# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains functions for evaluation and summarization of metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import monitored_session from tensorflow.python.training import session_run_hook def _get_or_create_eval_step(): """Gets or creates the eval step `Tensor`. Returns: A `Tensor` representing a counter for the evaluation step. Raises: ValueError: If multiple `Tensors` have been added to the `tf.GraphKeys.EVAL_STEP` collection. """ graph = ops.get_default_graph() eval_steps = graph.get_collection(ops.GraphKeys.EVAL_STEP) if len(eval_steps) == 1: return eval_steps[0] elif len(eval_steps) > 1: raise ValueError('Multiple tensors added to tf.GraphKeys.EVAL_STEP') else: counter = variable_scope.get_variable( 'eval_step', shape=[], dtype=dtypes.int64, initializer=init_ops.zeros_initializer(), trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.EVAL_STEP]) return counter def _get_latest_eval_step_value(update_ops): """Gets the eval step `Tensor` value after running `update_ops`. Args: update_ops: A list of `Tensors` or a dictionary of names to `Tensors`, which are run before reading the eval step value. Returns: A `Tensor` representing the value for the evaluation step. """ if isinstance(update_ops, dict): update_ops = list(update_ops.values()) with ops.control_dependencies(update_ops): return array_ops.identity(_get_or_create_eval_step().read_value()) class _MultiStepStopAfterNEvalsHook(session_run_hook.SessionRunHook): """Run hook used by the evaluation routines to run the `eval_ops` N times.""" def __init__(self, num_evals, steps_per_run=1): """Constructs the run hook. Args: num_evals: The number of evaluations to run for. if set to None, will iterate the dataset until all inputs are exhausted. steps_per_run: Number of steps executed per run call. """ self._num_evals = num_evals self._evals_completed = None self._steps_per_run_initial_value = steps_per_run def _set_evals_completed_tensor(self, updated_eval_step): self._evals_completed = updated_eval_step def begin(self): self._steps_per_run_variable = \ basic_session_run_hooks.get_or_create_steps_per_run_variable() def after_create_session(self, session, coord): # Update number of steps to run in the first run call if self._num_evals is None: steps = self._steps_per_run_initial_value else: steps = min(self._steps_per_run_initial_value, self._num_evals) self._steps_per_run_variable.load(steps, session=session) def before_run(self, run_context): return session_run_hook.SessionRunArgs( {'evals_completed': self._evals_completed}) def after_run(self, run_context, run_values): evals_completed = run_values.results['evals_completed'] # Update number of steps to run in the next iteration if self._num_evals is None: steps = self._steps_per_run_initial_value else: steps = min(self._num_evals - evals_completed, self._steps_per_run_initial_value) self._steps_per_run_variable.load(steps, session=run_context.session) if self._num_evals is None: logging.info('Evaluation [%d]', evals_completed) else: logging.info('Evaluation [%d/%d]', evals_completed, self._num_evals) if self._num_evals is not None and evals_completed >= self._num_evals: run_context.request_stop() class _StopAfterNEvalsHook(session_run_hook.SessionRunHook): """Run hook used by the evaluation routines to run the `eval_ops` N times.""" def __init__(self, num_evals, log_progress=True): """Constructs the run hook. Args: num_evals: The number of evaluations to run for. if set to None, will iterate the dataset until all inputs are exhausted. log_progress: Whether to log evaluation progress, defaults to True. """ # The number of evals to run for. self._num_evals = num_evals self._evals_completed = None self._log_progress = log_progress # Reduce logging frequency if there are 20 or more evaluations. self._log_frequency = (1 if (num_evals is None or num_evals < 20) else math.floor(num_evals / 10.)) def _set_evals_completed_tensor(self, updated_eval_step): self._evals_completed = updated_eval_step def before_run(self, run_context): return session_run_hook.SessionRunArgs( {'evals_completed': self._evals_completed}) def after_run(self, run_context, run_values): evals_completed = run_values.results['evals_completed'] if self._log_progress: if self._num_evals is None: logging.info('Evaluation [%d]', evals_completed) else: if ((evals_completed % self._log_frequency) == 0 or (self._num_evals == evals_completed)): logging.info('Evaluation [%d/%d]', evals_completed, self._num_evals) if self._num_evals is not None and evals_completed >= self._num_evals: run_context.request_stop() def _evaluate_once(checkpoint_path, master='', scaffold=None, eval_ops=None, feed_dict=None, final_ops=None, final_ops_feed_dict=None, hooks=None, config=None): """Evaluates the model at the given checkpoint path. During a single evaluation, the `eval_ops` is run until the session is interrupted or requested to finish. This is typically requested via a `tf.contrib.training.StopAfterNEvalsHook` which results in `eval_ops` running the requested number of times. Optionally, a user can pass in `final_ops`, a single `Tensor`, a list of `Tensors` or a dictionary from names to `Tensors`. The `final_ops` is evaluated a single time after `eval_ops` has finished running and the fetched values of `final_ops` are returned. If `final_ops` is left as `None`, then `None` is returned. One may also consider using a `tf.contrib.training.SummaryAtEndHook` to record summaries after the `eval_ops` have run. If `eval_ops` is `None`, the summaries run immediately after the model checkpoint has been restored. Note that `evaluate_once` creates a local variable used to track the number of evaluations run via `tf.contrib.training.get_or_create_eval_step`. Consequently, if a custom local init op is provided via a `scaffold`, the caller should ensure that the local init op also initializes the eval step. Args: checkpoint_path: The path to a checkpoint to use for evaluation. master: The BNS address of the TensorFlow master. scaffold: An tf.compat.v1.train.Scaffold instance for initializing variables and restoring variables. Note that `scaffold.init_fn` is used by the function to restore the checkpoint. If you supply a custom init_fn, then it must also take care of restoring the model from its checkpoint. eval_ops: A single `Tensor`, a list of `Tensors` or a dictionary of names to `Tensors`, which is run until the session is requested to stop, commonly done by a `tf.contrib.training.StopAfterNEvalsHook`. feed_dict: The feed dictionary to use when executing the `eval_ops`. final_ops: A single `Tensor`, a list of `Tensors` or a dictionary of names to `Tensors`. final_ops_feed_dict: A feed dictionary to use when evaluating `final_ops`. hooks: List of `tf.estimator.SessionRunHook` callbacks which are run inside the evaluation loop. config: An instance of `tf.compat.v1.ConfigProto` that will be used to configure the `Session`. If left as `None`, the default will be used. Returns: The fetched values of `final_ops` or `None` if `final_ops` is `None`. """ eval_step = _get_or_create_eval_step() # Prepare the run hooks. hooks = list(hooks or []) if eval_ops is not None: if any(isinstance(h, _MultiStepStopAfterNEvalsHook) for h in hooks): steps_per_run_variable = \ basic_session_run_hooks.get_or_create_steps_per_run_variable() update_eval_step = state_ops.assign_add( eval_step, math_ops.cast(steps_per_run_variable, dtype=eval_step.dtype), use_locking=True) else: update_eval_step = state_ops.assign_add(eval_step, 1, use_locking=True) if isinstance(eval_ops, dict): eval_ops['update_eval_step'] = update_eval_step elif isinstance(eval_ops, (tuple, list)): eval_ops = list(eval_ops) + [update_eval_step] else: eval_ops = [eval_ops, update_eval_step] eval_step_value = _get_latest_eval_step_value(eval_ops) for h in hooks: if isinstance(h, (_StopAfterNEvalsHook, _MultiStepStopAfterNEvalsHook)): h._set_evals_completed_tensor(eval_step_value) # pylint: disable=protected-access logging.info('Starting evaluation at ' + time.strftime('%Y-%m-%dT%H:%M:%SZ', time.localtime())) start = time.time() # Prepare the session creator. session_creator = monitored_session.ChiefSessionCreator( scaffold=scaffold, checkpoint_filename_with_path=checkpoint_path, master=master, config=config) final_ops_hook = basic_session_run_hooks.FinalOpsHook(final_ops, final_ops_feed_dict) hooks.append(final_ops_hook) with monitored_session.MonitoredSession( session_creator=session_creator, hooks=hooks) as session: if eval_ops is not None: while not session.should_stop(): session.run(eval_ops, feed_dict) logging.info('Inference Time : {:0.5f}s'.format(time.time() - start)) logging.info('Finished evaluation at ' + time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime())) return final_ops_hook.final_ops_values