# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for generating random numbers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import enum # pylint: disable=g-bad-import-order import numpy as np import six from tensorflow.python.compat import compat from tensorflow.python.distribute import distribution_strategy_context as ds_context from tensorflow.python.eager import context from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import type_spec from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_stateful_random_ops from tensorflow.python.ops import gen_stateless_random_ops_v2 from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.training.tracking import tracking from tensorflow.python.util.tf_export import tf_export # A seed for random ops (stateful and stateless) will always be 1024 # bits, all of which will be sent to the C++ code. The actual C++ # implementation of some algorithms may only use a lower part of the bits. MAX_INT64 = 2**63 - 1 MIN_INT64 = -(2**63) UINT64_SPAN = 2**64 # 'Variable' doesn't support uint32 or uint64 yet (due to reasons explained in # b/111604096 and cl/171681867), so I use signed int here. I choose int64 # instead of int32 here because `VarHandleOp` doesn't support int32 on GPU. SEED_TYPE = "int64" SEED_MIN = MIN_INT64 SEED_MAX = MAX_INT64 SEED_UINT_SPAN = UINT64_SPAN SEED_TYPE_BITS = 64 SEED_BIT_MASK = 0xFFFFFFFFFFFFFFFF SEED_SIZE = 16 # in units of SEED_TYPE STATE_TYPE = SEED_TYPE ALGORITHM_TYPE = STATE_TYPE PHILOX_STATE_SIZE = 3 THREEFRY_STATE_SIZE = 2 @tf_export("random.Algorithm", "random.experimental.Algorithm") class Algorithm(enum.Enum): PHILOX = 1 THREEFRY = 2 RNG_ALG_PHILOX = Algorithm.PHILOX.value RNG_ALG_THREEFRY = Algorithm.THREEFRY.value DEFAULT_ALGORITHM = RNG_ALG_PHILOX def non_deterministic_ints(shape, dtype=dtypes.int64): """Non-deterministically generates some integers. This op may use some OS-provided source of non-determinism (e.g. an RNG), so each execution will give different results. Args: shape: the shape of the result. dtype: (optional) the dtype of the result. Returns: a tensor whose element values are non-deterministically chosen. """ return gen_stateful_random_ops.non_deterministic_ints( shape=shape, dtype=dtype) def _uint_to_int(n): if n > SEED_MAX: n = n - SEED_UINT_SPAN return n def _make_1d_state(state_size, seed): """Makes a 1-D RNG state. Args: state_size: an integer. seed: an integer or 1-D tensor. Returns: a 1-D tensor of shape [state_size] and dtype STATE_TYPE. """ if isinstance(seed, six.integer_types): # chop the Python integer (infinite precision) into chunks of SEED_TYPE ls = [] for _ in range(state_size): ls.append(seed & SEED_BIT_MASK) seed >>= SEED_TYPE_BITS seed = ls # to avoid overflow error from np.asarray seed = list(map(_uint_to_int, seed)) seed = np.asarray(seed, dtype=STATE_TYPE) if len(seed.shape) != 1: raise ValueError( "seed should only have one dimension; got shape: %s" % seed.shape) seed = seed[0:state_size] # Padding with zeros on the *left* if too short. Padding on the right would # cause a small seed to be used as the "counter" while the "key" is always # zero (for counter-based RNG algorithms), because in the current memory # layout counter is stored before key. In such a situation two RNGs with # two different small seeds may generate overlapping outputs. seed_size = seed.shape[0] if seed_size < state_size: seed = np.pad( seed, [(state_size - seed_size, 0)], mode="constant", constant_values=0) assert seed.shape == (state_size,), "Wrong seed.shape: %s" % seed.shape return seed def _get_counter_size(alg): if alg == RNG_ALG_PHILOX: return 2 elif alg == RNG_ALG_THREEFRY: return 1 else: raise ValueError("Unsupported algorithm id: %s" % alg) def _get_state_size(alg): if alg == RNG_ALG_PHILOX: return PHILOX_STATE_SIZE elif alg == RNG_ALG_THREEFRY: return THREEFRY_STATE_SIZE else: raise ValueError("Unsupported algorithm id: %s" % alg) def _check_state_shape(shape, alg): if isinstance(alg, ops.Tensor) and not context.executing_eagerly(): return shape.assert_is_compatible_with([_get_state_size(int(alg))]) def _make_state_from_seed(seed, alg): return _make_1d_state(_get_state_size(alg), seed) def _convert_alg_to_int(alg): """Converts algorithm to an integer. Args: alg: can be one of these types: integer, Algorithm, Tensor, string. Allowed strings are "philox" and "threefry". Returns: An integer, unless the input is a Tensor in which case a Tensor is returned. """ if isinstance(alg, six.integer_types): return alg if isinstance(alg, Algorithm): return alg.value if isinstance(alg, ops.Tensor): return alg if isinstance(alg, str): if alg == "philox": return RNG_ALG_PHILOX elif alg == "threefry": return RNG_ALG_THREEFRY else: raise ValueError("Unknown algorithm name: %s" % alg) else: raise TypeError("Can't convert algorithm %s of type %s to int" % (alg, type(alg))) @tf_export("random.create_rng_state", "random.experimental.create_rng_state") def create_rng_state(seed, alg): """Creates a RNG state from an integer or a vector. Example: >>> tf.random.create_rng_state( ... 