# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Laplace distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import special_math from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export __all__ = [ "Laplace", "LaplaceWithSoftplusScale", ] @tf_export(v1=["distributions.Laplace"]) class Laplace(distribution.Distribution): """The Laplace distribution with location `loc` and `scale` parameters. #### Mathematical details The probability density function (pdf) of this distribution is, ```none pdf(x; mu, sigma) = exp(-|x - mu| / sigma) / Z Z = 2 sigma ``` where `loc = mu`, `scale = sigma`, and `Z` is the normalization constant. Note that the Laplace distribution can be thought of two exponential distributions spliced together "back-to-back." The Lpalce distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ Laplace(loc=0, scale=1) Y = loc + scale * X ``` """ @deprecation.deprecated( "2019-01-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.distributions`.", warn_once=True) def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="Laplace"): """Construct Laplace distribution with parameters `loc` and `scale`. The parameters `loc` and `scale` must be shaped in a way that supports broadcasting (e.g., `loc / scale` is a valid operation). Args: loc: Floating point tensor which characterizes the location (center) of the distribution. scale: Positive floating point tensor which characterizes the spread of the distribution. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if `loc` and `scale` are of different dtype. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale]) as name: with ops.control_dependencies([check_ops.assert_positive(scale)] if validate_args else []): self._loc = array_ops.identity(loc, name="loc") self._scale = array_ops.identity(scale, name="scale") check_ops.assert_same_float_dtype([self._loc, self._scale]) super(Laplace, self).__init__( dtype=self._loc.dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc, self._scale], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("loc", "scale"), ([ops.convert_to_tensor( sample_shape, dtype=dtypes.int32)] * 2))) @property def loc(self): """Distribution parameter for the location.""" return self._loc @property def scale(self): """Distribution parameter for scale.""" return self._scale def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.loc), array_ops.shape(self.scale)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.loc.get_shape(), self.scale.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): shape = array_ops.concat([[n], self.batch_shape_tensor()], 0) # Uniform variates must be sampled from the open-interval `(-1, 1)` rather # than `[-1, 1)`. In the case of `(0, 1)` we'd use # `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest, # positive, "normal" number. However, the concept of subnormality exists # only at zero; here we need the smallest usable number larger than -1, # i.e., `-1 + eps/2`. uniform_samples = random_ops.random_uniform( shape=shape, minval=np.nextafter(self.dtype.as_numpy_dtype(-1.), self.dtype.as_numpy_dtype(0.)), maxval=1., dtype=self.dtype, seed=seed) return (self.loc - self.scale * math_ops.sign(uniform_samples) * math_ops.log1p(-math_ops.abs(uniform_samples))) def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _prob(self, x): return math_ops.exp(self._log_prob(x)) def _log_cdf(self, x): return special_math.log_cdf_laplace(self._z(x)) def _log_survival_function(self, x): return special_math.log_cdf_laplace(-self._z(x)) def _cdf(self, x): z = self._z(x) return (0.5 + 0.5 * math_ops.sign(z) * (1. - math_ops.exp(-math_ops.abs(z)))) def _log_unnormalized_prob(self, x): return -math_ops.abs(self._z(x)) def _log_normalization(self): return math.log(2.) + math_ops.log(self.scale) def _entropy(self): # Use broadcasting rules to calculate the full broadcast scale. scale = self.scale + array_ops.zeros_like(self.loc) return math.log(2.) + 1. + math_ops.log(scale) def _mean(self): return self.loc + array_ops.zeros_like(self.scale) def _stddev(self): return math.sqrt(2.) * self.scale + array_ops.zeros_like(self.loc) def _median(self): return self._mean() def _mode(self): return self._mean() def _z(self, x): return (x - self.loc) / self.scale class LaplaceWithSoftplusScale(Laplace): """Laplace with softplus applied to `scale`.""" @deprecation.deprecated( "2019-01-01", "Use `tfd.Laplace(loc, tf.nn.softplus(scale)) " "instead.", warn_once=True) def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="LaplaceWithSoftplusScale"): parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale]) as name: super(LaplaceWithSoftplusScale, self).__init__( loc=loc, scale=nn.softplus(scale, name="softplus_scale"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters