/* Generated by Cython 0.29.19 */ #define PY_SSIZE_T_CLEAN #include "Python.h" #ifndef Py_PYTHON_H #error Python headers needed to compile C extensions, please install development version of Python. #elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) #error Cython requires Python 2.6+ or Python 3.3+. #else #define CYTHON_ABI "0_29_19" #define CYTHON_HEX_VERSION 0x001D13F0 #define CYTHON_FUTURE_DIVISION 0 #include <stddef.h> #ifndef offsetof #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) #endif #if !defined(WIN32) && !defined(MS_WINDOWS) #ifndef __stdcall #define __stdcall #endif #ifndef __cdecl #define __cdecl #endif #ifndef __fastcall #define __fastcall #endif #endif #ifndef DL_IMPORT #define DL_IMPORT(t) t #endif #ifndef DL_EXPORT #define DL_EXPORT(t) t #endif #define __PYX_COMMA , #ifndef HAVE_LONG_LONG #if PY_VERSION_HEX >= 0x02070000 #define HAVE_LONG_LONG #endif #endif #ifndef PY_LONG_LONG #define PY_LONG_LONG LONG_LONG #endif #ifndef Py_HUGE_VAL #define Py_HUGE_VAL HUGE_VAL #endif #ifdef PYPY_VERSION #define CYTHON_COMPILING_IN_PYPY 1 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #undef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 0 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #if PY_VERSION_HEX < 0x03050000 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #undef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 0 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #undef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 1 #undef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 0 #undef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 0 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #elif defined(PYSTON_VERSION) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 1 #define CYTHON_COMPILING_IN_CPYTHON 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #else #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 1 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) #define CYTHON_USE_PYTYPE_LOOKUP 1 #endif #if PY_MAJOR_VERSION < 3 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #elif !defined(CYTHON_USE_PYLONG_INTERNALS) #define CYTHON_USE_PYLONG_INTERNALS 1 #endif #ifndef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 1 #endif #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #if PY_VERSION_HEX < 0x030300F0 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #elif !defined(CYTHON_USE_UNICODE_WRITER) #define CYTHON_USE_UNICODE_WRITER 1 #endif #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #ifndef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 1 #endif #ifndef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 1 #endif #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) #endif #ifndef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) #endif #ifndef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) #endif #endif #if !defined(CYTHON_FAST_PYCCALL) #define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) #endif #if CYTHON_USE_PYLONG_INTERNALS #include "longintrepr.h" #undef SHIFT #undef BASE #undef MASK #ifdef SIZEOF_VOID_P enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; #endif #endif #ifndef __has_attribute #define __has_attribute(x) 0 #endif #ifndef __has_cpp_attribute #define __has_cpp_attribute(x) 0 #endif #ifndef CYTHON_RESTRICT #if defined(__GNUC__) #define CYTHON_RESTRICT __restrict__ #elif defined(_MSC_VER) && _MSC_VER >= 1400 #define CYTHON_RESTRICT __restrict #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_RESTRICT restrict #else #define CYTHON_RESTRICT #endif #endif #ifndef CYTHON_UNUSED # if defined(__GNUC__) # if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif # elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif #endif #ifndef CYTHON_MAYBE_UNUSED_VAR # if defined(__cplusplus) template<class T> void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } # else # define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) # endif #endif #ifndef CYTHON_NCP_UNUSED # if CYTHON_COMPILING_IN_CPYTHON # define CYTHON_NCP_UNUSED # else # define CYTHON_NCP_UNUSED CYTHON_UNUSED # endif #endif #define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) #ifdef _MSC_VER #ifndef _MSC_STDINT_H_ #if _MSC_VER < 1300 typedef unsigned char uint8_t; typedef unsigned int uint32_t; #else typedef unsigned __int8 uint8_t; typedef unsigned __int32 uint32_t; #endif #endif #else #include <stdint.h> #endif #ifndef CYTHON_FALLTHROUGH #if defined(__cplusplus) && __cplusplus >= 201103L #if __has_cpp_attribute(fallthrough) #define CYTHON_FALLTHROUGH [[fallthrough]] #elif __has_cpp_attribute(clang::fallthrough) #define CYTHON_FALLTHROUGH [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] #endif #endif #ifndef CYTHON_FALLTHROUGH #if __has_attribute(fallthrough) #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) #else #define CYTHON_FALLTHROUGH #endif #endif #if defined(__clang__ ) && defined(__apple_build_version__) #if __apple_build_version__ < 7000000 #undef CYTHON_FALLTHROUGH #define CYTHON_FALLTHROUGH #endif #endif #endif #ifndef __cplusplus #error "Cython files generated with the C++ option must be compiled with a C++ compiler." #endif #ifndef CYTHON_INLINE #if defined(__clang__) #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) #else #define CYTHON_INLINE inline #endif #endif template<typename T> void __Pyx_call_destructor(T& x) { x.~T(); } template<typename T> class __Pyx_FakeReference { public: __Pyx_FakeReference() : ptr(NULL) { } __Pyx_FakeReference(const T& ref) : ptr(const_cast<T*>(&ref)) { } T *operator->() { return ptr; } T *operator&() { return ptr; } operator T&() { return *ptr; } template<typename U> bool operator ==(U other) { return *ptr == other; } template<typename U> bool operator !=(U other) { return *ptr != other; } private: T *ptr; }; #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) #define Py_OptimizeFlag 0 #endif #define __PYX_BUILD_PY_SSIZE_T "n" #define CYTHON_FORMAT_SSIZE_T "z" #if PY_MAJOR_VERSION < 3 #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #define __Pyx_DefaultClassType PyClass_Type #else #define __Pyx_BUILTIN_MODULE_NAME "builtins" #if PY_VERSION_HEX >= 0x030800A4 && PY_VERSION_HEX < 0x030800B2 #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a, 0, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #else #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #endif #define __Pyx_DefaultClassType PyType_Type #endif #ifndef Py_TPFLAGS_CHECKTYPES #define Py_TPFLAGS_CHECKTYPES 0 #endif #ifndef Py_TPFLAGS_HAVE_INDEX #define Py_TPFLAGS_HAVE_INDEX 0 #endif #ifndef Py_TPFLAGS_HAVE_NEWBUFFER #define Py_TPFLAGS_HAVE_NEWBUFFER 0 #endif #ifndef Py_TPFLAGS_HAVE_FINALIZE #define Py_TPFLAGS_HAVE_FINALIZE 0 #endif #ifndef METH_STACKLESS #define METH_STACKLESS 0 #endif #if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) #ifndef METH_FASTCALL #define METH_FASTCALL 0x80 #endif typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames); #else #define __Pyx_PyCFunctionFast _PyCFunctionFast #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords #endif #if CYTHON_FAST_PYCCALL #define __Pyx_PyFastCFunction_Check(func)\ ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) #else #define __Pyx_PyFastCFunction_Check(func) 0 #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) #define PyObject_Malloc(s) PyMem_Malloc(s) #define PyObject_Free(p) PyMem_Free(p) #define PyObject_Realloc(p) PyMem_Realloc(p) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 #define PyMem_RawMalloc(n) PyMem_Malloc(n) #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) #define PyMem_RawFree(p) PyMem_Free(p) #endif #if CYTHON_COMPILING_IN_PYSTON #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) #else #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) #endif #if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #elif PY_VERSION_HEX >= 0x03060000 #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() #elif PY_VERSION_HEX >= 0x03000000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #else #define __Pyx_PyThreadState_Current _PyThreadState_Current #endif #if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) #include "pythread.h" #define Py_tss_NEEDS_INIT 0 typedef int Py_tss_t; static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { *key = PyThread_create_key(); return 0; } static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); *key = Py_tss_NEEDS_INIT; return key; } static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { PyObject_Free(key); } static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { return *key != Py_tss_NEEDS_INIT; } static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { PyThread_delete_key(*key); *key = Py_tss_NEEDS_INIT; } static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { return PyThread_set_key_value(*key, value); } static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { return PyThread_get_key_value(*key); } #endif #if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) #define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) #else #define __Pyx_PyDict_NewPresized(n) PyDict_New() #endif #if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) #else #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS #define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) #else #define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) #endif #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) #define CYTHON_PEP393_ENABLED 1 #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ 0 : _PyUnicode_Ready((PyObject *)(op))) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) #else #define CYTHON_PEP393_ENABLED 0 #define PyUnicode_1BYTE_KIND 1 #define PyUnicode_2BYTE_KIND 2 #define PyUnicode_4BYTE_KIND 4 #define __Pyx_PyUnicode_READY(op) (0) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) #endif #if CYTHON_COMPILING_IN_PYPY #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) #else #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) #endif #define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) #define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) #else #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) #endif #if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) #define PyObject_ASCII(o) PyObject_Repr(o) #endif #if PY_MAJOR_VERSION >= 3 #define PyBaseString_Type PyUnicode_Type #define PyStringObject PyUnicodeObject #define PyString_Type PyUnicode_Type #define PyString_Check PyUnicode_Check #define PyString_CheckExact PyUnicode_CheckExact #ifndef PyObject_Unicode #define PyObject_Unicode PyObject_Str #endif #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) #else #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) #endif #ifndef PySet_CheckExact #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) #endif #if CYTHON_ASSUME_SAFE_MACROS #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) #else #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) #endif #if PY_MAJOR_VERSION >= 3 #define PyIntObject PyLongObject #define PyInt_Type PyLong_Type #define PyInt_Check(op) PyLong_Check(op) #define PyInt_CheckExact(op) PyLong_CheckExact(op) #define PyInt_FromString PyLong_FromString #define PyInt_FromUnicode PyLong_FromUnicode #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSize_t PyLong_FromSize_t #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AsLong PyLong_AsLong #define PyInt_AS_LONG PyLong_AS_LONG #define PyInt_AsSsize_t PyLong_AsSsize_t #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask #define PyNumber_Int PyNumber_Long #endif #if PY_MAJOR_VERSION >= 3 #define PyBoolObject PyLongObject #endif #if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY #ifndef PyUnicode_InternFromString #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) #endif #endif #if PY_VERSION_HEX < 0x030200A4 typedef long Py_hash_t; #define __Pyx_PyInt_FromHash_t PyInt_FromLong #define __Pyx_PyInt_AsHash_t PyInt_AsLong #else #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : (Py_INCREF(func), func)) #else #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) #endif #if CYTHON_USE_ASYNC_SLOTS #if PY_VERSION_HEX >= 0x030500B1 #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) #else #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) #endif #else #define __Pyx_PyType_AsAsync(obj) NULL #endif #ifndef __Pyx_PyAsyncMethodsStruct typedef struct { unaryfunc am_await; unaryfunc am_aiter; unaryfunc am_anext; } __Pyx_PyAsyncMethodsStruct; #endif #if defined(WIN32) || defined(MS_WINDOWS) #define _USE_MATH_DEFINES #endif #include <math.h> #ifdef NAN #define __PYX_NAN() ((float) NAN) #else static CYTHON_INLINE float __PYX_NAN() { float value; memset(&value, 0xFF, sizeof(value)); return value; } #endif #if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) #define __Pyx_truncl trunc #else #define __Pyx_truncl truncl #endif #define __PYX_MARK_ERR_POS(f_index, lineno) \ { __pyx_filename = __pyx_f[f_index]; (void)__pyx_filename; __pyx_lineno = lineno; (void)__pyx_lineno; __pyx_clineno = __LINE__; (void)__pyx_clineno; } #define __PYX_ERR(f_index, lineno, Ln_error) \ { __PYX_MARK_ERR_POS(f_index, lineno) goto Ln_error; } #ifndef __PYX_EXTERN_C #ifdef __cplusplus #define __PYX_EXTERN_C extern "C" #else #define __PYX_EXTERN_C extern #endif #endif #define __PYX_HAVE__thinc__neural__optimizers #define __PYX_HAVE_API__thinc__neural__optimizers /* Early includes */ #include <string.h> #include <math.h> #include <stdlib.h> #include <stdint.h> #ifdef _OPENMP #include <omp.h> #endif /* _OPENMP */ #if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) #define CYTHON_WITHOUT_ASSERTIONS #endif typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; #define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) #define __PYX_DEFAULT_STRING_ENCODING "" #define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString #define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #define __Pyx_uchar_cast(c) ((unsigned char)c) #define __Pyx_long_cast(x) ((long)x) #define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ (sizeof(type) < sizeof(Py_ssize_t)) ||\ (sizeof(type) > sizeof(Py_ssize_t) &&\ likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX) &&\ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ v == (type)PY_SSIZE_T_MIN))) ||\ (sizeof(type) == sizeof(Py_ssize_t) &&\ (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX))) ) static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { return (size_t) i < (size_t) limit; } #if defined (__cplusplus) && __cplusplus >= 201103L #include <cstdlib> #define __Pyx_sst_abs(value) std::abs(value) #elif SIZEOF_INT >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) abs(value) #elif SIZEOF_LONG >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) labs(value) #elif defined (_MSC_VER) #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define __Pyx_sst_abs(value) llabs(value) #elif defined (__GNUC__) #define __Pyx_sst_abs(value) __builtin_llabs(value) #else #define __Pyx_sst_abs(value) ((value<0) ? -value : value) #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); #define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) #define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) #define __Pyx_PyBytes_FromString PyBytes_FromString #define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); #if PY_MAJOR_VERSION < 3 #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #else #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize #endif #define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) #define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) #define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) #define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) #define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { const Py_UNICODE *u_end = u; while (*u_end++) ; return (size_t)(u_end - u - 1); } #define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) #define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode #define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode #define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) #define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); #define __Pyx_PySequence_Tuple(obj)\ (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); #if CYTHON_ASSUME_SAFE_MACROS #define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) #else #define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) #endif #define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) #else #define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) #endif #define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII static int __Pyx_sys_getdefaultencoding_not_ascii; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; PyObject* ascii_chars_u = NULL; PyObject* ascii_chars_b = NULL; const char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; if (strcmp(default_encoding_c, "ascii") == 0) { __Pyx_sys_getdefaultencoding_not_ascii = 0; } else { char ascii_chars[128]; int c; for (c = 0; c < 128; c++) { ascii_chars[c] = c; } __Pyx_sys_getdefaultencoding_not_ascii = 1; ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); if (!ascii_chars_u) goto bad; ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { PyErr_Format( PyExc_ValueError, "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", default_encoding_c); goto bad; } Py_DECREF(ascii_chars_u); Py_DECREF(ascii_chars_b); } Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); Py_XDECREF(ascii_chars_u); Py_XDECREF(ascii_chars_b); return -1; } #endif #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) #else #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT static char* __PYX_DEFAULT_STRING_ENCODING; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); return -1; } #endif #endif /* Test for GCC > 2.95 */ #if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* !