# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Contains the InputSpec class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import zip # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.keras import backend from tensorflow.python.util import nest from tensorflow.python.util.tf_export import keras_export from tensorflow.python.util.tf_export import tf_export @keras_export('keras.layers.InputSpec') @tf_export(v1=['layers.InputSpec']) class InputSpec(object): """Specifies the rank, dtype and shape of every input to a layer. Layers can expose (if appropriate) an `input_spec` attribute: an instance of `InputSpec`, or a nested structure of `InputSpec` instances (one per input tensor). These objects enable the layer to run input compatibility checks for input structure, input rank, input shape, and input dtype. A None entry in a shape is compatible with any dimension, a None shape is compatible with any shape. Arguments: dtype: Expected DataType of the input. shape: Shape tuple, expected shape of the input (may include None for unchecked axes). Includes the batch size. ndim: Integer, expected rank of the input. max_ndim: Integer, maximum rank of the input. min_ndim: Integer, minimum rank of the input. axes: Dictionary mapping integer axes to a specific dimension value. allow_last_axis_squeeze: If True, then allow inputs of rank N+1 as long as the last axis of the input is 1, as well as inputs of rank N-1 as long as the last axis of the spec is 1. name: Expected key corresponding to this input when passing data as a dictionary. Example: ```python class MyLayer(Layer): def __init__(self): super(MyLayer, self).__init__() # The layer will accept inputs with shape (?, 28, 28) & (?, 28, 28, 1) # and raise an appropriate error message otherwise. self.input_spec = InputSpec( shape=(None, 28, 28, 1), allow_last_axis_squeeze=True) ``` """ def __init__(self, dtype=None, shape=None, ndim=None, max_ndim=None, min_ndim=None, axes=None, allow_last_axis_squeeze=False, name=None): self.dtype = dtypes.as_dtype(dtype).name if dtype is not None else None shape = tensor_shape.TensorShape(shape) if shape.rank is None: shape = None else: shape = tuple(shape.as_list()) if shape is not None: self.ndim = len(shape) self.shape = shape else: self.ndim = ndim self.shape = None self.max_ndim = max_ndim self.min_ndim = min_ndim self.name = name self.allow_last_axis_squeeze = allow_last_axis_squeeze try: axes = axes or {} self.axes = {int(k): axes[k] for k in axes} except (ValueError, TypeError): raise TypeError('The keys in axes must be integers.') if self.axes and (self.ndim is not None or self.max_ndim is not None): max_dim = (self.ndim if self.ndim else self.max_ndim) - 1 max_axis = max(self.axes) if max_axis > max_dim: raise ValueError('Axis {} is greater than the maximum allowed value: {}' .format(max_axis, max_dim)) def __repr__(self): spec = [('dtype=' + str(self.dtype)) if self.dtype else '', ('shape=' + str(self.shape)) if self.shape else '', ('ndim=' + str(self.ndim)) if self.ndim else '', ('max_ndim=' + str(self.max_ndim)) if self.max_ndim else '', ('min_ndim=' + str(self.min_ndim)) if self.min_ndim else '', ('axes=' + str(self.axes)) if self.axes else ''] return 'InputSpec(%s)' % ', '.join(x for x in spec if x) def get_config(self): return { 'dtype': self.dtype, 'shape': self.shape, 'ndim': self.ndim, 'max_ndim': self.max_ndim, 'min_ndim': self.min_ndim, 'axes': self.axes} @classmethod def from_config(cls, config): return cls(**config) def to_tensor_shape(spec): """Returns a tf.TensorShape object that matches the shape specifications. If the InputSpec's shape or ndim is defined, this method will return a fully or partially-known shape. Otherwise, the returned TensorShape is None. Args: spec: an InputSpec object. Returns: a tf.TensorShape object """ if spec.ndim is None and spec.shape is None: return tensor_shape.TensorShape(None) elif spec.shape is not None: return tensor_shape.TensorShape(spec.shape) else: shape = [None] * spec.ndim for a in spec.axes: shape[a] = spec.axes[a] # Assume that axes is defined return tensor_shape.TensorShape(shape) def assert_input_compatibility(input_spec, inputs, layer_name): """Checks compatibility between the layer and provided inputs. This checks that the tensor(s) `inputs` verify