors, by default a scalar will be computed by adding all their values to produce a single scalar. If desired, the tensors can be elementwise multiplied by the tensors passed as the `dy` keyword argument to the returned gradient function. params: list of parameter names of f or list of integers indexing the parameters with respect to which we'll differentiate. Passing `None` differentiates with respect to all parameters. Returns: function which, when called, returns the value of f and the gradient of f with respect to all of `params`. The function takes an extra optional keyword argument "dy". Setting it allows computation of vector jacobian products for vectors other than the vector of ones. Raises: ValueError: if the params are not all strings or all integers. """ def decorated(*args, **kwds): """Computes the value and gradient of the decorated function.""" dy = kwds.pop("dy", None) if kwds: raise ValueError("Functions to be differentiated cannot " "receive keyword arguments.") val, vjp = make_vjp(f, params)(*args, **kwds) return val, vjp(dy=dy) return decorated def make_vjp(f, params=None, persistent=True): """Returns a function that computes f and its vjp w.r.t. params. The term "vjp" here is an abbreviation for vector-jacobian product. Args: f: the function to be differentiated. params: the parameters (numbers or names) to differentiate with respect to. A value of None will differentiate with respect to all parameters. persistent: Boolean controlling whether the VJP function can be re-used. Must be True or False. Returns: A function, which when called, returns a tuple (value, vjp), where: - value is the result of calling f. - vjp is a function, which takes a vector as an argument and returns the product of that vector with the Jacobian of f. Providing no argument to vjp is equivalent to providing a vector of ones. For example, ```python def f(x): return x * x wrapped_fn = tfe.make_vjp(f) result, vjp = wrapped_fn(tf.constant(3.0)) # result is 9.0 vjp() # the vjp function returns 6.0 Raises: ValueError: if `f` returns None. """ def decorated(*args, **kwds): """Computes the value and gradient of the decorated function.""" parameter_positions = _get_arg_spec(f, params, args) assert not kwds, "The gradient function can't take keyword arguments." this_tape = tape.push_new_tape(persistent=persistent) try: sources = [] args = [ ops.convert_to_tensor(arg) if i in parameter_positions else arg for i, arg in enumerate(args) ] args = _ensure_unique_tensor_objects(parameter_positions, args) for i in parameter_positions: if getattr(args[i], "is_packed", False): raise ValueError( "GradientTape.gradient is not supported on packed EagerTensors" "yet.") sources.append(args[i]) tape.watch(this_tape, args[i]) result = f(*args) if result is None: raise ValueError("Cannot differentiate a function that returns None; " "did you forget to return a value from {}?".format( f.__name__)) flat_result = nest.flatten(result) flat_result = [gen_array_ops.identity(x) for x in flat_result] result = nest.pack_sequence_as(result, flat_result) finally: tape.pop_tape(this_tape) def vjp(dy=None): if dy is not None: dy = [ops.convert_to_tensor(x) for x in nest.flatten(dy)] return imperative_grad.imperative_grad( this_tape, nest.flatten(result), sources, output_gradients=dy) return result, vjp return decorated def flatten_nested_indexed_slices(grad): assert isinstance(grad, ops.IndexedSlices) if isinstance(grad.values, ops.Tensor): return grad else: assert isinstance(grad.values, ops.IndexedSlices) g = flatten_nested_indexed_slices(grad.values) return ops.IndexedSlices(g.values, array_ops.gather(grad.indices, g.indices), g.dense_shape) def aggregate_indexed_slices_gradients(grads): """Aggregates gradients containing `IndexedSlices`s.""" if len(grads) < 1: return None if len(grads) == 1: return grads[0] grads = [g for g in grads if g is not None] # If any gradient is a `Tensor`, sum them up and return a dense tensor # object. if any(isinstance(g, ops.Tensor) for g in