__GNUC__ or GCC < 2.95 */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } static PyObject *__pyx_m = NULL; static PyObject *__pyx_d; static PyObject *__pyx_b; static PyObject *__pyx_cython_runtime = NULL; static PyObject *__pyx_empty_tuple; static PyObject *__pyx_empty_bytes; static PyObject *__pyx_empty_unicode; static int __pyx_lineno; static int __pyx_clineno = 0; static const char * __pyx_cfilenm= __FILE__; static const char *__pyx_filename; static const char *__pyx_f[] = { "optimizers.pyx", }; /* "typedefs.pxd":7 * * * ctypedef float weight_t # <<<<<<<<<<<<<< * ctypedef uint64_t atom_t * ctypedef uint64_t feat_t */ typedef float __pyx_t_5thinc_8typedefs_weight_t; /* "typedefs.pxd":8 * * ctypedef float weight_t * ctypedef uint64_t atom_t # <<<<<<<<<<<<<< * ctypedef uint64_t feat_t * ctypedef uint64_t hash_t */ typedef uint64_t __pyx_t_5thinc_8typedefs_atom_t; /* "typedefs.pxd":9 * ctypedef float weight_t * ctypedef uint64_t atom_t * ctypedef uint64_t feat_t # <<<<<<<<<<<<<< * ctypedef uint64_t hash_t * ctypedef int32_t class_t */ typedef uint64_t __pyx_t_5thinc_8typedefs_feat_t; /* "typedefs.pxd":10 * ctypedef uint64_t atom_t * ctypedef uint64_t feat_t * ctypedef uint64_t hash_t # <<<<<<<<<<<<<< * ctypedef int32_t class_t * ctypedef uint32_t count_t */ typedef uint64_t __pyx_t_5thinc_8typedefs_hash_t; /* "typedefs.pxd":11 * ctypedef uint64_t feat_t * ctypedef uint64_t hash_t * ctypedef int32_t class_t # <<<<<<<<<<<<<< * ctypedef uint32_t count_t * ctypedef uint32_t time_t */ typedef int32_t __pyx_t_5thinc_8typedefs_class_t; /* "typedefs.pxd":12 * ctypedef uint64_t hash_t * ctypedef int32_t class_t * ctypedef uint32_t count_t # <<<<<<<<<<<<<< * ctypedef uint32_t time_t * ctypedef int32_t len_t */ typedef uint32_t __pyx_t_5thinc_8typedefs_count_t; /* "typedefs.pxd":13 * ctypedef int32_t class_t * ctypedef uint32_t count_t * ctypedef uint32_t time_t # <<<<<<<<<<<<<< * ctypedef int32_t len_t * ctypedef int32_t idx_t */ typedef uint32_t __pyx_t_5thinc_8typedefs_time_t; /* "typedefs.pxd":14 * ctypedef uint32_t count_t * ctypedef uint32_t time_t * ctypedef int32_t len_t # <<<<<<<<<<<<<< * ctypedef int32_t idx_t * */ typedef int32_t __pyx_t_5thinc_8typedefs_len_t; /* "typedefs.pxd":15 * ctypedef uint32_t time_t * ctypedef int32_t len_t * ctypedef int32_t idx_t # <<<<<<<<<<<<<< * * */ typedef int32_t __pyx_t_5thinc_8typedefs_idx_t; /*--- Type declarations ---*/ /* --- Runtime support code (head) --- */ /* Refnanny.proto */ #ifndef CYTHON_REFNANNY #define CYTHON_REFNANNY 0 #endif #if CYTHON_REFNANNY typedef struct { void (*INCREF)(void*, PyObject*, int); void (*DECREF)(void*, PyObject*, int); void (*GOTREF)(void*, PyObject*, int); void (*GIVEREF)(void*, PyObject*, int); void* (*SetupContext)(const char*, int, const char*); void (*FinishContext)(void**); } __Pyx_RefNannyAPIStruct; static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; #ifdef WITH_THREAD #define __Pyx_RefNannySetupContext(name, acquire_gil)\ if (acquire_gil) {\ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ PyGILState_Release(__pyx_gilstate_save);\ } else {\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ } #else #define __Pyx_RefNannySetupContext(name, acquire_gil)\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) #endif #define __Pyx_RefNannyFinishContext()\ __Pyx_RefNanny->FinishContext(&__pyx_refnanny) #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) #else #define __Pyx_RefNannyDeclarations #define __Pyx_RefNannySetupContext(name, acquire_gil) #define __Pyx_RefNannyFinishContext() #define __Pyx_INCREF(r) Py_INCREF(r) #define __Pyx_DECREF(r) Py_DECREF(r) #define __Pyx_GOTREF(r) #define __Pyx_GIVEREF(r) #define __Pyx_XINCREF(r) Py_XINCREF(r) #define __Pyx_XDECREF(r) Py_XDECREF(r) #define __Pyx_XGOTREF(r) #define __Pyx_XGIVEREF(r) #endif #define __Pyx_XDECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_XDECREF(tmp);\ } while (0) #define __Pyx_DECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_DECREF(tmp);\ } while (0) #define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) #define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) /* PyObjectGetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) #endif /* GetBuiltinName.proto */ static PyObject *__Pyx_GetBuiltinName(PyObject *name); /* RaiseDoubleKeywords.proto */ static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /* ParseKeywords.proto */ static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ const char* function_name); /* RaiseArgTupleInvalid.proto */ static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; #define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; #define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type #else #define __Pyx_PyThreadState_declare #define __Pyx_PyThreadState_assign #define __Pyx_PyErr_Occurred() PyErr_Occurred() #endif /* PyErrFetchRestore.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) #define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) #define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) #else #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #endif #else #define __Pyx_PyErr_Clear() PyErr_Clear() #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) #endif /* Profile.proto */ #ifndef CYTHON_PROFILE #if CYTHON_COMPILING_IN_PYPY || CYTHON_COMPILING_IN_PYSTON #define CYTHON_PROFILE 0 #else #define CYTHON_PROFILE 1 #endif #endif #ifndef CYTHON_TRACE_NOGIL #define CYTHON_TRACE_NOGIL 0 #else #if CYTHON_TRACE_NOGIL && !defined(CYTHON_TRACE) #define CYTHON_TRACE 1 #endif #endif #ifndef CYTHON_TRACE #define CYTHON_TRACE 0 #endif #if CYTHON_TRACE #undef CYTHON_PROFILE_REUSE_FRAME #endif #ifndef CYTHON_PROFILE_REUSE_FRAME #define CYTHON_PROFILE_REUSE_FRAME 0 #endif #if CYTHON_PROFILE || CYTHON_TRACE #include "compile.h" #include "frameobject.h" #include "traceback.h" #if CYTHON_PROFILE_REUSE_FRAME #define CYTHON_FRAME_MODIFIER static #define CYTHON_FRAME_DEL(frame) #else #define CYTHON_FRAME_MODIFIER #define CYTHON_FRAME_DEL(frame) Py_CLEAR(frame) #endif #define __Pyx_TraceDeclarations\ static PyCodeObject *__pyx_frame_code = NULL;\ CYTHON_FRAME_MODIFIER PyFrameObject *__pyx_frame = NULL;\ int __Pyx_use_tracing = 0; #define __Pyx_TraceFrameInit(codeobj)\ if (codeobj) __pyx_frame_code = (PyCodeObject*) codeobj; #ifdef WITH_THREAD #define __Pyx_TraceCall(funcname, srcfile, firstlineno, nogil, goto_error)\ if (nogil) {\ if (CYTHON_TRACE_NOGIL) {\ PyThreadState *tstate;\ PyGILState_STATE state = PyGILState_Ensure();\ tstate = __Pyx_PyThreadState_Current;\ if (unlikely(tstate->use_tracing) && !tstate->tracing &&\ (tstate->c_profilefunc || (CYTHON_TRACE && tstate->c_tracefunc))) {\ __Pyx_use_tracing = __Pyx_TraceSetupAndCall(&__pyx_frame_code, &__pyx_frame, tstate, funcname, srcfile, firstlineno);\ }\ PyGILState_Release(state);\ if (unlikely(__Pyx_use_tracing < 0)) goto_error;\ }\ } else {\ PyThreadState* tstate = PyThreadState_GET();\ if (unlikely(tstate->use_tracing) && !tstate->tracing &&\ (tstate->c_profilefunc || (CYTHON_TRACE && tstate->c_tracefunc))) {\ __Pyx_use_tracing = __Pyx_TraceSetupAndCall(&__pyx_frame_code, &__pyx_frame, tstate, funcname, srcfile, firstlineno);\ if (unlikely(__Pyx_use_tracing < 0)) goto_error;\ }\ } #else #define __Pyx_TraceCall(funcname, srcfile, firstlineno, nogil, goto_error)\ { PyThreadState* tstate = PyThreadState_GET();\ if (unlikely(tstate->use_tracing) && !tstate->tracing &&\ (tstate->c_profilefunc || (CYTHON_TRACE && tstate->c_tracefunc))) {\ __Pyx_use_tracing = __Pyx_TraceSetupAndCall(&__pyx_frame_code, &__pyx_frame, tstate, funcname, srcfile, firstlineno);\ if (unlikely(__Pyx_use_tracing < 0)) goto_error;\ }\ } #endif #define __Pyx_TraceException()\ if (likely(!__Pyx_use_tracing)); else {\ PyThreadState* tstate = __Pyx_PyThreadState_Current;\ if (tstate->use_tracing &&\ (tstate->c_profilefunc || (CYTHON_TRACE && tstate->c_tracefunc))) {\ tstate->tracing++;\ tstate->use_tracing = 0;\ PyObject *exc_info = __Pyx_GetExceptionTuple(tstate);\ if (exc_info) {\ if (CYTHON_TRACE && tstate->c_tracefunc)\ tstate->c_tracefunc(\ tstate->c_traceobj, __pyx_frame, PyTrace_EXCEPTION, exc_info);\ tstate->c_profilefunc(\ tstate->c_profileobj, __pyx_frame, PyTrace_EXCEPTION, exc_info);\ Py_DECREF(exc_info);\ }\ tstate->use_tracing = 1;\ tstate->tracing--;\ }\ } static void __Pyx_call_return_trace_func(PyThreadState *tstate, PyFrameObject *frame, PyObject *result) { PyObject *type, *value, *traceback; __Pyx_ErrFetchInState(tstate, &type, &value, &traceback); tstate->tracing++; tstate->use_tracing = 0; if (CYTHON_TRACE && tstate->c_tracefunc) tstate->c_tracefunc(tstate->c_traceobj, frame, PyTrace_RETURN, result); if (tstate->c_profilefunc) tstate->c_profilefunc(tstate->c_profileobj, frame, PyTrace_RETURN, result); CYTHON_FRAME_DEL(frame); tstate->use_tracing = 1; tstate->tracing--; __Pyx_ErrRestoreInState(tstate, type, value, traceback); } #ifdef WITH_THREAD #define __Pyx_TraceReturn(result, nogil)\ if (likely(!__Pyx_use_tracing)); else {\ if (nogil) {\ if (CYTHON_TRACE_NOGIL) {\ PyThreadState *tstate;\ PyGILState_STATE state = PyGILState_Ensure();\ tstate = __Pyx_PyThreadState_Current;\ if (tstate->use_tracing) {\ __Pyx_call_return_trace_func(tstate, __pyx_frame, (PyObject*)result);\ }\ PyGILState_Release(state);\ }\ } else {\ PyThreadState* tstate = __Pyx_PyThreadState_Current;\ if (tstate->use_tracing) {\ __Pyx_call_return_trace_func(tstate, __pyx_frame, (PyObject*)result);\ }\ }\ } #else #define __Pyx_TraceReturn(result, nogil)\ if (likely(!__Pyx_use_tracing)); else {\ PyThreadState* tstate = __Pyx_PyThreadState_Current;\ if (tstate->use_tracing) {\ __Pyx_call_return_trace_func(tstate, __pyx_frame, (PyObject*)result);\ }\ } #endif static PyCodeObject *__Pyx_createFrameCodeObject(const char *funcname, const char *srcfile, int firstlineno); static int __Pyx_TraceSetupAndCall(PyCodeObject** code, PyFrameObject** frame, PyThreadState* tstate, const char *funcname, const char *srcfile, int firstlineno); #else #define __Pyx_TraceDeclarations #define __Pyx_TraceFrameInit(codeobj) #define __Pyx_TraceCall(funcname, srcfile, firstlineno, nogil, goto_error) if ((1)); else goto_error; #define __Pyx_TraceException() #define __Pyx_TraceReturn(result, nogil) #endif #if CYTHON_TRACE static int __Pyx_call_line_trace_func(PyThreadState *tstate, PyFrameObject *frame, int lineno) { int ret; PyObject *type, *value, *traceback; __Pyx_ErrFetchInState(tstate, &type, &value, &traceback); __Pyx_PyFrame_SetLineNumber(frame, lineno); tstate->tracing++; tstate->use_tracing = 0; ret = tstate->c_tracefunc(tstate->c_traceobj, frame, PyTrace_LINE, NULL); tstate->use_tracing = 1; tstate->tracing--; if (likely(!ret)) { __Pyx_ErrRestoreInState(tstate, type, value, traceback); } else { Py_XDECREF(type); Py_XDECREF(value); Py_XDECREF(traceback); } return ret; } #ifdef WITH_THREAD #define __Pyx_TraceLine(lineno, nogil, goto_error)\ if (likely(!