# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities used by convolution layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from six.moves import range # pylint: disable=redefined-builtin from tensorflow.python.keras import backend def convert_data_format(data_format, ndim): if data_format == 'channels_last': if ndim == 3: return 'NWC' elif ndim == 4: return 'NHWC' elif ndim == 5: return 'NDHWC' else: raise ValueError('Input rank not supported:', ndim) elif data_format == 'channels_first': if ndim == 3: return 'NCW' elif ndim == 4: return 'NCHW' elif ndim == 5: return 'NCDHW' else: raise ValueError('Input rank not supported:', ndim) else: raise ValueError('Invalid data_format:', data_format) def normalize_tuple(value, n, name): """Transforms a single integer or iterable of integers into an integer tuple. Arguments: value: The value to validate and convert. Could an int, or any iterable of ints. n: The size of the tuple to be returned. name: The name of the argument being validated, e.g. "strides" or "kernel_size". This is only used to format error messages. Returns: A tuple of n integers. Raises: ValueError: If something else than an int/long or iterable thereof was passed. """ if isinstance(value, int): return (value,) * n else: try: value_tuple = tuple(value) except TypeError: raise ValueError('The `' + name + '` argument must be a tuple of ' + str(n) + ' integers. Received: ' + str(value)) if len(value_tuple) != n: raise ValueError('The `' + name + '` argument must be a tuple of ' + str(n) + ' integers. Received: ' + str(value)) for single_value in value_tuple: try: int(single_value) except (ValueError, TypeError): raise ValueError('The `' + name + '` argument must be a tuple of ' + str(n) + ' integers. Received: ' + str(value) + ' ' 'including element ' + str(single_value) + ' of type' + ' ' + str(type(single_value))) return value_tuple def conv_output_length(input_length, filter_size, padding, stride, dilation=1): """Determines output length of a convolution given input length. Arguments: input_length: integer. filter_size: integer. padding: one of "same", "valid", "full", "causal" stride: integer. dilation: dilation rate, integer. Returns: The output length (integer). """ if input_length is None: return None assert padding in {'same', 'valid', 'full', 'causal'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if padding in ['same', 'causal']: output_length = input_length elif padding == 'valid': output_length = input_length - dilated_filter_size + 1 elif padding == 'full': output_length = input_length + dilated_filter_size - 1 return (output_length + stride - 1) // stride def conv_input_length(output_length, filter_size, padding, stride): """Determines input length of a convolution given output length. Arguments: output_length: integer. filter_size: integer. padding: one of "same", "valid", "full". stride: integer. Returns: The input length (integer). """ if output_length is None: return None assert padding in {'same', 'valid', 'full'} if padding == 'same': pad = filter_size // 2 elif padding == 'valid': pad = 0 elif padding == 'full': pad = filter_size - 1 return (output_length - 1) * stride - 2 * pad + filter_size def deconv_output_length(input_length, filter_size, padding, output_padding=None, stride=0, dilation=1): """Determines output length of a transposed convolution given input length. Arguments: input_length: Integer. filter_size: Integer. padding: one of `"same"`, `"valid"`, `"full"`. output_padding: Integer, amount of padding along the output dimension. Can be set to `None` in which case the output length is inferred. stride: Integer. dilation: Integer. Returns: The output length (integer). """ assert padding in {'same', 'valid', 'full'} if input_length is None: return None # Get the dilated kernel size filter_size = filter_size + (filter_size - 1) * (dilation - 1) # Infer length if output padding is None, else compute the exact length if output_padding is None: if padding == 'valid': length = input_length * stride + max(filter_size - stride, 0) elif padding == 'full': length = input_length * stride - (stride + filter_size - 2) elif padding == 'same': length = input_length * stride else: if padding == 'same': pad = filter_size // 2 elif padding == 'valid': pad = 0 elif padding == 'full': pad = filter_size - 1 length = ((input_length - 1) * stride + filter_size - 2 * pad + output_padding) return length def normalize_data_format(value): if value is None: value = backend.image_data_format() data_format = value.lower() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('The `data_format` argument must be one of ' '"channels_first", "channels_last". Received: ' + str(value)) return data_format def normalize_padding(value): if isinstance(value, (list, tuple)): return value padding = value.lower() if padding not in {'valid', 'same', 'causal'}: raise ValueError('The `padding` argument must be a list/tuple or one of ' '"valid", "same" (or "causal", only for `Conv1D). ' 'Received: ' + str(padding)) return padding def conv_kernel_mask(input_shape, kernel_shape, strides, padding): """Compute a mask representing the connectivity of a convolution operation. Assume a convolution with given parameters is applied to an input having N spatial dimensions with `input_shape = (d_in1, ..., d_inN)` to produce an output with shape `(d_out1, ..., d_outN)`. This method returns a boolean array of shape `(d_in1, ..., d_inN, d_out1, ..., d_outN)` with `True` entries indicating pairs of input and output locations that are connected by a weight. Example: >>> input_shape = (4,) >>> kernel_shape = (2,) >>> strides = (1,) >>> padding = "valid" >>> conv_kernel_mask(input_shape, kernel_shape, strides, padding) array([[ True, False, False], [ True, True, False], [False, True, True], [False, False, True]]) where rows and columns correspond to inputs and outputs respectively. Args: input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the input. kernel_shape: tuple of size N, spatial shape of the convolutional kernel / receptive field. strides: tuple of size N, strides along each spatial dimension. padding: type of padding, string `"same"` or `"valid"`. `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. Returns: A boolean 2N-D `np.ndarray` of shape `(d_in1, ..., d_inN, d_out1, ..., d_outN)`, where `(d_out1, ..., d_outN)` is the spatial shape of the output. `True` entries in the mask represent pairs of input-output locations that are connected by a weight. Raises: ValueError: if `input_shape`, `kernel_shape` and `strides` don't have the same number of dimensions. NotImplementedError: if `padding` is not in {`"same"`, `"valid"`}. """ if padding not in {'same', 'valid'}: raise NotImplementedError('Padding type %s not supported. ' 'Only "valid" and "same" ' 'are implemented.' % padding) in_dims = len(input_shape) if isinstance(kernel_shape, int): kernel_shape = (kernel_shape,) * in_dims if isinstance(strides, int): strides = (strides,) * in_dims kernel_dims = len(kernel_shape) stride_dims = len(strides) if kernel_dims != in_dims or stride_dims != in_dims: raise ValueError('Number of strides, input and kernel dimensions must all ' 'match. Received: %d, %d, %d.' % (stride_dims, in_dims, kernel_dims)) output_shape = conv_output_shape(input_shape, kernel_shape, strides, padding) mask_shape = input_shape + output_shape mask = np.zeros(mask_shape, np.bool) output_axes_ticks = [range(dim) for dim in output_shape] for output_position in itertools.product(*output_axes_ticks): input_axes_ticks = conv_connected_inputs(input_shape, kernel_shape, output_position, strides, padding) for input_position in itertools.product(*input_axes_ticks): mask[input_position + output_position] = True return mask def conv_kernel_idxs(input_shape, kernel_shape, strides, padding, filters_in, filters_out, data_format): """Yields output-input tuples of indices in a CNN layer. The generator iterates over all `(output_idx, input_idx)` tuples, where `output_idx` is an integer index in a flattened tensor representing a single output image of a convolutional layer that is connected (via the layer weights) to the respective single input image at `input_idx` Example: >>> input_shape = (2, 2) >>> kernel_shape = (2, 1) >>> strides = (1, 1) >>> padding = "valid" >>> filters_in = 1 >>> filters_out = 1 >>> data_format = "channels_last" >>> list(conv_kernel_idxs(input_shape, kernel_shape, strides, padding, ... filters_in, filters_out, data_format)) [(0, 0), (0, 2), (1, 1), (1, 3)] Args: input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the input. kernel_shape: tuple of size N, spatial shape of the convolutional kernel / receptive field. strides: tuple of size N, strides along each spatial dimension. padding: type of padding, string `"same"` or `"valid"`. `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. filters_in: `int`, number if filters in the input to the layer. filters_out: `int', number if filters in the output of the layer. data_format: string, "channels_first" or "channels_last". Yields: The next tuple `(output_idx, input_idx)`, where `output_idx` is an integer index in a flattened tensor