# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Built-in linear model classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import activations from tensorflow.python.keras import initializers from tensorflow.python.keras import regularizers from tensorflow.python.keras.engine import base_layer from tensorflow.python.keras.engine import input_spec from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import core from tensorflow.python.ops import nn from tensorflow.python.util.tf_export import keras_export @keras_export('keras.experimental.LinearModel') class LinearModel(training.Model): r"""Linear Model for regression and classification problems. This model approximates the following function: $$y = \beta + \sum_{i=1}^{N} w_{i} * x_{i}$$ where $$\beta$$ is the bias and $$w_{i}$$ is the weight for each feature. Example: ```python model = LinearModel() model.compile(optimizer='sgd', loss='mse') model.fit(x, y, epochs=epochs) ``` This model accepts sparse float inputs as well: Example: ```python model = LinearModel() opt = tf.keras.optimizers.Adam() loss_fn = tf.keras.losses.MeanSquaredError() with tf.GradientTape() as tape: output = model(sparse_input) loss = tf.reduce_mean(loss_fn(target, output)) grads = tape.gradient(loss, model.weights) opt.apply_gradients(zip(grads, model.weights)) ``` """ def __init__(self, units=1, activation=None, use_bias=True, kernel_initializer='zeros', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, **kwargs): """Create a Linear Model. Args: units: Positive integer, output dimension without the batch size. activation: Activation function to use. If you don't specify anything, no activation is applied. use_bias: whether to calculate the bias/intercept for this model. If set to False, no bias/intercept will be used in calculations, e.g., the data is already centered. kernel_initializer: Initializer for the `kernel` weights matrices. bias_initializer: Initializer for the bias vector. kernel_regularizer: regularizer for kernel vectors. bias_regularizer: regularizer for bias vector. **kwargs: The keyword arguments that are passed on to BaseLayer.__init__. """ self.units = units self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) super(LinearModel, self).__init__(**kwargs) base_layer.keras_premade_model_gauge.get_cell('Linear').set(True) def build(self, input_shape): if isinstance(input_shape, dict): names = sorted(list(input_shape.keys())) self.input_specs = [] self.dense_layers = [] for name in names: shape = input_shape[name] layer = core.Dense( units=self.units, use_bias=False, kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer, name=name) layer.build(shape) self.input_specs.append( input_spec.InputSpec(shape=shape, name=name)) self.dense_layers.append(layer) elif isinstance(input_shape, (tuple, list)) and all( isinstance(shape, tensor_shape.TensorShape) for shape in input_shape): self.dense_layers = [] for shape in input_shape: layer = core.Dense( units=self.units, use_bias=False, kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer) layer.build(shape) self.dense_layers.append(layer) else: # input_shape can be a single TensorShape or a tuple of ints. layer = core.Dense( units=self.units, use_bias=False, kernel_initializer=self.kernel_initializer, kernel_regularizer=self.kernel_regularizer) layer.build(input_shape) self.dense_layers = [layer] if self.use_bias: self.bias = self.add_weight( 'bias', shape=self.units, initializer=self.bias_initializer, regularizer=self.bias_regularizer, dtype=self.dtype, trainable=True) else: self.bias = None self.built = True def call(self, inputs): result = None if isinstance(inputs, dict): names = [layer.name for layer in self.dense_layers] different_keys = set(names) - set(inputs.keys()) if different_keys: raise ValueError( 'The input dictionary does not match ' 'the structure expected by the model.' '\n\tExpected keys: {}' '\n\tReceived keys: {}' '\n\tMissing keys: {}'.format(set(names), set(inputs.keys()), different_keys)) inputs = [inputs[name] for name in names] for inp, layer in zip(inputs, self.dense_layers): output = layer(inp) if result is None: result = output else: result += output elif isinstance(inputs, (tuple, list)): for inp, layer in zip(inputs, self.dense_layers): output = layer(inp) if result is None: result = output else: result += output else: result = self.dense_layers[0](inputs) if self.use_bias: result = nn.bias_add(result, self.bias) if self.activation is not None: return self.activation(result) # pylint: disable=not-callable return result def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), } base_config = base_layer.Layer.get_config(self) return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): del custom_objects return cls(**config)