__Pyx_use_tracing)); else {\ if (nogil) {\ if (CYTHON_TRACE_NOGIL) {\ int ret = 0;\ PyThreadState *tstate;\ PyGILState_STATE state = PyGILState_Ensure();\ tstate = __Pyx_PyThreadState_Current;\ if (unlikely(tstate->use_tracing && tstate->c_tracefunc && __pyx_frame->f_trace)) {\ ret = __Pyx_call_line_trace_func(tstate, __pyx_frame, lineno);\ }\ PyGILState_Release(state);\ if (unlikely(ret)) goto_error;\ }\ } else {\ PyThreadState* tstate = __Pyx_PyThreadState_Current;\ if (unlikely(tstate->use_tracing && tstate->c_tracefunc && __pyx_frame->f_trace)) {\ int ret = __Pyx_call_line_trace_func(tstate, __pyx_frame, lineno);\ if (unlikely(ret)) goto_error;\ }\ }\ } #else #define __Pyx_TraceLine(lineno, nogil, goto_error)\ if (likely(!__Pyx_use_tracing)); else {\ PyThreadState* tstate = __Pyx_PyThreadState_Current;\ if (unlikely(tstate->use_tracing && tstate->c_tracefunc && __pyx_frame->f_trace)) {\ int ret = __Pyx_call_line_trace_func(tstate, __pyx_frame, lineno);\ if (unlikely(ret)) goto_error;\ }\ } #endif #else #define __Pyx_TraceLine(lineno, nogil, goto_error) if ((1)); else goto_error; #endif /* PyDictVersioning.proto */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS #define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ (version_var) = __PYX_GET_DICT_VERSION(dict);\ (cache_var) = (value); #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ (VAR) = __pyx_dict_cached_value;\ } else {\ (VAR) = __pyx_dict_cached_value = (LOOKUP);\ __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ }\ } static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); #else #define __PYX_GET_DICT_VERSION(dict) (0) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); #endif /* GetModuleGlobalName.proto */ #if CYTHON_USE_DICT_VERSIONS #define __Pyx_GetModuleGlobalName(var, name) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\ (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\ __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } #define __Pyx_GetModuleGlobalNameUncached(var, name) {\ PY_UINT64_T __pyx_dict_version;\ PyObject *__pyx_dict_cached_value;\ (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value); #else #define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name) #define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name) static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name); #endif /* PyCFunctionFastCall.proto */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); #else #define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) #endif /* PyFunctionFastCall.proto */ #if CYTHON_FAST_PYCALL #define __Pyx_PyFunction_FastCall(func, args, nargs)\ __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); #else #define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) #endif #define __Pyx_BUILD_ASSERT_EXPR(cond)\ (sizeof(char [1 - 2*!(cond)]) - 1) #ifndef Py_MEMBER_SIZE #define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) #endif static size_t __pyx_pyframe_localsplus_offset = 0; #include "frameobject.h" #define __Pxy_PyFrame_Initialize_Offsets()\ ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) #define __Pyx_PyFrame_GetLocalsplus(frame)\ (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) #endif /* PyObjectCall.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); #else #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif /* PyObjectCall2Args.proto */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2); /* PyObjectCallMethO.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); #endif /* PyObjectCallOneArg.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); /* PyObjectSetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS #define __Pyx_PyObject_DelAttrStr(o,n) __Pyx_PyObject_SetAttrStr(o, n, NULL) static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value); #else #define __Pyx_PyObject_DelAttrStr(o,n) PyObject_DelAttr(o,n) #define __Pyx_PyObject_SetAttrStr(o,n,v) PyObject_SetAttr(o,n,v) #endif /* PyObjectCallNoArg.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func); #else #define __Pyx_PyObject_CallNoArg(func) __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL) #endif /* RaiseTooManyValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); /* RaiseNeedMoreValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); /* IterFinish.proto */ static CYTHON_INLINE int __Pyx_IterFinish(void); /* UnpackItemEndCheck.proto */ static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected); /* GetAttr.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); /* HasAttr.proto */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); /* IterNext.proto */ #define __Pyx_PyIter_Next(obj) __Pyx_PyIter_Next2(obj, NULL) static CYTHON_INLINE PyObject *__Pyx_PyIter_Next2(PyObject *, PyObject *); /* PyFloatBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyFloat_EqObjC(PyObject *op1, PyObject *op2, double floatval, int inplace, int zerodivision_check); #else #define __Pyx_PyFloat_EqObjC(op1, op2, floatval, inplace, zerodivision_check)\ (PyObject_RichCompare(op1, op2, Py_EQ)) #endif /* PyFloatBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyFloat_SubtractCObj(PyObject *op1, PyObject *op2, double floatval, int inplace, int zerodivision_check); #else #define __Pyx_PyFloat_SubtractCObj(op1, op2, floatval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceSubtract(op1, op2) : PyNumber_Subtract(op1, op2)) #endif /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) #endif /* GetItemInt.proto */ #define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ __Pyx_GetItemInt_Generic(o, to_py_func(i)))) #define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); #define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, int wraparound, int boundscheck); /* ObjectGetItem.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); #else #define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) #endif /* PyIntCompare.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_NeObjC(PyObject *op1, PyObject *op2, long intval, long inplace); /* RaiseException.proto */ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /* PyIntCompare.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_EqObjC(PyObject *op1, PyObject *op2, long intval, long inplace); /* PySequenceContains.proto */ static CYTHON_INLINE int __Pyx_PySequence_ContainsTF(PyObject* item, PyObject* seq, int eq) { int result = PySequence_Contains(seq, item); return unlikely(result < 0) ? result : (result == (eq == Py_EQ)); } /* SliceObject.proto */ #define __Pyx_PyObject_DelSlice(obj, cstart, cstop, py_start, py_stop, py_slice, has_cstart, has_cstop, wraparound)\ __Pyx_PyObject_SetSlice(obj, (PyObject*)NULL, cstart, cstop, py_start, py_stop, py_slice, has_cstart, has_cstop, wraparound) static CYTHON_INLINE int __Pyx_PyObject_SetSlice( PyObject* obj, PyObject* value, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** py_start, PyObject** py_stop, PyObject** py_slice, int has_cstart, int has_cstop, int wraparound); /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_SubtractObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_SubtractObjC(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceSubtract(op1, op2) : PyNumber_Subtract(op1, op2)) #endif /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_SubtractCObj(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_SubtractCObj(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceSubtract(op1, op2) : PyNumber_Subtract(op1, op2)) #endif /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddCObj(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_AddCObj(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) #endif /* IncludeStringH.proto */ #include <string.h> /* BytesEquals.proto */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); /* UnicodeEquals.proto */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); /* StrEquals.proto */ #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals #else #define __Pyx_PyString_Equals __Pyx_PyBytes_Equals #endif /* Import.proto */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /* ImportFrom.proto */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); /* KeywordStringCheck.proto */ static int __Pyx_CheckKeywordStrings(PyObject *kwdict, const char* function_name, int kw_allowed); /* dict_setdefault.proto */ static CYTHON_INLINE PyObject *__Pyx_PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *default_value, int is_safe_type); /* UnpackUnboundCMethod.proto */ typedef struct { PyObject *type; PyObject **method_name; PyCFunction func; PyObject *method; int flag; } __Pyx_CachedCFunction; /* CallUnboundCMethod2.proto */ static PyObject* __Pyx__CallUnboundCMethod2(__Pyx_CachedCFunction* cfunc, PyObject* self, PyObject* arg1, PyObject* arg2); #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030600B1 static CYTHON_INLINE PyObject *__Pyx_CallUnboundCMethod2(__Pyx_CachedCFunction *cfunc, PyObject *self, PyObject *arg1, PyObject *arg2); #else #define __Pyx_CallUnboundCMethod2(cfunc, self, arg1, arg2) __Pyx__CallUnboundCMethod2(cfunc, self, arg1, arg2) #endif /* PyFloatBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyFloat_AddCObj(PyObject *op1, PyObject *op2, double floatval, int inplace, int zerodivision_check); #else #define __Pyx_PyFloat_AddCObj(op1, op2, floatval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) #endif /* DictGetItem.proto */ #if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key); #define __Pyx_PyObject_Dict_GetItem(obj, name)\ (likely(PyDict_CheckExact(obj)) ?