# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python-style indexing and slicing for RaggedTensors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.ragged import ragged_gather_ops from tensorflow.python.ops.ragged import ragged_math_ops from tensorflow.python.ops.ragged import ragged_tensor def ragged_tensor_getitem(self, key): """Returns the specified piece of this RaggedTensor. Supports multidimensional indexing and slicing, with one restriction: indexing into a ragged inner dimension is not allowed. This case is problematic because the indicated value may exist in some rows but not others. In such cases, it's not obvious whether we should (1) report an IndexError; (2) use a default value; or (3) skip that value and return a tensor with fewer rows than we started with. Following the guiding principles of Python ("In the face of ambiguity, refuse the temptation to guess"), we simply disallow this operation. Args: self: The RaggedTensor to slice. key: Indicates which piece of the RaggedTensor to return, using standard Python semantics (e.g., negative values index from the end). `key` may have any of the following types: * `int` constant * Scalar integer `Tensor` * `slice` containing integer constants and/or scalar integer `Tensor`s * `Ellipsis` * `tf.newaxis` * `tuple` containing any of the above (for multidimensional indexing) Returns: A `Tensor` or `RaggedTensor` object. Values that include at least one ragged dimension are returned as `RaggedTensor`. Values that include no ragged dimensions are returned as `Tensor`. See above for examples of expressions that return `Tensor`s vs `RaggedTensor`s. Raises: ValueError: If `key` is out of bounds. ValueError: If `key` is not supported. TypeError: If the indices in `key` have an unsupported type. Examples: >>> # A 2-D ragged tensor with 1 ragged dimension. >>> rt = tf.ragged.constant([['a', 'b', 'c'], ['d', 'e'], ['f'], ['g']]) >>> rt[0].numpy() # First row (1-D `Tensor`) array([b'a', b'b', b'c'], dtype=object) >>> rt[:3].to_list() # First three rows (2-D RaggedTensor) [[b'a', b'b', b'c'], [b'd', b'e'], [b'f']] >>> rt[3, 0].numpy() # 1st element of 4th row (scalar) b'g' >>> # A 3-D ragged tensor with 2 ragged dimensions. >>> rt = tf.ragged.constant([[[1, 2, 3], [4]], ... [[5], [], [6]], ... [[7]], ... [[8, 9], [10]]]) >>> rt[1].to_list() # Second row (2-D RaggedTensor) [[5], [], [6]] >>> rt[3, 0].numpy() # First element of fourth row (1-D Tensor) array([8, 9], dtype=int32) >>> rt[:, 1:3].to_list() # Items 1-3 of each row (3-D RaggedTensor) [[[4]], [[], [6]], [], [[10]]] >>> rt[:, -1:].to_list() # Last item of each row (3-D RaggedTensor) [[[4]], [[6]], [[7]], [[10]]] """ scope_tensors = [self] + list(_tensors_in_key_list(key)) if isinstance(key, (list, tuple)): key = list(key) else: key = [key] with ops.name_scope(None, "RaggedGetItem", scope_tensors): return _ragged_getitem(self, key) def _ragged_getitem(rt_input, key_list): """Helper for indexing and slicing ragged tensors with __getitem__(). Extracts the specified piece of the `rt_input`. See `RaggedTensor.__getitem__` for examples and restrictions. Args: rt_input: The `RaggedTensor` from which a piece should be returned. key_list: The list of keys specifying which piece to return. Each key corresponds with a separate dimension. Returns: The indicated piece of rt_input. Raises: ValueError: If `key_list` is not supported. TypeError: If any keys in `key_list` have an unsupported type. """ if not key_list: return rt_input row_key = key_list[0] inner_keys = key_list[1:] if row_key is Ellipsis: expanded_key_list = _expand_ellipsis(key_list, rt_input.shape.ndims) return _ragged_getitem(rt_input, expanded_key_list) # Adding a new axis: Get rt_input[inner_keys], and wrap it in a RaggedTensor # that puts all values in a single row. if row_key is array_ops.newaxis: inner_rt = _ragged_getitem(rt_input, inner_keys) nsplits = tensor_shape.dimension_at_index(inner_rt.row_splits.shape, 0) if nsplits.value is not None: nsplits = nsplits.value else: nsplits = array_ops.shape(inner_rt.row_splits, out_type=inner_rt.row_splits.dtype)[0] return ragged_tensor.RaggedTensor.from_uniform_row_length( inner_rt, nsplits - 1, nrows=1, validate=False) # Slicing a range of rows: first slice the outer dimension, and then # call `_ragged_getitem_inner_dimensions` to handle the inner keys. if isinstance(row_key, slice): sliced_rt_input = _slice_ragged_row_dimension(rt_input, row_key) if rt_input.uniform_row_length is not None: # If the inner dimension has uniform_row_length, then preserve it (by # re-wrapping the values in a new RaggedTensor). Note that the row # length won't have changed, since we're slicing a range of rows (and not # slicing the rows themselves). sliced_rt_input = ragged_tensor.RaggedTensor.from_uniform_row_length( sliced_rt_input.values, rt_input.uniform_row_length, nrows=sliced_rt_input.nrows()) return _ragged_getitem_inner_dimensions(sliced_rt_input, inner_keys) # Indexing a single row: slice values to get the indicated row, and then # use a recursive call to __getitem__ to handle the inner keys. else: starts = rt_input.row_splits[:-1] limits = rt_input.row_splits[1:] if context.executing_eagerly(): # In python, __getitem__ should throw IndexError for out of bound # indices. This will allow iteration run correctly as python will # translate IndexError into StopIteration for next()/__next__(). # Below is an example: # import tensorflow as tf # r = tf.ragged.constant([[1., 2.], [3., 4., 5.], [6.]]) # for elem in r: # print(elem) # In non eager mode, the exception is thrown when session runs # so we don't know if out of bound happens before. # In eager mode, however, it is possible to find out when to # throw out of bound IndexError. # In the following row_key >= len(starts) is checked. In case of # TypeError which happens when row_key is not an integer, the exception # will simply be ignored as it will be processed later anyway. try: if int(row_key) >= len(starts): raise IndexError("Row key {} out of bounds".format(row_key)) except (TypeError, ValueError): pass row = rt_input.values[starts[row_key]:limits[row_key]] return row.__getitem__(inner_keys) def _slice_ragged_row_dimension(rt_input, row_key): """Slice the outer dimension of `rt_input` according to the given `slice`. Args: rt_input: The `RaggedTensor` to slice. row_key: The `slice` object that should be used to slice `rt_input`. Returns: A `RaggedTensor` containing the indicated slice of `rt_input`. """ if row_key.start is None and row_key.stop is None and row_key.step is None: return rt_input # Use row_key to slice the starts & limits. new_starts = rt_input.row_splits[:-1][row_key] new_limits = rt_input.row_splits[1:][row_key] zero_pad = array_ops.zeros([1], rt_input.row_splits.dtype) # If there's no slice step, then we can just select a single continuous # span of `ragged.values(rt_input)`. if row_key.step is None or row_key.step == 1: # Construct the new splits. If new_starts and new_limits are empty, # then this reduces to [0]. Otherwise, this reduces to: # concat([[new_starts[0]], new_limits]) new_splits = array_ops.concat( [zero_pad[array_ops.size(new_starts):], new_starts[:1], new_limits], axis=0) values_start = new_splits[0] values_limit = new_splits[-1] return ragged_tensor.RaggedTensor.from_row_splits( rt_input.values[values_start:values_limit], new_splits - values_start, validate=False) # If there is a slice step (aka a strided slice), then use ragged_gather to # collect the necessary elements of `ragged.values(rt_input)`. else: return _build_ragged_tensor_from_value_ranges(new_starts, new_limits, 1, rt_input.values) def _ragged_getitem_inner_dimensions(rt_input, key_list): """Retrieve inner dimensions, keeping outermost dimension unchanged. Args: rt_input: The `RaggedTensor` or `Tensor` from which a piece should be extracted. key_list: The __getitem__ keys for slicing the inner dimensions. Returns: A `RaggedTensor`. Raises: ValueError: If key_list is not supported. """ if not key_list: return rt_input if isinstance(rt_input, ops.Tensor): return rt_input.