1234, "philox") array([1234, 0, 0]) >>> tf.random.create_rng_state( ... [12, 34], "threefry") array([12, 34]) Args: seed: an integer or 1-D numpy array. alg: the RNG algorithm. Can be a string, an `Algorithm` or an integer. Returns: a 1-D numpy array whose size depends on the algorithm. """ alg = _convert_alg_to_int(alg) return _make_state_from_seed(seed, alg) def _shape_tensor(shape): """Convert to an int32 or int64 tensor, defaulting to int64 if empty.""" if isinstance(shape, (tuple, list)) and not shape: dtype = dtypes.int64 else: dtype = None return ops.convert_to_tensor(shape, dtype=dtype, name="shape") def _convert_to_state_tensor(t): if isinstance(t, list): # to avoid out-of-range error from ops.convert_to_tensor t = list(map(_uint_to_int, t)) return ops.convert_to_tensor(t, dtype=STATE_TYPE) class GeneratorSpec(type_spec.TypeSpec): """TypeSpec for Generator.""" def __init__(self, shape=None, dtype=None, alg=None): self.shape = shape self.dtype = dtype self.alg = alg @property def _component_specs(self): return (tensor_spec.TensorSpec(shape=(), dtype=dtypes.resource),) def _to_components(self, value): return (value.state.handle,) def _from_components(self, components): assert isinstance(components, (list, tuple)) assert len(components) == 1 handle = components[0] state_var = resource_variable_ops.BaseResourceVariable( handle=handle, shape=self.shape, dtype=self.dtype, trainable=False, handle_deleter=object(), handle_name="RNGVar") return Generator(state=state_var, alg=self.alg) @property def value_type(self): return Generator def _serialize(self): return (self.shape, self.dtype, self.alg) @tf_export("random.Generator", "random.experimental.Generator") class Generator(tracking.AutoTrackable, composite_tensor.CompositeTensor): """Random-number generator. Example: Creating a generator from a seed: >>> g = tf.random.Generator.from_seed(1234) >>> g.normal(shape=(2, 3)) Creating a generator from a non-deterministic state: >>> g = tf.random.Generator.from_non_deterministic_state() >>> g.normal(shape=(2, 3)) All the constructors allow explicitly choosing an Random-Number-Generation (RNG) algorithm. Supported algorithms are `"philox"` and `"threefry"`. For example: >>> g = tf.random.Generator.from_seed(123, alg="philox") >>> g.normal(shape=(2, 3)) CPU, GPU and TPU with the same algorithm and seed will generate the same integer random numbers. Float-point results (such as the output of `normal`) may have small numerical discrepancies between different devices. This class uses a `tf.Variable` to manage its internal state. Every time random numbers are generated, the state of the generator will change. For example: >>> g = tf.random.Generator.from_seed(1234) >>> g.state >>> g.normal(shape=(2, 3)) <...> >>> g.state The shape of the state is algorithm-specific. There is also a global generator: >>> g = tf.random.get_global_generator() >>> g.normal(shape=(2, 3)) """ def __init__(self, copy_from=None, state=None, alg=None): """Creates a generator. The new generator will be initialized by one of the following ways, with decreasing precedence: (1) If `copy_from` is not None, the new generator is initialized by copying information from another generator. (2) If `state` and `alg` are not None (they must be set together), the new generator is initialized by a state. Args: copy_from: a generator to be copied from. state: a vector of dtype STATE_TYPE representing the initial state of the RNG, whose length and semantics are algorithm-specific. If it's a variable, the generator will reuse it instead of creating a new variable. alg: the RNG algorithm. Possible values are `tf.random.Algorithm.PHILOX` for the Philox algorithm and `tf.random.Algorithm.THREEFRY` for the ThreeFry algorithm (see paper 'Parallel Random Numbers: As Easy as 1, 2, 3' [https://www.thesalmons.org/john/random123/papers/random123sc11.pdf]). The string