\ __Pyx_PyDict_GetItem(obj, name) : PyObject_GetItem(obj, name)) #else #define __Pyx_PyDict_GetItem(d, key) PyObject_GetItem(d, key) #define __Pyx_PyObject_Dict_GetItem(obj, name) PyObject_GetItem(obj, name) #endif /* CalculateMetaclass.proto */ static PyObject *__Pyx_CalculateMetaclass(PyTypeObject *metaclass, PyObject *bases); /* ClassMethod.proto */ #include "descrobject.h" static CYTHON_UNUSED PyObject* __Pyx_Method_ClassMethod(PyObject *method); /* FetchCommonType.proto */ static PyTypeObject* __Pyx_FetchCommonType(PyTypeObject* type); /* CythonFunctionShared.proto */ #define __Pyx_CyFunction_USED 1 #define __Pyx_CYFUNCTION_STATICMETHOD 0x01 #define __Pyx_CYFUNCTION_CLASSMETHOD 0x02 #define __Pyx_CYFUNCTION_CCLASS 0x04 #define __Pyx_CyFunction_GetClosure(f)\ (((__pyx_CyFunctionObject *) (f))->func_closure) #define __Pyx_CyFunction_GetClassObj(f)\ (((__pyx_CyFunctionObject *) (f))->func_classobj) #define __Pyx_CyFunction_Defaults(type, f)\ ((type *)(((__pyx_CyFunctionObject *) (f))->defaults)) #define __Pyx_CyFunction_SetDefaultsGetter(f, g)\ ((__pyx_CyFunctionObject *) (f))->defaults_getter = (g) typedef struct { PyCFunctionObject func; #if PY_VERSION_HEX < 0x030500A0 PyObject *func_weakreflist; #endif PyObject *func_dict; PyObject *func_name; PyObject *func_qualname; PyObject *func_doc; PyObject *func_globals; PyObject *func_code; PyObject *func_closure; PyObject *func_classobj; void *defaults; int defaults_pyobjects; size_t defaults_size; // used by FusedFunction for copying defaults int flags; PyObject *defaults_tuple; PyObject *defaults_kwdict; PyObject *(*defaults_getter)(PyObject *); PyObject *func_annotations; } __pyx_CyFunctionObject; static PyTypeObject *__pyx_CyFunctionType = 0; #define __Pyx_CyFunction_Check(obj) (__Pyx_TypeCheck(obj, __pyx_CyFunctionType)) static PyObject *__Pyx_CyFunction_Init(__pyx_CyFunctionObject* op, PyMethodDef *ml, int flags, PyObject* qualname, PyObject *self, PyObject *module, PyObject *globals, PyObject* code); static CYTHON_INLINE void *__Pyx_CyFunction_InitDefaults(PyObject *m, size_t size, int pyobjects); static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsTuple(PyObject *m, PyObject *tuple); static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsKwDict(PyObject *m, PyObject *dict); static CYTHON_INLINE void __Pyx_CyFunction_SetAnnotationsDict(PyObject *m, PyObject *dict); static int __pyx_CyFunction_init(void); /* CythonFunction.proto */ static PyObject *__Pyx_CyFunction_New(PyMethodDef *ml, int flags, PyObject* qualname, PyObject *closure, PyObject *module, PyObject *globals, PyObject* code); /* SetNameInClass.proto */ #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 #define __Pyx_SetNameInClass(ns, name, value)\ (likely(PyDict_CheckExact(ns)) ? _PyDict_SetItem_KnownHash(ns, name, value, ((PyASCIIObject *) name)->hash) : PyObject_SetItem(ns, name, value)) #elif CYTHON_COMPILING_IN_CPYTHON #define __Pyx_SetNameInClass(ns, name, value)\ (likely(PyDict_CheckExact(ns)) ? PyDict_SetItem(ns, name, value) : PyObject_SetItem(ns, name, value)) #else #define __Pyx_SetNameInClass(ns, name, value) PyObject_SetItem(ns, name, value) #endif /* Py3ClassCreate.proto */ static PyObject *__Pyx_Py3MetaclassPrepare(PyObject *metaclass, PyObject *bases, PyObject *name, PyObject *qualname, PyObject *mkw, PyObject *modname, PyObject *doc); static PyObject *__Pyx_Py3ClassCreate(PyObject *metaclass, PyObject *name, PyObject *bases, PyObject *dict, PyObject *mkw, int calculate_metaclass, int allow_py2_metaclass); /* CLineInTraceback.proto */ #ifdef CYTHON_CLINE_IN_TRACEBACK #define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) #else static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); #endif /* CodeObjectCache.proto */ typedef struct { PyCodeObject* code_object; int code_line; } __Pyx_CodeObjectCacheEntry; struct __Pyx_CodeObjectCache { int count; int max_count; __Pyx_CodeObjectCacheEntry* entries; }; static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); static PyCodeObject *__pyx_find_code_object(int code_line); static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); /* AddTraceback.proto */ static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); /* CIntFromPy.proto */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); /* FastTypeChecks.proto */ #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); #else #define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) #define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) #define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) #endif #define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); /* InitStrings.proto */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /* Module declarations from 'cython' */ /* Module declarations from 'libc.string' */ /* Module declarations from 'libc.math' */ /* Module declarations from 'libc.stdlib' */ /* Module declarations from 'libc.stdint' */ /* Module declarations from 'thinc.typedefs' */ /* Module declarations from 'thinc.neural.optimizers' */ #define __Pyx_MODULE_NAME "thinc.neural.optimizers" extern int __pyx_module_is_main_thinc__neural__optimizers; int __pyx_module_is_main_thinc__neural__optimizers = 0; /* Implementation of 'thinc.neural.optimizers' */ static PyObject *__pyx_builtin_object; static PyObject *__pyx_builtin_property; static PyObject *__pyx_builtin_NotImplementedError; static const char __pyx_k_f[] = "f"; static const char __pyx_k_L2[] = "L2"; static const char __pyx_k_b1[] = "b1"; static const char __pyx_k_b2[] = "b2"; static const char __pyx_k_lr[] = "lr"; static const char __pyx_k_xp[] = "xp"; static const char __pyx_k_SGD[] = "SGD"; static const char __pyx_k__47[] = "_"; static const char __pyx_k_cls[] = "cls"; static const char __pyx_k_doc[] = "__doc__"; static const char __pyx_k_eps[] = "eps"; static const char __pyx_k_get[] = "get"; static const char __pyx_k_key[] = "key"; static const char __pyx_k_ops[] = "ops"; static const char __pyx_k_r_t[] = "r_t"; static const char __pyx_k_Adam[] = "Adam"; static const char __pyx_k_adam[] = "_adam"; static const char __pyx_k_args[] = "args"; static const char __pyx_k_call[] = "__call__"; static const char __pyx_k_fill[] = "fill"; static const char __pyx_k_fix1[] = "fix1"; static const char __pyx_k_fix2[] = "fix2"; static const char __pyx_k_init[] = "__init__"; static const char __pyx_k_main[] = "__main__"; static const char __pyx_k_math[] = "math"; static const char __pyx_k_mom1[] = "mom1"; static const char __pyx_k_mom2[] = "mom2"; static const char __pyx_k_name[] = "__name__"; static const char __pyx_k_norm[] = "norm"; static const char __pyx_k_rate[] = "rate"; static const char __pyx_k_self[] = "self"; static const char __pyx_k_size[] = "size"; static const char __pyx_k_slow[] = "slow"; static const char __pyx_k_sqrt[] = "sqrt"; static const char __pyx_k_test[] = "__test__"; static const char __pyx_k_util[] = "util"; static const char __pyx_k_Model[] = "Model"; static const char __pyx_k_alpha[] = "alpha"; static const char __pyx_k_beta1[] = "beta1"; static const char __pyx_k_beta2[] = "beta2"; static const char __pyx_k_decay[] = "decay"; static const char __pyx_k_dtype[] = "dtype"; static const char __pyx_k_items[] = "items"; static const char __pyx_k_numpy[] = "numpy"; static const char __pyx_k_phi_p[] = "phi_p"; static const char __pyx_k_radam[] = "_radam"; static const char __pyx_k_shape[] = "shape"; static const char __pyx_k_sma_t[] = "sma_t"; static const char __pyx_k_value[] = "value"; static const char __pyx_k_SGD_v1[] = "SGD.v1"; static const char __pyx_k_adam_2[] = "adam"; static const char __pyx_k_anneal[] = "anneal"; static const char __pyx_k_config[] = "config"; static const char __pyx_k_import[] = "__import__"; static const char __pyx_k_kwargs[] = "kwargs"; static const char __pyx_k_linalg[] = "linalg"; static const char __pyx_k_module[] = "__module__"; static const char __pyx_k_nr_upd[] = "nr_upd"; static const char __pyx_k_object[] = "object"; static const char __pyx_k_params[] = "params"; static const char __pyx_k_setter[] = "setter"; static const char __pyx_k_to_cpu[] = "to_cpu"; static const char __pyx_k_to_gpu[] = "to_gpu"; static const char __pyx_k_u_norm[] = "u_norm"; static const char __pyx_k_update[] = "update"; static const char __pyx_k_w_norm[] = "w_norm"; static const char __pyx_k_Adam_v1[] = "Adam.v1"; static const char __pyx_k_CupyOps[] = "CupyOps"; static const char __pyx_k_asarray[] = "asarray"; static const char __pyx_k_exp_avg[] = "exp_avg"; static const char __pyx_k_float32[] = "float32"; static const char __pyx_k_prepare[] = "__prepare__"; static const char __pyx_k_sma_inf[] = "sma_inf"; static const char __pyx_k_weights[] = "weights"; static