grads): return math_ops.add_n(grads) # The following `_as_indexed_slices_list` casts ids of IndexedSlices into # int64. It is to make sure the inputs of `concat` all have same the data # type. grads = math_ops._as_indexed_slices_list(grads) # pylint: disable=protected-access grads = [flatten_nested_indexed_slices(x) for x in grads] # Form IndexedSlices out of the concatenated values and indices. concat_grad = ops.IndexedSlices( array_ops.concat([x.values for x in grads], axis=0), array_ops.concat([x.indices for x in grads], axis=0), grads[0].dense_shape) return concat_grad def _aggregate_grads(gradients): """Aggregate gradients from multiple sources. Args: gradients: A list of 'Tensor' or 'IndexedSlices' gradients. Returns: If 'gradients' only has 'Tensor', returns an aggregated 'Tensor'. Otherwise returns an aggregated 'IndexedSlices'. """ assert gradients, "No gradients to aggregate" if len(gradients) == 1: return gradients[0] if all(isinstance(g, ops.Tensor) for g in gradients): return gen_math_ops.add_n(gradients) else: assert all(isinstance(g, (ops.Tensor, ops.IndexedSlices)) for g in gradients) return aggregate_indexed_slices_gradients(gradients) def _num_elements(grad): """The number of elements in the `grad` tensor.""" if isinstance(grad, ops.Tensor): shape_tuple = grad._shape_tuple() # pylint: disable=protected-access elif isinstance(grad, ops.IndexedSlices): shape_tuple = grad.values._shape_tuple() # pylint: disable=protected-access else: raise ValueError("`grad` not a Tensor or IndexedSlices.") if shape_tuple is None or None in shape_tuple: return 0 return functools.reduce(operator.mul, shape_tuple, 1) def _fast_fill(value, shape, dtype): return array_ops.fill( constant_op.constant(shape, dtype=dtypes.int32), constant_op.constant(value, dtype=dtype)) def _zeros(shape, dtype): """Helper to return (possibly cached) zero tensors in eager mode.""" # Note: variants will use _zeros_like if dtype == dtypes.string or dtype == dtypes.resource: return None ctx = context.context() if not ctx.executing_eagerly(): return array_ops.zeros(shape, dtype) device = ctx.device_name if tensor_util.is_tensor(shape): shape_key = shape.ref() else: shape_key = shape cache_key = shape_key, dtype, device cached = ctx.zeros_cache().get(cache_key) if cached is None: if dtypes.as_dtype(dtype).is_bool: value = False else: value = 0 cached = _fast_fill(value, shape, dtype) ctx.zeros_cache().put(cache_key, cached) return cached def _ones(shape, dtype): as_dtype = dtypes.as_dtype(dtype) if as_dtype == dtypes.string: return None if not context.executing_eagerly(): return array_ops.ones(shape, dtype) if as_dtype.is_bool: value = True else: value = 1 if shape == (): # pylint: disable=g-explicit-bool-comparison return constant_op.constant(value, dtype=dtype) return _fast_fill(value, shape, dtype) _default_vspace = imperative_grad.VSpace( num_elements_fn=_num_elements, aggregate_fn=_aggregate_grads, zeros_fn=_zeros, ones_fn=_ones, zeros_like_fn=default_gradient.zeros_like, ones_like_fn=default_gradient.ones_like, graph_shape_fn=gen_array_ops.shape) pywrap_tfe.TFE_Py_RegisterVSpace(_default_vspace) def _handle_or_self(x): """Unwrap resource variable/ndarray to return tensors.""" if resource_variable_ops.is_resource_variable(x): return x.handle if isinstance(x, np_arrays.ndarray): return x.data return x @tf_export("GradientTape", "autodiff.GradientTape", v1=["GradientTape"]) class GradientTape(object): """Record operations for automatic differentiation. Operations are recorded if they are executed within this context manager and at least one of their inputs is being "watched". Trainable variables (created by `tf.Variable` or `tf.compat.v1.get_variable`, where `trainable=True` is default in both cases) are automatically watched. Tensors can be manually watched by invoking the `watch` method on this context manager. For example, consider the function `y = x * x`. The gradient at `x = 3.0` can be computed as: >>> x = tf.constant(3.0) >>> with tf.GradientTape() as