# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Gamma distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export __all__ = [ "Gamma", "GammaWithSoftplusConcentrationRate", ] @tf_export(v1=["distributions.Gamma"]) class Gamma(distribution.Distribution): """Gamma distribution. The Gamma distribution is defined over positive real numbers using parameters `concentration` (aka "alpha") and `rate` (aka "beta"). #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; alpha, beta, x > 0) = x**(alpha - 1) exp(-x beta) / Z Z = Gamma(alpha) beta**(-alpha) ``` where: * `concentration = alpha`, `alpha > 0`, * `rate = beta`, `beta > 0`, * `Z` is the normalizing constant, and, * `Gamma` is the [gamma function]( https://en.wikipedia.org/wiki/Gamma_function). The cumulative density function (cdf) is, ```none cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta x) / Gamma(alpha) ``` where `GammaInc` is the [lower incomplete Gamma function]( https://en.wikipedia.org/wiki/Incomplete_gamma_function). The parameters can be intuited via their relationship to mean and stddev, ```none concentration = alpha = (mean / stddev)**2 rate = beta = mean / stddev**2 = concentration / mean ``` Distribution parameters are automatically broadcast in all functions; see examples for details. Warning: The samples of this distribution are always non-negative. However, the samples that are smaller than `np.finfo(dtype).tiny` are rounded to this value, so it appears more often than it should. This should only be noticeable when the `concentration` is very small, or the `rate` is very large. See note in `tf.random.gamma` docstring. Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in (Figurnov et al., 2018). #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions dist = tfd.Gamma(concentration=3.0, rate=2.0) dist2 = tfd.Gamma(concentration=[3.0, 4.0], rate=[2.0, 3.0]) ``` Compute the gradients of samples w.r.t. the parameters: ```python concentration = tf.constant(3.0) rate = tf.constant(2.0) dist = tfd.Gamma(concentration, rate) samples = dist.sample(5) # Shape [5] loss = tf.reduce_mean(tf.square(samples)) # Arbitrary loss function # Unbiased stochastic gradients of the loss function grads = tf.gradients(loss, [concentration, rate]) ``` References: Implicit Reparameterization Gradients: [Figurnov et al., 2018] (http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients) ([pdf](http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf)) """ @deprecation.deprecated( "2019-01-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.distributions`.", warn_once=True) def __init__(self, concentration, rate, validate_args=False, allow_nan_stats=True, name="Gamma"): """Construct Gamma with `concentration` and `rate` parameters. The parameters `concentration` and `rate` must be shaped in a way that supports broadcasting (e.g. `concentration + rate` is a valid operation). Args: concentration: Floating point tensor, the concentration params of the distribution(s). Must contain only positive values. rate: Floating point tensor, the inverse scale params of the distribution(s). Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if `concentration` and `rate` are different dtypes. """ parameters = dict(locals()) with ops.name_scope(name, values=[concentration, rate]) as name: with ops.control_dependencies([ check_ops.assert_positive(concentration), check_ops.assert_positive(rate), ] if validate_args else []): self._concentration = array_ops.identity( concentration, name="concentration") self._rate = array_ops.identity(rate, name="rate") check_ops.assert_same_float_dtype( [self._concentration, self._rate]) super(Gamma, self).__init__( dtype=self._concentration.dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats, reparameterization_type=distribution.FULLY_REPARAMETERIZED, parameters=parameters, graph_parents=[self._concentration, self._rate], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("concentration", "rate"), ([ops.convert_to_tensor( sample_shape, dtype=dtypes.int32)] * 2))) @property def concentration(self): """Concentration parameter.""" return self._concentration @property def rate(self): """Rate parameter.""" return self._rate def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.concentration), array_ops.shape(self.rate)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.concentration.get_shape(), self.rate.