__getitem__([slice(None, None, None)] + key_list) column_key = key_list[0] if column_key is Ellipsis: expanded_key_list = _expand_ellipsis(key_list, rt_input.values.shape.ndims) return _ragged_getitem_inner_dimensions(rt_input, expanded_key_list) # Adding a new axis to a ragged inner dimension: recursively get the inner # dimensions of rt_input with key_list[1:], and then wrap the result in a # RaggedTensor that puts each value in its own row. if column_key is array_ops.newaxis: inner_rt = _ragged_getitem_inner_dimensions(rt_input, key_list[1:]) nsplits = tensor_shape.dimension_at_index(inner_rt.row_splits.shape, 0) if nsplits.value is not None: nsplits = nsplits.value else: nsplits = array_ops.shape(inner_rt.row_splits, out_type=inner_rt.row_splits.dtype)[0] return ragged_tensor.RaggedTensor.from_uniform_row_length( inner_rt, 1, nrows=nsplits - 1, validate=False) # Slicing a range of columns in a ragged inner dimension. We use a # recursive call to process the values, and then assemble a RaggedTensor # with those values. if isinstance(column_key, slice): if (column_key.start is None and column_key.stop is None and column_key.step is None): # Trivial slice: recursively process all values, & splits is unchanged. return rt_input.with_values( _ragged_getitem_inner_dimensions(rt_input.values, key_list[1:])) else: if not (isinstance(column_key.start, (ops.Tensor, int, type(None))) and isinstance(column_key.stop, (ops.Tensor, int, type(None)))): raise TypeError("slice offsets must be integers or None") # Nontrivial slice: use ragged_gather to extract the indicated slice as # a new RaggedTensor (inner_rt), and then recursively process its values. starts = rt_input.row_splits[:-1] limits = rt_input.row_splits[1:] step = 1 if column_key.step is None else column_key.step lower_bound = _if_ge_zero(step, lambda: starts, lambda: starts - 1) upper_bound = _if_ge_zero(step, lambda: limits, lambda: limits - 1) # inner_rt_starts[i] = index to start gathering for row i. if column_key.start is None: inner_rt_starts = _if_ge_zero(step, lambda: starts, lambda: limits - 1) else: start_offset = math_ops.cast(column_key.start, starts.dtype) inner_rt_starts = _if_ge_zero( column_key.start, lambda: math_ops.minimum(starts + start_offset, upper_bound), lambda: math_ops.maximum(limits + start_offset, lower_bound)) # inner_rt_limits[i] = index to stop gathering for row i. if column_key.stop is None: inner_rt_limits = _if_ge_zero(step, lambda: limits, lambda: starts - 1) else: stop_offset = math_ops.cast(column_key.stop, starts.dtype) inner_rt_limits = _if_ge_zero( column_key.stop, lambda: math_ops.minimum(starts + stop_offset, upper_bound), lambda: math_ops.maximum(limits + stop_offset, lower_bound)) inner_rt = _build_ragged_tensor_from_value_ranges( inner_rt_starts, inner_rt_limits, column_key.step, rt_input.values) # If the row dimension is uniform, then calculate the new # uniform_row_length, and rebuild inner_rt using that uniform_row_lengths. if rt_input.uniform_row_length is not None: new_row_length = _slice_length(rt_input.uniform_row_length, column_key) inner_rt = ragged_tensor.RaggedTensor.from_uniform_row_length( inner_rt.values, new_row_length, rt_input.nrows()) return inner_rt.with_values( _ragged_getitem_inner_dimensions(inner_rt.values, key_list[1:])) # Indexing a single column in a ragged inner dimension: raise an Exception. # See RaggedTensor.__getitem__.__doc__ for an explanation of why indexing # into a ragged inner dimension is problematic. if rt_input.uniform_row_length is None: raise ValueError("Cannot index into an inner ragged dimension.") # Indexing a single column in a uniform inner dimension: check that the # given index is in-bounds, and then use a strided slice over rt_input.values # to take the indicated element from each row. row_length = rt_input.uniform_row_length column_key = math_ops.cast(column_key, row_length.dtype) oob_err_msg = "Index out of bounds when indexing into a ragged tensor" oob_checks = [ check_ops.assert_greater_equal( column_key, -row_length, message=oob_err_msg), check_ops.assert_less(column_key, row_length, message=oob_err_msg), ] with ops.control_dependencies(oob_checks): offset = _if_ge_zero(column_key, lambda: column_key, lambda: row_length + column_key) sliced_rt = rt_input.values[offset::row_length] return _ragged_getitem_inner_dimensions(sliced_rt, key_list[1:]) def _slice_length(value_length, slice_key): """Computes the number of elements in a slice