g: ... g.watch(x) ... y = x * x >>> dy_dx = g.gradient(y, x) >>> print(dy_dx) tf.Tensor(6.0, shape=(), dtype=float32) GradientTapes can be nested to compute higher-order derivatives. For example, >>> x = tf.constant(5.0) >>> with tf.GradientTape() as g: ... g.watch(x) ... with tf.GradientTape() as gg: ... gg.watch(x) ... y = x * x ... dy_dx = gg.gradient(y, x) # dy_dx = 2 * x >>> d2y_dx2 = g.gradient(dy_dx, x) # d2y_dx2 = 2 >>> print(dy_dx) tf.Tensor(10.0, shape=(), dtype=float32) >>> print(d2y_dx2) tf.Tensor(2.0, shape=(), dtype=float32) By default, the resources held by a GradientTape are released as soon as GradientTape.gradient() method is called. To compute multiple gradients over the same computation, create a persistent gradient tape. This allows multiple calls to the gradient() method as resources are released when the tape object is garbage collected. For example: >>> x = tf.constant(3.0) >>> with tf.GradientTape(persistent=True) as g: ... g.watch(x) ... y = x * x ... z = y * y >>> dz_dx = g.gradient(z, x) # (4*x^3 at x = 3) >>> print(dz_dx) tf.Tensor(108.0, shape=(), dtype=float32) >>> dy_dx = g.gradient(y, x) >>> print(dy_dx) tf.Tensor(6.0, shape=(), dtype=float32) By default GradientTape will automatically watch any trainable variables that are accessed inside the context. If you want fine grained control over which variables are watched you can disable automatic tracking by passing `watch_accessed_variables=False` to the tape constructor: >>> x = tf.Variable(2.0) >>> w = tf.Variable(5.0) >>> with tf.GradientTape( ... watch_accessed_variables=False, persistent=True) as tape: ... tape.watch(x) ... y = x ** 2 # Gradients will be available for `x`. ... z = w ** 3 # No gradients will be available as `w` isn't being watched. >>> dy_dx = tape.gradient(y, x) >>> print(dy_dx) tf.Tensor(4.0, shape=(), dtype=float32) >>> # No gradients will be available as `w` isn't being watched. >>> dz_dy = tape.gradient(z, w) >>> print(dz_dy) None Note that when using models you should ensure that your variables exist when using `watch_accessed_variables=False`. Otherwise it's quite easy to make your first iteration not have any gradients: ```python a = tf.keras.layers.Dense(32) b = tf.keras.layers.Dense(32) with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(a.variables) # Since `a.build` has not been called at this point # `a.variables` will return an empty list and the # tape will not be watching anything. result = b(a(inputs)) tape.gradient(result, a.variables) # The result of this computation will be # a list of `None`s since a's variables # are not being watched. ``` Note that only tensors with real or complex dtypes are differentiable. """ def __init__(self, persistent=False, watch_accessed_variables=True): """Creates a new GradientTape. Args: persistent: Boolean controlling whether a persistent gradient tape is created. False by default, which means at most one call can be made to the gradient() method on this object. watch_accessed_variables: Boolean controlling whether the tape will automatically `watch` any (trainable) variables accessed while the tape is active. Defaults to True meaning gradients can be requested from any result computed in the tape derived from reading a trainable `Variable`. If False users must explicitly `watch` any `Variable`s they want to request gradients from. """ self._tape = None self._persistent = persistent self._watch_accessed_variables = watch_accessed_variables self._watched_variables = () self._recording = False self._created_eagerly = context.executing_eagerly() if self._created_eagerly: context.ensure_initialized() context.context().start_step() def __enter__(self): """Enters a context inside which operations are recorded on this tape.""" self._push_tape() return self def __exit__(self, typ, value, traceback): """Exits the recording context, no further operations are traced.""" if self._recording: self._pop_tape() def _push_tape(self): """Pushes a new tape onto the tape stack.""" if