names `"philox"` and `"threefry"` can also be used. Note `PHILOX` guarantees the same numbers are produced (given the same random state) across all architectures (CPU, GPU, XLA etc). Throws: ValueError: if the generator is created inside a synchronous `tf.distribute` strategy such as `MirroredStrategy` or `TPUStrategy`, because there is ambiguity on how to replicate a generator (e.g. should it be copied so such each replica will get the same random numbers, or should it be "split" into different generators that generate different random numbers). """ if copy_from is not None: # All other arguments should be None assert (alg or state) is None self._state_var = self._create_variable(copy_from.state, dtype=STATE_TYPE, trainable=False) self._alg = copy_from.algorithm else: assert alg is not None and state is not None alg = _convert_alg_to_int(alg) if isinstance(state, variables.Variable): _check_state_shape(state.shape, alg) self._state_var = state else: state = _convert_to_state_tensor(state) _check_state_shape(state.shape, alg) self._state_var = self._create_variable(state, dtype=STATE_TYPE, trainable=False) self._alg = alg def _create_variable(self, *args, **kwargs): """Creates a variable, and check that it's not MirroredVariable. Args: *args: positional arguments passed along to `variables.Variable. **kwargs: keyword arguments passed along to `variables.Variable. Returns: The created variable. """ if ds_context.has_strategy(): raise ValueError( "Creating a generator within a strategy scope is disallowed, because " "there is ambiguity on how to replicate a generator (e.g. should it " "be copied so that each replica gets the same random numbers, or " "'split' so that each replica gets different random numbers).") # TODO(wangpeng): Link to the RNG guide for solutions in such cases. var = variables.Variable(*args, **kwargs) return var @classmethod def from_state(cls, state, alg): """Creates a generator from a state. See `__init__` for description of `state` and `alg`. Args: state: the new state. alg: the RNG algorithm. Returns: The new generator. Throws: ValueError: if the generator is created inside a synchronous `tf.distribute` strategy such as `MirroredStrategy` or `TPUStrategy`, because there is ambiguity on how to replicate a generator (e.g. should it be copied so such each replica will get the same random numbers, or should it be "split" into different generators that generate different random numbers). """ return cls(alg=alg, state=state) @classmethod def from_seed(cls, seed, alg=None): """Creates a generator from a seed. A seed is a 1024-bit unsigned integer represented either as a Python integer or a vector of integers. Seeds shorter than 1024-bit will be padded. The padding, the internal structure of a seed and the way a seed is converted to a state are all opaque (unspecified). The only semantics specification of seeds is that two different seeds are likely to produce two independent generators (but no guarantee). Args: seed: the seed for the RNG. alg: (optional) the RNG algorithm. If None, it will be auto-selected. See `__init__` for its possible values. Returns: The new generator. Throws: ValueError: if the generator is created inside a synchronous `tf.distribute` strategy such as `MirroredStrategy` or `TPUStrategy`, because there is ambiguity on how to replicate a generator (e.g. should it be copied so such each replica will get the same random numbers, or should it be "split" into different generators that generate different random numbers). """ if alg is None: # TODO(wangpeng): more sophisticated algorithm selection alg = DEFAULT_ALGORITHM alg = _convert_alg_to_int(alg) state = create_rng_state(seed, alg) return cls(state=state, alg=alg) @classmethod def from_non_deterministic_state(cls, alg=None): """Creates a generator by non-deterministically initializing its state. The source of the non-determinism will be platform- and time-dependent. Args: alg: (optional) the RNG algorithm. If None, it will be auto-selected. See `__init__` for its possible values. Returns: The new generator. Throws: ValueError: if the generator is created inside a synchronous `tf.distribute` strategy such as `MirroredStrategy` or `TPUStrategy`, because there is ambiguity on how to replicate a generator (e.g. should it be copied so such each replica will get the same random numbers, or should it be "split" into different generators that generate different random numbers). """ if alg is None: # TODO(wangpeng): more sophisticated algorithm selection alg = DEFAULT_ALGORITHM alg = _convert_alg_to_int(alg) state = non_deterministic_ints(shape=[_get_state_size(alg)], dtype=SEED_TYPE) return cls(state=state, alg=alg) @classmethod def from_key_counter(cls, key, counter, alg): """Creates a generator from a key and a counter. This constructor only applies if the algorithm is a counter-based algorithm. See method `key` for the meaning of "key" and "counter". Args: key: the key for the RNG, a scalar of type STATE_TYPE. counter: a vector of dtype STATE_TYPE representing the initial counter for the RNG, whose length is algorithm-specific., alg: the RNG algorithm. If None, it will be auto-selected. See `__init__` for its possible values. Returns: The new generator. Throws: ValueError: if the generator is created inside a synchronous `tf.distribute` strategy such as `MirroredStrategy` or `TPUStrategy`, because there is ambiguity on how to replicate a generator (e.g. should it be copied so such each replica will get the same random numbers, or should it be "split" into different generators that generate different random numbers). """ counter = _convert_to_state_tensor(counter) key = _convert_to_state_tensor(key) alg = _convert_alg_to_int(alg) counter.shape.assert_is_compatible_with([_get_state_size(alg) - 1]) key.shape.assert_is_compatible_with([]) key = array_ops.reshape(key, [1]) state = array_ops.concat([counter, key], 0) return cls(state=state, alg=alg) def reset(self, state): """Resets the generator by a new state. See `__init__` for the meaning of "state". Args: state: the new state. """ state = _convert_to_state_tensor(state) state.shape.assert_is_compatible_with([_get_state_size(self.algorithm)]) self._state_var.assign(state) def reset_from_seed(self, seed): """Resets the generator by a new seed. See `from_seed` for the meaning of "seed". Args: seed: the new seed. """ state = create_rng_state(seed, self.algorithm) self._state_var.assign(state) def reset_from_key_counter(self, key, counter): """Resets the generator by a new key-counter pair. See `from_key_counter` for the meaning of "key" and "counter". Args: key: the new key. counter: the new counter. """ counter = _convert_to_state_tensor(counter) key = _convert_to_state_tensor(key) counter.shape.assert_is_compatible_with( [_get_state_size(self.algorithm) - 1]) key.shape.assert_is_compatible_with([]) key = array_ops.reshape(key, [1]) state = array_ops.concat([counter, key], 0) self._state_var.assign(state) @property def _type_spec(self): return GeneratorSpec(shape=self.state.shape, dtype=self.state.dtype, alg=self.algorithm) @property def state(self): """The internal state of the RNG.""" return self._state_var @property def algorithm(self): """The RNG algorithm id (a Python integer or scalar integer Tensor).""" return self._alg def _standard_normal(self, shape, dtype): if compat.forward_compatible(2020, 10, 25): key, counter = self._prepare_key_counter(shape) return gen_stateless_random_ops_v2.stateless_random_normal_v2( shape, key=key, counter=counter, dtype=dtype, alg=self.algorithm) return gen_stateful_random_ops.stateful_standard_normal_v2( self.state.handle, self.algorithm, shape, dtype=dtype) @property def key(self): """The 'key' part of the state of a counter-based RNG. For a counter-base RNG algorithm such as Philox and ThreeFry (as described in paper 'Parallel Random Numbers: As Easy as 1, 2, 3' [https://www.thesalmons.org/john/random123/papers/random123sc11.pdf]), the RNG state consists of two parts: counter and key. The output is generated via the formula: output=hash(key, counter), i.e. a hashing of the counter parametrized by the key. Two RNGs with two different keys can be thought as generating two independent random-number streams (a stream is formed by increasing the counter). Returns: A scalar which is the 'key' part of the state, if the RNG algorithm is counter-based; otherwise it raises a ValueError. """ alg = self.algorithm if alg == RNG_ALG_PHILOX or alg == RNG_ALG_THREEFRY: return self._state_var[-1] else: raise ValueError("Unsupported algorithm id: %s" % alg) # TODO(wangpeng): Add "Returns" section to docstring once new version kicks in # pylint: disable=g-doc-return-or-yield def skip(self, delta): """Advance the counter of a counter-based RNG. Args: delta: the amount of advancement. The state of the RNG after `skip(n)` will be the same as that after `normal([n])` (or any other distribution). The actual increment