of a value with a given length. Returns the equivalent of: `len(range(value_length)[slice_key])` Args: value_length: Scalar int `Tensor`: the length of the value being sliced. slice_key: A `slice` object used to slice elements from the the value. Returns: The number of elements in the sliced value. """ # Note: we could compute the slice length without creating a zeros tensor # with some variant of (stop-start)//step, but doing so would require more # ops (for checking bounds, handling negative indices, negative step sizes, # etc); and we expect this to be an uncommon operation, so we use this # simpler implementation. zeros = array_ops.zeros(value_length, dtype=dtypes.bool) return array_ops.size(zeros[slice_key], out_type=value_length.dtype) def _expand_ellipsis(key_list, num_remaining_dims): """Expands the ellipsis at the start of `key_list`. Assumes that the first element of `key_list` is Ellipsis. This will either remove the Ellipsis (if it corresponds to zero indices) or prepend a new `slice(None, None, None)` (if it corresponds to more than zero indices). Args: key_list: The arguments to `__getitem__()`. num_remaining_dims: The number of dimensions remaining. Returns: A copy of `key_list` with he ellipsis expanded. Raises: ValueError: If ragged_rank.shape.ndims is None IndexError: If there are too many elements in `key_list`. """ if num_remaining_dims is None: raise ValueError("Ellipsis not supported for unknown shape RaggedTensors") num_indices = sum(1 for idx in key_list if idx is not array_ops.newaxis) if num_indices > num_remaining_dims + 1: raise IndexError("Too many indices for RaggedTensor") elif num_indices == num_remaining_dims + 1: return key_list[1:] else: return [slice(None, None, None)] + key_list def _tensors_in_key_list(key_list): """Generates all Tensors in the given slice spec.""" if isinstance(key_list, ops.Tensor): yield key_list if isinstance(key_list, (list, tuple)): for v in key_list: for tensor in _tensors_in_key_list(v): yield tensor if isinstance(key_list, slice): for tensor in _tensors_in_key_list(key_list.start): yield tensor for tensor in _tensors_in_key_list(key_list.stop): yield tensor for tensor in _tensors_in_key_list(key_list.step): yield tensor def _build_ragged_tensor_from_value_ranges(starts, limits, step, values): """Returns a `RaggedTensor` containing the specified sequences of values. Returns a RaggedTensor `output` where: ```python output.shape[0] = starts.shape[0] output[i] = values[starts[i]:limits[i]:step] ``` Requires that `starts.shape == limits.shape` and `0 <= starts[i] <= limits[i] <= values.shape[0]`. Args: starts: 1D integer Tensor specifying the start indices for the sequences of values to include. limits: 1D integer Tensor specifying the limit indices for the sequences of values to include. step: Integer value specifying the step size for strided slices. values: The set of values to select from. Returns: A `RaggedTensor`. Raises: ValueError: Until the prerequisite ops are checked in. """ # Use `ragged_range` to get the index of each value we should include. if step is None: step = 1 step = ops.convert_to_tensor(step, name="step") if step.dtype.is_integer: step = math_ops.cast(step, starts.dtype) else: raise TypeError("slice strides must be integers or None") value_indices = ragged_math_ops.range(starts, limits, step, row_splits_dtype=starts.dtype) # Use `ragged_gather` or `array_ops.gather` to collect the values. if isinstance(values, ragged_tensor.RaggedTensor): gathered_values = ragged_gather_ops.gather( params=values, indices=value_indices.values) else: gathered_values = array_ops.gather( params=values, indices=value_indices.values) # Assemble the RaggedTensor from splits & values. return value_indices.with_values(gathered_values) def _if_ge_zero(value, true_fn, false_fn): """Returns `true_fn() if value >= 0 else false_fn()`.""" # If `value` is statically known, then don't use a control flow op. if isinstance(value, ops.Tensor): const_value = tensor_util.constant_value(value) if const_value is None: return control_flow_ops.cond(value >= 0, true_fn, false_fn) else: value = const_value if value >= 0: return true_fn() else: return false_fn()