self._recording: raise ValueError("Tape is still recording, This can happen if you try to " "re-enter an already-active tape.") if self._tape is None: self._tape = tape.push_new_tape( persistent=self._persistent, watch_accessed_variables=self._watch_accessed_variables) else: tape.push_tape(self._tape) self._recording = True def _pop_tape(self): if not self._recording: raise ValueError("Tape is not recording.") tape.pop_tape(self._tape) self._recording = False def __del__(self): if self._created_eagerly: try: context.context().end_step() except AttributeError: pass except TypeError: pass def watch(self, tensor): """Ensures that `tensor` is being traced by this tape. Args: tensor: a Tensor or list of Tensors. Raises: ValueError: if it encounters something that is not a tensor. """ for t in nest.flatten(tensor, expand_composites=True): if not (_pywrap_utils.IsTensor(t) or _pywrap_utils.IsVariable(t)): raise ValueError("Passed in object of type {}, not tf.Tensor".format( type(t))) if not backprop_util.IsTrainable(t): logging.log_first_n( logging.WARN, "The dtype of the watched tensor must be " "floating (e.g. tf.float32), got %r", 5, t.dtype) if hasattr(t, "handle"): # There are many variable-like objects, all of them currently have # `handle` attribute that points to a tensor. If this changes, internals # of watch_variable need to change as well. tape.watch_variable(self._tape, t) else: tape.watch(self._tape, t) @tf_contextlib.contextmanager def stop_recording(self): """Temporarily stops recording operations on this tape. Operations executed while this context manager is active will not be recorded on the tape. This is useful for reducing the memory used by tracing all computations. For example: >>> x = tf.constant(4.0) >>> with tf.GradientTape() as tape: ... with tape.stop_recording(): ... y = x ** 2 >>> dy_dx = tape.gradient(y, x) >>> print(dy_dx) None Yields: None Raises: RuntimeError: if the tape is not currently recording. """ if self._tape is None: raise RuntimeError( "Trying to stop recording a tape which is not recording.") self._pop_tape() try: yield finally: self._push_tape() def reset(self): """Clears all information stored in this tape. Equivalent to exiting and reentering the tape context manager with a new tape. For example, the two following code blocks are equivalent: ``` with tf.GradientTape() as t: loss = loss_fn() with tf.GradientTape() as t: loss += other_loss_fn() t.gradient(loss, ...) # Only differentiates other_loss_fn, not loss_fn # The following is equivalent to the above with tf.GradientTape() as t: loss = loss_fn() t.reset() loss += other_loss_fn() t.gradient(loss, ...) # Only differentiates other_loss_fn, not loss_fn ``` This is useful if you don't want to exit the context manager for the tape, or can't because the desired reset point is inside a control flow construct: ``` with tf.GradientTape() as t: loss = ... if loss > k: t.reset() ``` """ self._pop_tape() self._tape = None self._push_tape() def watched_variables(self): """Returns variables watched by this tape in order of construction.""" if self._tape is not None: self._watched_variables = self._tape.watched_variables() return self._watched_variables def gradient(self, target, sources, output_gradients=None, unconnected_gradients=UnconnectedGradients.NONE): """Computes the gradient using operations recorded in context of this tape. Note: Unless you set `persistent=True` a GradientTape can only be used to compute one set of gradients (or jacobians). Args: target: a list or nested structure of Tensors or Variables to be differentiated. sources: a list or nested structure of Tensors or Variables. `target` will be differentiated against elements in `sources`. output_gradients: a list of gradients, one for each element of target. Defaults to None. unconnected_gradients: a value which can either hold 'none' or 'zero' and alters the value which will be returned if the target and sources are unconnected. The possible values and effects are detailed in 