added to the counter is an unspecified implementation detail. """ if compat.forward_compatible(2020, 10, 25): return gen_stateful_random_ops.rng_read_and_skip( self.state.handle, alg=math_ops.cast(self.algorithm, dtypes.int32), delta=math_ops.cast(delta, dtypes.uint64)) gen_stateful_random_ops.rng_skip( self.state.handle, math_ops.cast(self.algorithm, dtypes.int64), math_ops.cast(delta, dtypes.int64)) # pylint: enable=g-doc-return-or-yield def _prepare_key_counter(self, shape): delta = math_ops.reduce_prod(shape) counter_key = self.skip(delta) counter_size = _get_counter_size(self.algorithm) counter = array_ops.bitcast(counter_key[:counter_size], dtypes.uint64) key = array_ops.bitcast(counter_key[counter_size:counter_size + 1], dtypes.uint64) return key, counter # The following functions return a tensor and as a side effect update # self._state_var. def normal(self, shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, name=None): """Outputs random values from a normal distribution. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution. dtype: The type of the output. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random normal values. """ with ops.name_scope(name, "stateful_normal", [shape, mean, stddev]) as name: shape = _shape_tensor(shape) mean = ops.convert_to_tensor(mean, dtype=dtype, name="mean") stddev = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev") rnd = self._standard_normal(shape, dtype=dtype) return math_ops.add(rnd * stddev, mean, name=name) def _truncated_normal(self, shape, dtype): if compat.forward_compatible(2020, 10, 25): key, counter = self._prepare_key_counter(shape) return gen_stateless_random_ops_v2.stateless_truncated_normal_v2( shape=shape, key=key, counter=counter, dtype=dtype, alg=self.algorithm) return gen_stateful_random_ops.stateful_truncated_normal( self.state.handle, self.algorithm, shape, dtype=dtype) def truncated_normal(self, shape, mean=0.0, stddev=1.0, dtype=dtypes.float32, name=None): """Outputs random values from a truncated normal distribution. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than 2 standard deviations from the mean are dropped and re-picked. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution, before truncation. dtype: The type of the output. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random truncated normal values. """ with ops.name_scope( name, "truncated_normal", [shape, mean, stddev]) as name: shape_tensor = _shape_tensor(shape) mean_tensor = ops.convert_to_tensor(mean, dtype=dtype, name="mean") stddev_tensor = ops.convert_to_tensor(stddev, dtype=dtype, name="stddev") rnd = self._truncated_normal(shape_tensor, dtype=dtype) mul = rnd * stddev_tensor return math_ops.add(mul, mean_tensor, name=name) def _uniform(self, shape, dtype): if compat.forward_compatible(2020, 10, 25): key, counter = self._prepare_key_counter(shape) return gen_stateless_random_ops_v2.stateless_random_uniform_v2( shape=shape, key=key, counter=counter, dtype=dtype, alg=self.algorithm) return gen_stateful_random_ops.stateful_uniform( self.state.handle, self.algorithm, shape=shape, dtype=dtype) def _uniform_full_int(self, shape, dtype, name=None): if compat.forward_compatible(2020, 10, 25): key, counter = self._prepare_key_counter(shape) return gen_stateless_random_ops_v2.stateless_random_uniform_full_int_v2( shape=shape, key=key, counter=counter, dtype=dtype, alg=self.algorithm, name=name) return gen_stateful_random_ops.stateful_uniform_full_int( self.state.handle, self.algorithm, shape=shape, dtype=dtype, name=name) def uniform(self, shape, minval=0, maxval=None, dtype=dtypes.float32, name=None): """Outputs random values from a uniform distribution. The generated values follow a uniform distribution in the range `[minval, maxval)`. The lower bound `minval` is included in the range, while the upper bound `maxval` is excluded. (For float numbers especially low-precision types like bfloat16, because of rounding, the result may sometimes include `maxval`.) For floats, the default range is `[0, 1)`. For ints, at least `maxval` must be specified explicitly. In the integer case, the random integers are slightly biased unless `maxval - minval` is an exact power of two. The bias is small for values of `maxval - minval` significantly smaller than the range of the output (either `2**32` or `2**64`). For full-range random integers, pass `minval=None` and `maxval=None` with an integer `dtype` (for integer dtypes, `minval` and `maxval` must be both `None` or both not `None`). Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. minval: A Tensor or Python value of type `dtype`, broadcastable with `shape` (for integer types, broadcasting is not supported, so it needs to be a scalar). The lower bound (included) on the range of random values to generate. Pass `None` for full-range integers. Defaults to 0. maxval: A Tensor or Python value of type `dtype`, broadcastable with `shape` (for integer types, broadcasting is not supported, so it needs to be a scalar). The upper bound (excluded) on the range of random values to generate. Pass `None` for full-range integers. Defaults to 1 if `dtype` is floating point. dtype: The type of the output. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random uniform values. Raises: ValueError: If `dtype` is integral and `maxval` is not specified. """ dtype = dtypes.as_dtype(dtype) if dtype.is_integer: if (minval is None) != (maxval is None): raise ValueError("For integer dtype {}, minval and maxval must be both " "`None` or both non-`None`; got minval={} and " "maxval={}".format(dtype, minval, maxval)) elif maxval is None: maxval = 1 with ops.name_scope(name, "stateful_uniform", [shape, minval, maxval]) as name: shape = _shape_tensor(shape) if dtype.is_integer and minval is None: return self._uniform_full_int(shape=shape, dtype=dtype, name=name) minval = ops.convert_to_tensor(minval, dtype=dtype, name="min") maxval = ops.convert_to_tensor(maxval, dtype=dtype, name="max") if dtype.is_integer: if compat.forward_compatible(2020, 10, 25): key, counter = self._prepare_key_counter(shape) return gen_stateless_random_ops_v2.stateless_random_uniform_int_v2( shape=shape, key=key, counter=counter, minval=minval, maxval=maxval, alg=self.algorithm, name=name) return gen_stateful_random_ops.stateful_uniform_int( self.state.handle, self.algorithm, shape=shape, minval=minval, maxval=maxval, name=name) else: rnd = self._uniform(shape=shape, dtype=dtype) return math_ops.add(rnd * (maxval - minval), minval, name=name) def uniform_full_int(self, shape, dtype=dtypes.uint64, name=None): """Uniform distribution on an integer type's entire range. This method is the same as setting `minval` and `maxval` to `None` in the `uniform` method. Args: shape: the shape of the output. dtype: (optional) the integer type, default to uint64. name: (optional) the name of the node. Returns: A tensor of random numbers of the required shape. """ dtype = dtypes.as_dtype(dtype) with ops.name_scope(name, "stateful_uniform_full_int", [shape]) as name: shape = _shape_tensor(shape) return self._uniform_full_int(shape=shape, dtype=dtype, name=name) def binomial(self, shape, counts, probs, dtype=dtypes.int32, name=None): """Outputs random values from a binomial distribution. The generated values follow a binomial distribution with specified count and probability of success parameters. Example: ```python counts = [10., 20.] # Probability of success. probs = [0.8] rng = tf.random.Generator.from_seed(seed=234) binomial_samples = rng.binomial(shape=[2], counts=counts, probs=probs) counts = ... # Shape [3, 1, 2] probs = ... # Shape [1, 4, 2] shape = [3, 4, 3, 4, 2] rng = tf.random.Generator.from_seed(seed=1717) # Sample shape will be [3, 4, 3, 4, 2] binomial_samples = rng.binomial(shape=shape, counts=counts, probs=probs) ``` Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. counts: Tensor. The counts of the binomial distribution. Must be broadcastable with `probs`, and broadcastable with the rightmost dimensions of `shape`. probs: Tensor. The probability of success for the binomial distribution. Must be broadcastable with `counts` and broadcastable with the rightmost dimensions of `shape`. dtype: The type of the output. Default: tf.int32 name: A name for the operation (optional). Returns: samples: A Tensor of the specified shape filled with random binomial values. For each i, each samples[i, ...] is an independent draw from the binomial distribution on counts[i] trials with probability of success probs[i]. """ dtype = dtypes.as_dtype(dtype) with ops.name_scope(name, "binomial", [shape, counts, probs]) as name: counts = ops.convert_to_tensor(counts, name="counts") probs = ops.convert_to_tensor(probs, name="probs") shape_tensor = _shape_tensor(shape) return gen_stateful_random_ops.stateful_random_binomial( self.state.handle, self.algorithm, shape=shape_tensor, counts=counts, probs=probs, dtype=dtype, name=name) # TODO(wangpeng): implement