representing a single output image of a convolutional layer that is connected (via the layer weights) to the respective single input image at `input_idx`. Raises: ValueError: if `data_format` is neither `"channels_last"` nor `"channels_first"`, or if number of strides, input, and kernel number of dimensions do not match. NotImplementedError: if `padding` is neither `"same"` nor `"valid"`. """ if padding not in ('same', 'valid'): raise NotImplementedError('Padding type %s not supported. ' 'Only "valid" and "same" ' 'are implemented.' % padding) in_dims = len(input_shape) if isinstance(kernel_shape, int): kernel_shape = (kernel_shape,) * in_dims if isinstance(strides, int): strides = (strides,) * in_dims kernel_dims = len(kernel_shape) stride_dims = len(strides) if kernel_dims != in_dims or stride_dims != in_dims: raise ValueError('Number of strides, input and kernel dimensions must all ' 'match. Received: %d, %d, %d.' % (stride_dims, in_dims, kernel_dims)) output_shape = conv_output_shape(input_shape, kernel_shape, strides, padding) output_axes_ticks = [range(dim) for dim in output_shape] if data_format == 'channels_first': concat_idxs = lambda spatial_idx, filter_idx: (filter_idx,) + spatial_idx elif data_format == 'channels_last': concat_idxs = lambda spatial_idx, filter_idx: spatial_idx + (filter_idx,) else: raise ValueError('Data format %s not recognized.' '`data_format` must be "channels_first" or ' '"channels_last".' % data_format) for output_position in itertools.product(*output_axes_ticks): input_axes_ticks = conv_connected_inputs(input_shape, kernel_shape, output_position, strides, padding) for input_position in itertools.product(*input_axes_ticks): for f_in in range(filters_in): for f_out in range(filters_out): out_idx = np.ravel_multi_index( multi_index=concat_idxs(output_position, f_out), dims=concat_idxs(output_shape, filters_out)) in_idx = np.ravel_multi_index( multi_index=concat_idxs(input_position, f_in), dims=concat_idxs(input_shape, filters_in)) yield (out_idx, in_idx) def conv_connected_inputs(input_shape, kernel_shape, output_position, strides, padding): """Return locations of the input connected to an output position. Assume a convolution with given parameters is applied to an input having N spatial dimensions with `input_shape = (d_in1, ..., d_inN)`. This method returns N ranges specifying the input region that was convolved with the kernel to produce the output at position `output_position = (p_out1, ..., p_outN)`. Example: >>> input_shape = (4, 4) >>> kernel_shape = (2, 1) >>> output_position = (1, 1) >>> strides = (1, 1) >>> padding = "valid" >>> conv_connected_inputs(input_shape, kernel_shape, output_position, ... strides, padding) [range(1, 3), range(1, 2)] Args: input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the input. kernel_shape: tuple of size N, spatial shape of the convolutional kernel / receptive field. output_position: tuple of size N: `(p_out1, ..., p_outN)`, a single position in the output of the convolution. strides: tuple of size N, strides along each spatial dimension. padding: type of padding, string `"same"` or `"valid"`. `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. Returns: N ranges `[[p_in_left1, ..., p_in_right1], ..., [p_in_leftN, ..., p_in_rightN]]` specifying the region in the input connected to output_position. """ ranges = [] ndims = len(input_shape) for d in range(ndims): left_shift = int(kernel_shape[d] / 2) right_shift = kernel_shape[d] - left_shift center = output_position[d] * strides[d] if padding == 'valid': center += left_shift start = max(0, center - left_shift) end = min(input_shape[d], center + right_shift) ranges.append(range(start, end)) return ranges def conv_output_shape(input_shape, kernel_shape, strides, padding): """Return the output shape of an N-D convolution. Forces dimensions where input is empty (size 0) to remain empty. Args: input_shape: tuple of size N: `(d_in1, ..., d_inN)`, spatial shape of the input. kernel_shape: tuple of size N, spatial shape of the convolutional kernel / receptive field. strides: tuple of size N, strides along each spatial dimension. padding: type of padding, string `"same"` or `"valid"`. `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. Returns: tuple of size N: `(d_out1, ..., d_outN)`, spatial shape of the output. """ dims = range(len(kernel_shape)) output_shape = [ conv_output_length(input_shape[d], kernel_shape[d], padding, strides[d]) for d in dims ] output_shape = tuple( [0 if input_shape[d] == 0 else output_shape[d] for d in dims]) return output_shape