'UnconnectedGradients' and it defaults to 'none'. Returns: a list or nested structure of Tensors (or IndexedSlices, or None), one for each element in `sources`. Returned structure is the same as the structure of `sources`. Raises: RuntimeError: If called on a used, non-persistent tape. RuntimeError: If called inside the context of the tape. ValueError: If the target is a variable or if unconnected gradients is called with an unknown value. """ if self._tape is None: raise RuntimeError("A non-persistent GradientTape can only be used to" "compute one set of gradients (or jacobians)") if self._recording: if not self._persistent: self._pop_tape() else: logging.log_first_n( logging.WARN, "Calling GradientTape.gradient on a persistent " "tape inside its context is significantly less " "efficient than calling it outside the context (it " "causes the gradient ops to be recorded on the " "tape, leading to increased CPU and memory usage). " "Only call GradientTape.gradient inside the " "context if you actually want to trace the " "gradient in order to compute higher order " "derivatives.", 1) num_ndarrays = 0 flat_targets = [] for t in nest.flatten(target): if not backprop_util.IsTrainable(t): logging.vlog( logging.WARN, "The dtype of the target tensor must be " "floating (e.g. tf.float32) when calling GradientTape.gradient, " "got %r", t.dtype) if resource_variable_ops.is_resource_variable(t): with self: t = ops.convert_to_tensor(t) elif isinstance(t, np_arrays.ndarray): t = t.data num_ndarrays += 1 flat_targets.append(t) # Only rewrap if all targets are ndarray. If not, prefer tensors. rewrap_as_ndarray = num_ndarrays == len(flat_targets) flat_sources = nest.flatten(sources) flat_sources_raw = flat_sources flat_sources = [_handle_or_self(x) for x in flat_sources] for t in flat_sources_raw: if not backprop_util.IsTrainable(t): logging.vlog( logging.WARN, "The dtype of the source tensor must be " "floating (e.g. tf.float32) when calling GradientTape.gradient, " "got %r", t.dtype) if getattr(t, "is_packed", False): raise ValueError( "GradientTape.gradient is not supported on packed EagerTensors yet." ) if output_gradients is not None: output_gradients = [None if x is None else ops.convert_to_tensor(x) for x in nest.flatten(output_gradients)] flat_grad = imperative_grad.imperative_grad( self._tape, flat_targets, flat_sources, output_gradients=output_gradients, sources_raw=flat_sources_raw, unconnected_gradients=unconnected_gradients) if not self._persistent: # Keep track of watched variables before setting tape to None self._watched_variables = self._tape.watched_variables() self._tape = None if rewrap_as_ndarray: def _tensor_to_ndarray(x): if x is not None: return np_arrays.tensor_to_ndarray(x) return None flat_grad = nest.map_structure(_tensor_to_ndarray, flat_grad) grad = nest.pack_sequence_as(sources, flat_grad) return grad def jacobian(self, target, sources, unconnected_gradients=UnconnectedGradients.NONE, parallel_iterations=None, experimental_use_pfor=True): """Computes the jacobian using operations recorded in context of this tape. Note: Unless you set `persistent=True` a GradientTape can only be used to compute one set of gradients (or jacobians). See[wikipedia article](http://en.wikipedia.org/wiki/jacobian_matrix_and_determinant) for the definition of a Jacobian. Example usage: ```python with tf.GradientTape() as g: x = tf.constant([1.0, 2.0]) g.watch(x) y = x * x jacobian = g.jacobian(y, x) # jacobian value is [[2., 0.], [0., 4.]] ``` Args: target: Tensor to be differentiated. sources: a list or nested structure of Tensors or Variables. `target` will be differentiated against elements in `sources`. unconnected_gradients: a value which can either hold 'none' or 'zero' and alters the value which will be returned if the target and sources are unconnected. The possible values and effects are detailed in 'UnconnectedGradients' and it defaults to 'none'. parallel_iterations: A knob to control how many iterations are dispatched in parallel. This