other distributions def _make_int64_keys(self, shape=()): # New independent keys are generated via # `new_key[i] = hash(old_key, counter+i)`, which is exactly what # `uniform_full_int(dtype=int64)` does for PhiloxRandom_64_128_128 and # ThreeFry_64_64_64. return self.uniform_full_int(shape=shape, dtype=dtypes.int64) def make_seeds(self, count=1): """Generates seeds for stateless random ops. For example: ```python seeds = get_global_generator().make_seeds(count=10) for i in range(10): seed = seeds[:, i] numbers = stateless_random_normal(shape=[2, 3], seed=seed) ... ``` Args: count: the number of seed pairs (note that stateless random ops need a pair of seeds to invoke). Returns: A tensor of shape [2, count] and dtype int64. """ alg = self.algorithm if alg == RNG_ALG_PHILOX or alg == RNG_ALG_THREEFRY: keys = self._make_int64_keys(shape=[count]) # The two seeds for stateless random ops don't have individual semantics # and are scrambled together, so setting one to zero is fine. zeros = array_ops.zeros_like(keys) return array_ops.stack([keys, zeros]) else: raise ValueError("Unsupported algorithm id: %s" % alg) def split(self, count=1): """Returns a list of independent `Generator` objects. Two generators are independent of each other in the sense that the random-number streams they generate don't have statistically detectable correlations. The new generators are also independent of the old one. The old generator's state will be changed (like other random-number generating methods), so two calls of `split` will return different new generators. For example: ```python gens = get_global_generator().split(count=10) for gen in gens: numbers = gen.normal(shape=[2, 3]) # ... gens2 = get_global_generator().split(count=10) # gens2 will be different from gens ``` The new generators will be put on the current device (possible different from the old generator's), for example: ```python with tf.device("/device:CPU:0"): gen = Generator(seed=1234) # gen is on CPU with tf.device("/device:GPU:0"): gens = gen.split(count=10) # gens are on GPU ``` Args: count: the number of generators to return. Returns: A list (length `count`) of `Generator` objects independent of each other. The new generators have the same RNG algorithm as the old one. """ def _key_to_state(alg, key): # Padding with zeros on the left. The zeros will be the counter. return [0] * (_get_state_size(alg) - 1) + [key] alg = self.algorithm if alg == RNG_ALG_PHILOX or alg == RNG_ALG_THREEFRY: keys = self._make_int64_keys(shape=[count]) return [Generator(state=_key_to_state(alg, key), alg=alg) for key in keys.numpy()] else: raise ValueError("Unsupported algorithm id: %s" % alg) # It's not safe to create TF ops before `init_google` is called, so this is # initialized to None and get a value the first time `get_global_generator` is # called. global_generator = None @tf_export("random.get_global_generator", "random.experimental.get_global_generator") def get_global_generator(): """Retrieves the global generator. This function will create the global generator the first time it is called, and the generator will be placed at the default device at that time, so one needs to be careful when this function is first called. Using a generator placed on a less-ideal device will incur performance regression. Returns: The global `tf.random.Generator` object. """ global global_generator if global_generator is None: with ops.init_scope(): global_generator = Generator.from_non_deterministic_state() return global_generator @tf_export("random.set_global_generator", "random.experimental.set_global_generator") def set_global_generator(generator): """Replaces the global generator with another `Generator` object. This function creates a new Generator object (and the Variable object within), which does not work well with tf.function because (1) tf.function puts restrictions on Variable creation thus reset_global_generator can't be freely used inside tf.function; (2) redirecting a global variable to a new object is problematic with tf.function because the old object may be captured by a 'tf.function'ed function and still be used by it. A 'tf.function'ed function only keeps weak references to variables, so deleting a variable and then calling that function again may raise an error, as demonstrated by random_test.py/RandomTest.testResetGlobalGeneratorBadWithDefun . Args: generator: the new `Generator` object. """ global global_generator global_generator = generator