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) @distribution_util.AppendDocstring( """Note: See `tf.random.gamma` docstring for sampling details and caveats.""") def _sample_n(self, n, seed=None): return random_ops.random_gamma( shape=[n], alpha=self.concentration, beta=self.rate, dtype=self.dtype, seed=seed) def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _cdf(self, x): x = self._maybe_assert_valid_sample(x) # Note that igamma returns the regularized incomplete gamma function, # which is what we want for the CDF. return math_ops.igamma(self.concentration, self.rate * x) def _log_unnormalized_prob(self, x): x = self._maybe_assert_valid_sample(x) return math_ops.xlogy(self.concentration - 1., x) - self.rate * x def _log_normalization(self): return (math_ops.lgamma(self.concentration) - self.concentration * math_ops.log(self.rate)) def _entropy(self): return (self.concentration - math_ops.log(self.rate) + math_ops.lgamma(self.concentration) + ((1. - self.concentration) * math_ops.digamma(self.concentration))) def _mean(self): return self.concentration / self.rate def _variance(self): return self.concentration / math_ops.square(self.rate) def _stddev(self): return math_ops.sqrt(self.concentration) / self.rate @distribution_util.AppendDocstring( """The mode of a gamma distribution is `(shape - 1) / rate` when `shape > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is `False`, an exception will be raised rather than returning `NaN`.""") def _mode(self): mode = (self.concentration - 1.) / self.rate if self.allow_nan_stats: nan = array_ops.fill( self.batch_shape_tensor(), np.array(np.nan, dtype=self.dtype.as_numpy_dtype()), name="nan") return array_ops.where_v2(self.concentration > 1., mode, nan) else: return control_flow_ops.with_dependencies([ check_ops.assert_less( array_ops.ones([], self.dtype), self.concentration, message="mode not defined when any concentration <= 1"), ], mode) def _maybe_assert_valid_sample(self, x): check_ops.assert_same_float_dtype(tensors=[x], dtype=self.dtype) if not self.validate_args: return x return control_flow_ops.with_dependencies([ check_ops.assert_positive(x), ], x) class GammaWithSoftplusConcentrationRate(Gamma): """`Gamma` with softplus of `concentration` and `rate`.""" @deprecation.deprecated( "2019-01-01", "Use `tfd.Gamma(tf.nn.softplus(concentration), " "tf.nn.softplus(rate))` instead.", warn_once=True) def __init__(self, concentration, rate, validate_args=False, allow_nan_stats=True, name="GammaWithSoftplusConcentrationRate"): parameters = dict(locals()) with ops.name_scope(name, values=[concentration, rate]) as name: super(GammaWithSoftplusConcentrationRate, self).__init__( concentration=nn.softplus(concentration, name="softplus_concentration"), rate=nn.softplus(rate, name="softplus_rate"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters @kullback_leibler.RegisterKL(Gamma, Gamma) def _kl_gamma_gamma(g0, g1, name=None): """Calculate the batched KL divergence KL(g0 || g1) with g0 and g1 Gamma. Args: g0: instance of a Gamma distribution object. g1: instance of a Gamma distribution object. name: (optional) Name to use for created operations. Default is "kl_gamma_gamma". Returns: kl_gamma_gamma: `Tensor`. The batchwise KL(g0 || g1). """ with ops.name_scope(name, "kl_gamma_gamma", values=[ g0.concentration, g0.rate, g1.concentration, g1.rate]): # Result from: # http://www.fil.ion.ucl.ac.uk/~wpenny/publications/densities.ps # For derivation see: # http://stats.stackexchange.com/questions/11646/kullback-leibler-divergence-between-two-gamma-distributions pylint: disable=line-too-long return (((g0.concentration - g1.concentration) * math_ops.digamma(g0.concentration)) + math_ops.lgamma(g1.concentration) - math_ops.lgamma(g0.concentration) + g1.concentration * math_ops.log(g0.rate) - g1.concentration * math_ops.log(g1.rate) + g0.concentration * (g1.rate / g0.rate - 1.))