knob can be used to control the total memory usage. experimental_use_pfor: If true, vectorizes the jacobian computation. Else falls back to a sequential while_loop. Vectorization can sometimes fail or lead to excessive memory usage. This option can be used to disable vectorization in such cases. Returns: A list or nested structure of Tensors (or None), one for each element in `sources`. Returned structure is the same as the structure of `sources`. Note if any gradient is sparse (IndexedSlices), jacobian function currently makes it dense and returns a Tensor instead. This may change in the future. Raises: RuntimeError: If called on a used, non-persistent tape. RuntimeError: If called on a non-persistent tape with eager execution enabled and without enabling experimental_use_pfor. ValueError: If vectorization of jacobian computation fails. """ if self._tape is None: raise RuntimeError("A non-persistent GradientTape can only be used to" "compute one set of gradients (or jacobians)") flat_sources = nest.flatten(sources) rewrap_as_ndarray = False if isinstance(target, np_arrays.ndarray): target = target.data rewrap_as_ndarray = True target_static_shape = target.shape target_shape = array_ops.shape(target) # Note that we push and pop the tape here and below. This is needed since we # need gradients through the enclosed operations. self._push_tape() target = array_ops.reshape(target, [-1]) self._pop_tape() def loop_fn(i): self._push_tape() y = array_ops.gather(target, i) self._pop_tape() return self.gradient(y, flat_sources, unconnected_gradients=unconnected_gradients) try: target_size = int(target.shape[0]) except TypeError: target_size = array_ops.shape(target)[0] if experimental_use_pfor: try: output = pfor_ops.pfor(loop_fn, target_size, parallel_iterations=parallel_iterations) except ValueError as err: six.reraise( ValueError, ValueError( str(err) + "\nEncountered an exception while vectorizing the " "jacobian computation. Vectorization can be disabled by setting" " experimental_use_pfor to False."), sys.exc_info()[2]) else: if context.executing_eagerly() and not self._persistent: raise RuntimeError( "GradientTape must be created with persistent=True" " to compute the jacobian with eager execution enabled and with " " experimental_use_pfor set to False.") output = pfor_ops.for_loop( loop_fn, [target.dtype] * len(flat_sources), target_size, parallel_iterations=parallel_iterations) for i, out in enumerate(output): if out is not None: new_shape = array_ops.concat( [target_shape, array_ops.shape(out)[1:]], axis=0) out = array_ops.reshape(out, new_shape) if context.executing_eagerly(): out.set_shape(target_static_shape.concatenate(flat_sources[i].shape)) if rewrap_as_ndarray: out = np_arrays.tensor_to_ndarray(out) output[i] = out return nest.pack_sequence_as(sources, output) def batch_jacobian(self, target, source, unconnected_gradients=UnconnectedGradients.NONE, parallel_iterations=None, experimental_use_pfor=True): """Computes and stacks per-example jacobians. See [wikipedia article](http://en.wikipedia.org/wiki/jacobian_matrix_and_determinant) for the definition of a Jacobian. This function is essentially an efficient implementation of the following: `tf.stack([self.jacobian(y[i], x[i]) for i in range(x.shape[0])])`. Note that compared to `GradientTape.jacobian` which computes gradient of each output value w.r.t each input value, this function is useful when `target[i,...]` is independent of `source[j,...]` for `j != i`. This assumption allows more efficient computation as compared to `GradientTape.jacobian`. The output, as well as intermediate activations, are lower dimensional and avoid a bunch of redundant zeros which would result in the jacobian computation given the independence assumption. Note: Unless you set `persistent=True` a GradientTape can only be used to compute one set of gradients (or jacobians). Example usage: ```python with tf.GradientTape() as g: x = tf.constant([[1., 2.], [3., 4.]], dtype=tf.float32) g.watch(x) y = x * x batch_jacobian = g.batch_jacobian(y, x) # batch_jacobian is [[[2, 0], [0, 4]], [[6, 0], [0, 8]]] ``` Args: target: A tensor with rank 2 or higher and with shape [b, y1, ..., y_n]. `target[i,...]