the input assumptions of a layer (if any). If not, a clear and actional exception gets raised. Arguments: input_spec: An InputSpec instance, list of InputSpec instances, a nested structure of InputSpec instances, or None. inputs: Input tensor, list of input tensors, or a nested structure of input tensors. layer_name: String, name of the layer (for error message formatting). Raises: ValueError: in case of mismatch between the provided inputs and the expectations of the layer. """ if not input_spec: return input_spec = nest.flatten(input_spec) if isinstance(inputs, dict): # Flatten `inputs` by reference order if input spec names are provided names = [spec.name for spec in input_spec] if all(names): list_inputs = [] for name in names: if name not in inputs: raise ValueError('Missing data for input "%s". ' 'You passed a data dictionary with keys %s. ' 'Expected the following keys: %s' % (name, list(inputs.keys()), names)) list_inputs.append(inputs[name]) inputs = list_inputs inputs = nest.flatten(inputs) for x in inputs: # Having a shape/dtype is the only commonality of the various tensor-like # objects that may be passed. The most common kind of invalid type we are # guarding for is a Layer instance (Functional API), which does not # have a `shape` attribute. if not hasattr(x, 'shape'): raise TypeError('Inputs to a layer should be tensors. Got: %s' % (x,)) if len(inputs) != len(input_spec): raise ValueError('Layer ' + layer_name + ' expects ' + str(len(input_spec)) + ' input(s), ' 'but it received ' + str(len(inputs)) + ' input tensors. Inputs received: ' + str(inputs)) for input_index, (x, spec) in enumerate(zip(inputs, input_spec)): if spec is None: continue shape = tensor_shape.TensorShape(x.shape) if shape.rank is None: return # Check ndim. if spec.ndim is not None and not spec.allow_last_axis_squeeze: ndim = shape.rank if ndim != spec.ndim: raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: ' 'expected ndim=' + str(spec.ndim) + ', found ndim=' + str(ndim) + '. Full shape received: ' + str(tuple(shape))) if spec.max_ndim is not None: ndim = x.shape.rank if ndim is not None and ndim > spec.max_ndim: raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: ' 'expected max_ndim=' + str(spec.max_ndim) + ', found ndim=' + str(ndim)) if spec.min_ndim is not None: ndim = x.shape.rank if ndim is not None and ndim < spec.min_ndim: raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: ' ': expected min_ndim=' + str(spec.min_ndim) + ', found ndim=' + str(ndim) + '. Full shape received: ' + str(tuple(shape))) # Check dtype. if spec.dtype is not None: if x.dtype.name != spec.dtype: raise ValueError('Input ' + str(input_index) + ' of layer ' + layer_name + ' is incompatible with the layer: ' 'expected dtype=' + str(spec.dtype) + ', found dtype=' + str(x.dtype)) # Check specific shape axes. shape_as_list = shape.as_list() if spec.axes: for axis, value in spec.axes.items(): if hasattr(value, 'value'): value = value.value if value is not None and shape_as_list[int(axis)] not in {value, None}: raise ValueError( 'Input ' + str(input_index) + ' of layer ' + layer_name + ' is' ' incompatible with the layer: expected axis ' + str(axis) + ' of input shape to have value ' + str(value) + ' but received input with shape ' + display_shape(x.shape)) # Check shape. if spec.shape is not None and shape.rank is not None: spec_shape = spec.shape if spec.allow_last_axis_squeeze: if shape_as_list and shape_as_list[-1] == 1: shape_as_list = shape_as_list[:-1] if spec_shape and spec_shape[-1] == 1: spec_shape = spec_shape[:-1] for spec_dim, dim in zip(spec_shape, shape_as_list): if spec_dim is not None and dim is not None: if spec_dim != dim: raise ValueError('Input ' + str(input_index) + ' is incompatible with layer ' + layer_name + ': expected shape=' + str(spec.shape) + ', found shape=' + display_shape(x.shape)) def display_shape(shape): return str(tuple(shape.as_list())) def to_tensor_spec(input_spec, default_dtype=None): """Converts a Keras InputSpec object to a TensorSpec.""" default_dtype = default_dtype or backend.floatx() if isinstance(input_spec, InputSpec): dtype = input_spec.dtype or default_dtype return tensor_spec.TensorSpec(to_tensor_shape(input_spec), dtype) return tensor_spec.TensorSpec(None, default_dtype)