` should only depend on `source[i,...]`. source: A tensor with rank 2 or higher and with shape [b, x1, ..., x_m]. unconnected_gradients: a value which can either hold 'none' or 'zero' and alters the value which will be returned if the target and sources are unconnected. The possible values and effects are detailed in 'UnconnectedGradients' and it defaults to 'none'. parallel_iterations: A knob to control how many iterations are dispatched in parallel. This knob can be used to control the total memory usage. experimental_use_pfor: If true, uses pfor for computing the Jacobian. Else uses a tf.while_loop. Returns: A tensor `t` with shape [b, y_1, ..., y_n, x1, ..., x_m] where `t[i, ...]` is the jacobian of `target[i, ...]` w.r.t. `source[i, ...]`, i.e. stacked per-example jacobians. Raises: RuntimeError: If called on a used, non-persistent tape. RuntimeError: If called on a non-persistent tape with eager execution enabled and without enabling experimental_use_pfor. ValueError: If vectorization of jacobian computation fails or if first dimension of `target` and `source` do not match. """ if self._tape is None: raise RuntimeError("A non-persistent GradientTape can only be used to" "compute one set of gradients (or jacobians)") rewrap_as_ndarray = False if isinstance(target, np_arrays.ndarray): target = target.data rewrap_as_ndarray = True if isinstance(source, np_arrays.ndarray): source = source.data target_shape = target.shape if target_shape.rank is None: dim = tensor_shape.Dimension(None) else: dim = target_shape.dims[0] if not (target_shape.with_rank_at_least(2) and source.shape.with_rank_at_least(2) and dim.is_compatible_with(source.shape[0])): raise ValueError( "Need first dimension of target shape (%s) and " "source shape (%s) to match." % (target.shape, source.shape)) if target_shape.is_fully_defined(): batch_size = int(target_shape[0]) target_row_size = target_shape.num_elements() // batch_size else: target_shape = array_ops.shape(target) batch_size = target_shape[0] target_row_size = array_ops.size(target) // batch_size source_shape = array_ops.shape(source) # Flatten target to 2-D. # Note that we push and pop the tape here and below. This is needed since we # need gradients through the enclosed operations. self._push_tape() with ops.control_dependencies( [check_ops.assert_equal(batch_size, source_shape[0])]): target = array_ops.reshape(target, [batch_size, target_row_size]) self._pop_tape() def loop_fn(i): self._push_tape() y = array_ops.gather(target, i, axis=1) self._pop_tape() return self.gradient(y, source, unconnected_gradients=unconnected_gradients) if experimental_use_pfor: try: output = pfor_ops.pfor(loop_fn, target_row_size, parallel_iterations=parallel_iterations) except ValueError as err: six.reraise( ValueError, ValueError( str(err) + "\nEncountered an exception while vectorizing the " "batch_jacobian computation. Vectorization can be disabled by " "setting experimental_use_pfor to False."), sys.exc_info()[2]) else: if context.executing_eagerly() and not self._persistent: raise RuntimeError( "GradientTape must be created with persistent=True" " to compute the batch_jacobian with eager execution enabled and " " with experimental_use_pfor set to False.") output = pfor_ops.for_loop(loop_fn, target.dtype, target_row_size, parallel_iterations=parallel_iterations) new_shape = array_ops.concat([target_shape, source_shape[1:]], axis=0) if output is None: output = array_ops.zeros(new_shape) if rewrap_as_ndarray: output = np_arrays.tensor_to_ndarray(output) return output else: output = array_ops.reshape(output, [target_row_size, batch_size, -1]) output = array_ops.transpose(output, [1, 0, 2]) output = array_ops.reshape(output, new_shape) if rewrap_as_ndarray: output = np_arrays.tensor_to_ndarray(output) return output