const char __pyx_k_NumpyOps[] = "NumpyOps"; static const char __pyx_k_RAdam_v1[] = "RAdam.v1"; static const char __pyx_k_allocate[] = "allocate"; static const char __pyx_k_averages[] = "averages"; static const char __pyx_k_b1_decay[] = "b1_decay"; static const char __pyx_k_b2_decay[] = "b2_decay"; static const char __pyx_k_gradient[] = "gradient"; static const char __pyx_k_lars_max[] = "lars_max"; static const char __pyx_k_lars_min[] = "lars_min"; static const char __pyx_k_local_lr[] = "local_lr"; static const char __pyx_k_lr_scale[] = "lr_scale"; static const char __pyx_k_make_ops[] = "_make_ops"; static const char __pyx_k_momentum[] = "momentum"; static const char __pyx_k_nesterov[] = "nesterov"; static const char __pyx_k_property[] = "property"; static const char __pyx_k_qualname[] = "__qualname__"; static const char __pyx_k_register[] = "register"; static const char __pyx_k_registry[] = "registry"; static const char __pyx_k_schedule[] = "schedule"; static const char __pyx_k_use_lars[] = "use_lars"; static const char __pyx_k_Optimizer[] = "Optimizer"; static const char __pyx_k_last_seen[] = "last_seen"; static const char __pyx_k_metaclass[] = "__metaclass__"; static const char __pyx_k_nr_update[] = "nr_update"; static const char __pyx_k_schedules[] = "schedules"; static const char __pyx_k_use_radam[] = "use_radam"; static const char __pyx_k_create_SGD[] = "create_SGD"; static const char __pyx_k_exp_avg_sq[] = "exp_avg_sq"; static const char __pyx_k_learn_rate[] = "learn_rate"; static const char __pyx_k_nesterov_2[] = "_nesterov"; static const char __pyx_k_optimizers[] = "optimizers"; static const char __pyx_k_registry_2[] = "_registry"; static const char __pyx_k_setdefault[] = "setdefault"; static const char __pyx_k_collections[] = "collections"; static const char __pyx_k_create_Adam[] = "create_Adam"; static const char __pyx_k_decay_steps[] = "decay_steps"; static const char __pyx_k_defaultdict[] = "defaultdict"; static const char __pyx_k_from_config[] = "from_config"; static const char __pyx_k_lookahead_k[] = "lookahead_k"; static const char __pyx_k_Optimizer_lr[] = "Optimizer.lr"; static const char __pyx_k_SGD_DEFAULTS[] = "SGD_DEFAULTS"; static const char __pyx_k_create_RAdam[] = "create_RAdam"; static const char __pyx_k_linear_decay[] = "linear_decay"; static const char __pyx_k_slow_weights[] = "slow_weights"; static const char __pyx_k_use_averages[] = "use_averages"; static const char __pyx_k_ADAM_DEFAULTS[] = "ADAM_DEFAULTS"; static const char __pyx_k_classes_model[] = "_classes.model"; static const char __pyx_k_clip_gradient[] = "clip_gradient"; static const char __pyx_k_max_grad_norm[] = "max_grad_norm"; static const char __pyx_k_gradient_noise[] = "gradient_noise"; static const char __pyx_k_optimizers_pyx[] = "optimizers.pyx"; static const char __pyx_k_step_schedules[] = "step_schedules"; static const char __pyx_k_Optimizer__adam[] = "Optimizer._adam"; static const char __pyx_k_lookahead_alpha[] = "lookahead_alpha"; static const char __pyx_k_update_averages[] = "update_averages"; static const char __pyx_k_Optimizer___call[] = "Optimizer.__call__"; static const char __pyx_k_Optimizer___init[] = "Optimizer.__init__"; static const char __pyx_k_Optimizer__radam[] = "Optimizer._radam"; static const char __pyx_k_Optimizer_to_cpu[] = "Optimizer.to_cpu"; static const char __pyx_k_Optimizer_to_gpu[] = "Optimizer.to_gpu"; static const char __pyx_k_bias_correction1[] = "bias_correction1"; static const char __pyx_k_bias_correction2[] = "bias_correction2"; static const char __pyx_k_get_array_module[] = "get_array_module"; static const char __pyx_k_make_from_config[] = "make_from_config"; static const char __pyx_k_L2_is_weight_decay[] = "L2_is_weight_decay"; static const char __pyx_k_add_gradient_noise[] = "add_gradient_noise"; static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; static const char __pyx_k_NotImplementedError[] = "NotImplementedError"; static const char __pyx_k_Optimizer__nesterov[] = "Optimizer._nesterov"; static const char __pyx_k_Optimizer_learn_rate[] = "Optimizer.learn_rate"; static const char __pyx_k_Optimizer_from_config[] = "Optimizer.from_config"; static const char __pyx_k_thinc_neural_optimizers[] = "thinc.neural.optimizers"; static const char __pyx_k_Optimizer_step_schedules[] = "Optimizer.step_schedules"; static const char __pyx_k_Do_various_flavours_of_stochasti[] = "Do various flavours of stochastic gradient descent, with first and\n second order momentum.\n \n Examples\n \n * beta1=0., beta2=0.: \"vanilla\" SGD\n * beta1=0.9, beta2=0.: \"Classic momentum\"\n * beta1=0.0, beta2=0.2: RMS prop\n * b1=0.999, b2=0.9: Adam\n "; static PyObject *__pyx_n_s_ADAM_DEFAULTS; static PyObject *__pyx_n_s_Adam; static PyObject *__pyx_kp_s_Adam_v1; static PyObject *__pyx_n_s_CupyOps; static PyObject *__pyx_kp_s_Do_various_flavours_of_stochasti; static PyObject *__pyx_n_s_L2; static PyObject *__pyx_n_s_L2_is_weight_decay; static PyObject *__pyx_n_s_Model; static PyObject *__pyx_n_s_NotImplementedError; static PyObject *__pyx_n_s_NumpyOps; static PyObject *__pyx_n_s_Optimizer; static PyObject *__pyx_n_s_Optimizer___call; static PyObject *__pyx_n_s_Optimizer___init; static PyObject *__pyx_n_s_Optimizer__adam; static PyObject *__pyx_n_s_Optimizer__nesterov; static PyObject *__pyx_n_s_Optimizer__radam; static PyObject *__pyx_n_s_Optimizer_from_config; static PyObject *__pyx_n_s_Optimizer_learn_rate; static PyObject *__pyx_n_s_Optimizer_lr; static PyObject *__pyx_n_s_Optimizer_step_schedules; static PyObject *__pyx_n_s_Optimizer_to_cpu; static PyObject *__pyx_n_s_Optimizer_to_gpu; static PyObject *__pyx_kp_s_RAdam_v1; static PyObject *__pyx_n_s_SGD; static PyObject *__pyx_n_s_SGD_DEFAULTS; static PyObject *__pyx_kp_s_SGD_v1; static PyObject *__pyx_n_s__47; static PyObject *__pyx_n_s_adam; static PyObject *__pyx_n_s_adam_2; static PyObject *__pyx_n_s_add_gradient_noise; static PyObject *__pyx_n_s_allocate; static PyObject *__pyx_n_s_alpha; static PyObject *__pyx_n_s_anneal; static PyObject *__pyx_n_s_args; static PyObject *__pyx_n_s_asarray; static PyObject *__pyx_n_s_averages; static PyObject *__pyx_n_s_b1; static PyObject *__pyx_n_s_b1_decay; static PyObject *__pyx_n_s_b2; static PyObject *__pyx_n_s_b2_decay; static PyObject *__pyx_n_s_beta1; static PyObject *__pyx_n_s_beta2; static PyObject *__pyx_n_s_bias_correction1; static PyObject *__pyx_n_s_bias_correction2; static PyObject *__pyx_n_s_call; static PyObject *__pyx_n_s_classes_model; static PyObject *__pyx_n_s_cline_in_traceback; static PyObject *__pyx_n_s_clip_gradient; static PyObject *__pyx_n_s_cls; static PyObject *__pyx_n_s_collections; static PyObject *__pyx_n_s_config; static PyObject *__pyx_n_s_create_Adam; static PyObject *__pyx_n_s_create_RAdam; static PyObject *__pyx_n_s_create_SGD; static PyObject *__pyx_n_s_decay; static PyObject *__pyx_n_s_decay_steps; static PyObject *__pyx_n_s_defaultdict; static PyObject *__pyx_n_s_doc; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_eps; static PyObject *__pyx_n_s_exp_avg; static PyObject *__pyx_n_s_exp_avg_sq; static PyObject *__pyx_n_s_f; static PyObject *__pyx_n_s_fill; static PyObject *__pyx_n_s_fix1; static PyObject *__pyx_n_s_fix2; static PyObject *__pyx_n_s_float32; static PyObject *__pyx_n_s_from_config; static PyObject *__pyx_n_s_get; static PyObject *__pyx_n_s_get_array_module; static PyObject *__pyx_n_s_gradient; static PyObject *__pyx_n_s_gradient_noise; static PyObject *__pyx_n_s_import; static PyObject *__pyx_n_s_init; static PyObject *__pyx_n_s_items; static PyObject *__pyx_n_s_key; static PyObject *__pyx_n_s_kwargs; static PyObject *__pyx_n_s_lars_max; static PyObject *__pyx_n_s_lars_min; static PyObject *__pyx_n_s_last_seen; static PyObject *__pyx_n_s_learn_rate; static PyObject *__pyx_n_s_linalg; static PyObject *__pyx_n_s_linear_decay; static PyObject *__pyx_n_s_local_lr; static PyObject *__pyx_n_s_lookahead_alpha; static PyObject *__pyx_n_s_lookahead_k; static PyObject *__pyx_n_s_lr; static PyObject *__pyx_n_s_lr_scale; static PyObject *__pyx_n_s_main; static PyObject *__pyx_n_s_make_from_config; static PyObject *__pyx_n_s_make_ops; static PyObject *__pyx_n_s_math; static PyObject *__pyx_n_s_max_grad_norm; static PyObject *__pyx_n_s_metaclass; static PyObject *__pyx_n_s_module; static PyObject *__pyx_n_s_mom1; static PyObject *__pyx_n_s_mom2; static PyObject *__pyx_n_s_momentum; static PyObject *__pyx_n_s_name; static PyObject *__pyx_n_s_nesterov; static PyObject *__pyx_n_s_nesterov_2; static PyObject *__pyx_n_s_norm; static PyObject *__pyx_n_s_nr_upd; static PyObject *__pyx_n_s_nr_update; static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_n_s_object; static PyObject *__pyx_n_s_ops; static PyObject *__pyx_n_s_optimizers; static PyObject *__pyx_kp_s_optimizers_pyx; static PyObject *__pyx_n_s_params; static PyObject *__pyx_n_s_phi_p; static PyObject *__pyx_n_s_prepare; static PyObject *__pyx_n_s_property; static PyObject *__pyx_n_s_qualname; static PyObject *__pyx_n_s_r_t; static PyObject *__pyx_n_s_radam; static PyObject *__pyx_n_s_rate; static PyObject *__pyx_n_s_register; static PyObject *__pyx_n_s_registry; static PyObject *__pyx_n_s_registry_2; static PyObject *__pyx_n_s_schedule; static PyObject *__pyx_n_s_schedules; static PyObject *__pyx_n_s_self; static PyObject *__pyx_n_s_setdefault; static PyObject *__pyx_n_s_setter; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_n_s_size; static PyObject *__pyx_n_s_slow; static PyObject *__pyx_n_s_slow_weights; static PyObject *__pyx_n_s_sma_inf; static PyObject *__pyx_n_s_sma_t; static PyObject *__pyx_n_s_sqrt; static PyObject *__pyx_n_s_step_schedules; static PyObject *__pyx_n_s_test; static PyObject *__pyx_n_s_thinc_neural_optimizers; static PyObject *__pyx_n_s_to_cpu; static PyObject *__pyx_n_s_to_gpu; static PyObject *__pyx_n_s_u_norm; static PyObject *__pyx_n_s_update; static PyObject *__pyx_n_s_update_averages; static PyObject *__pyx_n_s_use_averages; static PyObject *__pyx_n_s_use_lars; static PyObject *__pyx_n_s_use_radam; static PyObject *__pyx_n_s_util; static PyObject *__pyx_n_s_value; static PyObject *__pyx_n_s_w_norm; static PyObject *__pyx_n_s_weights; static PyObject *__pyx_n_s_xp; static PyObject *__pyx_pf_5thinc_6neural_10optimizers_create_RAdam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_learn_rate, PyObject *__pyx_v_L2, PyObject *__pyx_v_beta1, PyObject *__pyx_v_beta2, PyObject *__pyx_v_eps, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_L2_is_weight_decay, CYTHON_UNUSED PyObject *__pyx_v_use_averages, PyObject *__pyx_v_schedules, PyObject *__pyx_v_ops); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_2create_Adam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_learn_rate, PyObject *__pyx_v_L2, PyObject *__pyx_v_beta1, PyObject *__pyx_v_beta2, PyObject *__pyx_v_eps, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_L2_is_weight_decay, CYTHON_UNUSED PyObject *__pyx_v_use_averages, PyObject *__pyx_v_ops, PyObject *__pyx_v_schedules); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_4create_SGD(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_learn_rate, PyObject *__pyx_v_ops, PyObject *__pyx_v_L2, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_L2_is_weight_decay, CYTHON_UNUSED PyObject *__pyx_v_use_averages, PyObject *__pyx_v_schedules); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_from_config(CYTHON_UNUSED PyObject *__pyx_self, CYTHON_UNUSED PyObject *__pyx_v_cls, PyObject *__pyx_v_config); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_2__init__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_ops, PyObject *__pyx_v_lr, PyObject *__pyx_v_L2, PyObject *__pyx_v_beta1, PyObject *__pyx_v_beta2, PyObject *__pyx_v_eps, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_gradient_noise, PyObject *__pyx_v_nesterov, PyObject *__pyx_v_L2_is_weight_decay, PyObject *__pyx_v_lookahead_k, PyObject *__pyx_v_lookahead_alpha, PyObject *__pyx_v_use_averages, PyObject *__pyx_v_use_radam, PyObject *__pyx_v_use_lars, PyObject *__pyx_v_schedule, CYTHON_UNUSED PyObject *__pyx_v__); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_4to_gpu(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_6to_cpu(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_8step_schedules(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_10learn_rate(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_12learn_rate(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_learn_rate); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_14lr(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_nr_upd); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_16__call__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_18_radam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v_xp, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key, PyObject *__pyx_v_nr_upd); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_20_nesterov(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v_xp, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_22_adam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v_xp, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key, PyObject *__pyx_v_nr_upd); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_6_make_ops(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_ops); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_8Adam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_10SGD(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_12linear_decay(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_rate, PyObject *__pyx_v_decay, PyObject *__pyx_v_nr_upd); /* proto */ static PyObject *__pyx_pf_5thinc_6neural_10optimizers_14anneal(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_rate, PyObject *__pyx_v_decay, PyObject *__pyx_v_decay_steps, PyObject *__pyx_v_nr_upd); /* proto */ static __Pyx_CachedCFunction __pyx_umethod_PyDict_Type_setdefault = {0, &__pyx_n_s_setdefault, 0, 0, 0}; static PyObject *__pyx_float_0_; static PyObject *__pyx_float_1_; static PyObject *__pyx_float_0_0; static PyObject *__pyx_float_0_5; static PyObject *__pyx_float_0_9; static PyObject *__pyx_float_10_; static PyObject *__pyx_float_0_90; static PyObject *__pyx_float_1eneg_4; static PyObject *__pyx_float_0_001; static PyObject *__pyx_float_0_999; static PyObject *__pyx_float_1eneg_08; static PyObject *__pyx_int_0; static PyObject *__pyx_int_1; static PyObject *__pyx_int_2; static PyObject *__pyx_int_4; static PyObject *__pyx_int_10; static PyObject *__pyx_k_; static PyObject *__pyx_k__2; static PyObject *__pyx_k__3; static PyObject *__pyx_k__4; static PyObject *__pyx_k__5; static PyObject *__pyx_k__6; static PyObject *__pyx_k__7; static PyObject *__pyx_k__9; static PyObject *__pyx_k__10; static PyObject *__pyx_k__11; static PyObject *__pyx_k__12; static PyObject *__pyx_k__13; static PyObject *__pyx_k__14; static PyObject *__pyx_k__15; static PyObject *__pyx_k__17; static PyObject *__pyx_k__18; static PyObject *__pyx_k__19; static PyObject *__pyx_slice__30; static PyObject *__pyx_tuple__39; static PyObject *__pyx_tuple__40; static PyObject *__pyx_tuple__41; static PyObject *__pyx_tuple__42; static PyObject *__pyx_tuple__43; static PyObject *__pyx_tuple__44; static PyObject *__pyx_tuple__45; static PyObject *__pyx_tuple__46; static PyObject *__pyx_tuple__48; static PyObject *__pyx_tuple__49; static PyObject *__pyx_tuple__50; static PyObject *__pyx_tuple__51; static PyObject *__pyx_tuple__52; static PyObject *__pyx_tuple__53; static PyObject *__pyx_tuple__54; static PyObject *__pyx_tuple__55; static PyObject *__pyx_tuple__56; static PyObject *__pyx_tuple__57; static PyObject *__pyx_tuple__58; static PyObject *__pyx_tuple__59; static PyObject *__pyx_tuple__60; static PyObject *__pyx_tuple__61; static PyObject *__pyx_tuple__62; static PyObject *__pyx_tuple__63; static PyObject *__pyx_tuple__64; static PyObject *__pyx_tuple__65; static PyObject *__pyx_codeobj__8; static PyObject *__pyx_codeobj__16; static PyObject *__pyx_codeobj__20; static PyObject *__pyx_codeobj__21; static PyObject *__pyx_codeobj__22; static PyObject *__pyx_codeobj__23; static PyObject *__pyx_codeobj__24; static PyObject *__pyx_codeobj__25; static PyObject *__pyx_codeobj__26; static PyObject *__pyx_codeobj__27; static PyObject *__pyx_codeobj__28; static PyObject *__pyx_codeobj__29; static PyObject *__pyx_codeobj__31; static PyObject *__pyx_codeobj__32; static PyObject *__pyx_codeobj__33; static PyObject *__pyx_codeobj__34; static PyObject *__pyx_codeobj__35; static PyObject *__pyx_codeobj__36; static PyObject *__pyx_codeobj__37; static PyObject *__pyx_codeobj__38; /* Late includes */ /* "thinc/neural/optimizers.pyx":39 * * @registry.optimizers.register("RAdam.v1") * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_1create_RAdam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_1create_RAdam = {"create_RAdam", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_1create_RAdam, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_1create_RAdam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_learn_rate = 0; PyObject *__pyx_v_L2 = 0; PyObject *__pyx_v_beta1 = 0; PyObject *__pyx_v_beta2 = 0; PyObject *__pyx_v_eps = 0; PyObject *__pyx_v_max_grad_norm = 0; PyObject *__pyx_v_L2_is_weight_decay = 0; CYTHON_UNUSED PyObject *__pyx_v_use_averages = 0; PyObject *__pyx_v_schedules = 0; PyObject *__pyx_v_ops = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("create_RAdam (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_learn_rate,&__pyx_n_s_L2,&__pyx_n_s_beta1,&__pyx_n_s_beta2,&__pyx_n_s_eps,&__pyx_n_s_max_grad_norm,&__pyx_n_s_L2_is_weight_decay,&__pyx_n_s_use_averages,&__pyx_n_s_schedules,&__pyx_n_s_ops,0}; PyObject* values[10] = {0,0,0,0,0,0,0,0,0,0}; values[0] = __pyx_k_; values[1] = __pyx_k__2; values[2] = __pyx_k__3; values[3] = __pyx_k__4; values[4] = __pyx_k__5; values[5] = __pyx_k__6; values[6] = __pyx_k__7; /* "thinc/neural/optimizers.pyx":46 * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], * use_averages=True, # <<<<<<<<<<<<<< * schedules=None, * ops=None, */ values[7] = ((PyObject *)Py_True); /* "thinc/neural/optimizers.pyx":47 * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], * use_averages=True, * schedules=None, # <<<<<<<<<<<<<< * ops=None, * ): */ values[8] = ((PyObject *)Py_None); /* "thinc/neural/optimizers.pyx":48 * use_averages=True, * schedules=None, * ops=None, # <<<<<<<<<<<<<< * ): * ops = _make_ops(ops) */ values[9] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 10: values[9] = PyTuple_GET_ITEM(__pyx_args, 9); CYTHON_FALLTHROUGH; case 9: values[8] = PyTuple_GET_ITEM(__pyx_args, 8); CYTHON_FALLTHROUGH; case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_learn_rate); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_beta1); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_beta2); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_eps); if (value) { values[4] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 5: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_max_grad_norm); if (value) { values[5] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 6: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2_is_weight_decay); if (value) { values[6] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 7: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_use_averages); if (value) { values[7] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 8: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_schedules); if (value) { values[8] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 9: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_ops); if (value) { values[9] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "create_RAdam") < 0)) __PYX_ERR(0, 39, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 10: values[9] = PyTuple_GET_ITEM(__pyx_args, 9); CYTHON_FALLTHROUGH; case 9: values[8] = PyTuple_GET_ITEM(__pyx_args, 8); CYTHON_FALLTHROUGH; case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_learn_rate = values[0]; __pyx_v_L2 = values[1]; __pyx_v_beta1 = values[2]; __pyx_v_beta2 = values[3]; __pyx_v_eps = values[4]; __pyx_v_max_grad_norm = values[5]; __pyx_v_L2_is_weight_decay = values[6]; __pyx_v_use_averages = values[7]; __pyx_v_schedules = values[8]; __pyx_v_ops = values[9]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("create_RAdam", 0, 0, 10, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 39, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.create_RAdam", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_create_RAdam(__pyx_self, __pyx_v_learn_rate, __pyx_v_L2, __pyx_v_beta1, __pyx_v_beta2, __pyx_v_eps, __pyx_v_max_grad_norm, __pyx_v_L2_is_weight_decay, __pyx_v_use_averages, __pyx_v_schedules, __pyx_v_ops); /* "thinc/neural/optimizers.pyx":39 * * @registry.optimizers.register("RAdam.v1") * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_create_RAdam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_learn_rate, PyObject *__pyx_v_L2, PyObject *__pyx_v_beta1, PyObject *__pyx_v_beta2, PyObject *__pyx_v_eps, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_L2_is_weight_decay, CYTHON_UNUSED PyObject *__pyx_v_use_averages, PyObject *__pyx_v_schedules, PyObject *__pyx_v_ops) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__8) __Pyx_RefNannySetupContext("create_RAdam", 0); __Pyx_TraceCall("create_RAdam", __pyx_f[0], 39, 0, __PYX_ERR(0, 39, __pyx_L1_error)); __Pyx_INCREF(__pyx_v_ops); /* "thinc/neural/optimizers.pyx":50 * ops=None, * ): * ops = _make_ops(ops) # <<<<<<<<<<<<<< * return Optimizer( * ops, */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_make_ops); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 50, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_3, __pyx_v_ops) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_ops); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 50, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_ops, __pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":51 * ): * ops = _make_ops(ops) * return Optimizer( # <<<<<<<<<<<<<< * ops, * learn_rate, */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Optimizer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 51, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); /* "thinc/neural/optimizers.pyx":53 * return Optimizer( * ops, * learn_rate, # <<<<<<<<<<<<<< * L2=L2, * beta1=beta1, */ __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 51, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_ops); __Pyx_GIVEREF(__pyx_v_ops); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_ops); __Pyx_INCREF(__pyx_v_learn_rate); __Pyx_GIVEREF(__pyx_v_learn_rate); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_learn_rate); /* "thinc/neural/optimizers.pyx":54 * ops, * learn_rate, * L2=L2, # <<<<<<<<<<<<<< * beta1=beta1, * beta2=beta2, */ __pyx_t_3 = __Pyx_PyDict_NewPresized(13); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 54, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_L2, __pyx_v_L2) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":55 * learn_rate, * L2=L2, * beta1=beta1, # <<<<<<<<<<<<<< * beta2=beta2, * eps=eps, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_beta1, __pyx_v_beta1) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":56 * L2=L2, * beta1=beta1, * beta2=beta2, # <<<<<<<<<<<<<< * eps=eps, * max_grad_norm=max_grad_norm, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_beta2, __pyx_v_beta2) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":57 * beta1=beta1, * beta2=beta2, * eps=eps, # <<<<<<<<<<<<<< * max_grad_norm=max_grad_norm, * L2_is_weight_decay=L2_is_weight_decay, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_eps, __pyx_v_eps) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":58 * beta2=beta2, * eps=eps, * max_grad_norm=max_grad_norm, # <<<<<<<<<<<<<< * L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_max_grad_norm, __pyx_v_max_grad_norm) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":59 * eps=eps, * max_grad_norm=max_grad_norm, * L2_is_weight_decay=L2_is_weight_decay, # <<<<<<<<<<<<<< * schedules=schedules, * nesterov=None, lookahead_k=0, lookahead_alpha=0, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_L2_is_weight_decay, __pyx_v_L2_is_weight_decay) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":60 * max_grad_norm=max_grad_norm, * L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, # <<<<<<<<<<<<<< * nesterov=None, lookahead_k=0, lookahead_alpha=0, * use_averages=True, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_schedules, __pyx_v_schedules) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":61 * L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, * nesterov=None, lookahead_k=0, lookahead_alpha=0, # <<<<<<<<<<<<<< * use_averages=True, * use_radam=True, use_lars=False */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_nesterov, Py_None) < 0) __PYX_ERR(0, 54, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_lookahead_k, __pyx_int_0) < 0) __PYX_ERR(0, 54, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_lookahead_alpha, __pyx_int_0) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":62 * schedules=schedules, * nesterov=None, lookahead_k=0, lookahead_alpha=0, * use_averages=True, # <<<<<<<<<<<<<< * use_radam=True, use_lars=False * ) */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_use_averages, Py_True) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":63 * nesterov=None, lookahead_k=0, lookahead_alpha=0, * use_averages=True, * use_radam=True, use_lars=False # <<<<<<<<<<<<<< * ) * */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_use_radam, Py_True) < 0) __PYX_ERR(0, 54, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_use_lars, Py_False) < 0) __PYX_ERR(0, 54, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":51 * ): * ops = _make_ops(ops) * return Optimizer( # <<<<<<<<<<<<<< * ops, * learn_rate, */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 51, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":39 * * @registry.optimizers.register("RAdam.v1") * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("thinc.neural.optimizers.create_RAdam", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_ops); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":68 * * @registry.optimizers.register("Adam.v1") * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_3create_Adam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_3create_Adam = {"create_Adam", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_3create_Adam, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_3create_Adam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_learn_rate = 0; PyObject *__pyx_v_L2 = 0; PyObject *__pyx_v_beta1 = 0; PyObject *__pyx_v_beta2 = 0; PyObject *__pyx_v_eps = 0; PyObject *__pyx_v_max_grad_norm = 0; PyObject *__pyx_v_L2_is_weight_decay = 0; CYTHON_UNUSED PyObject *__pyx_v_use_averages = 0; PyObject *__pyx_v_ops = 0; PyObject *__pyx_v_schedules = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("create_Adam (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_learn_rate,&__pyx_n_s_L2,&__pyx_n_s_beta1,&__pyx_n_s_beta2,&__pyx_n_s_eps,&__pyx_n_s_max_grad_norm,&__pyx_n_s_L2_is_weight_decay,&__pyx_n_s_use_averages,&__pyx_n_s_ops,&__pyx_n_s_schedules,0}; PyObject* values[10] = {0,0,0,0,0,0,0,0,0,0}; values[0] = __pyx_k__9; values[1] = __pyx_k__10; values[2] = __pyx_k__11; values[3] = __pyx_k__12; values[4] = __pyx_k__13; values[5] = __pyx_k__14; values[6] = __pyx_k__15; /* "thinc/neural/optimizers.pyx":75 * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], * use_averages=True, # <<<<<<<<<<<<<< * ops=None, * schedules=None */ values[7] = ((PyObject *)Py_True); /* "thinc/neural/optimizers.pyx":76 * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], * use_averages=True, * ops=None, # <<<<<<<<<<<<<< * schedules=None * ): */ values[8] = ((PyObject *)Py_None); /* "thinc/neural/optimizers.pyx":77 * use_averages=True, * ops=None, * schedules=None # <<<<<<<<<<<<<< * ): * ops = _make_ops(ops) */ values[9] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 10: values[9] = PyTuple_GET_ITEM(__pyx_args, 9); CYTHON_FALLTHROUGH; case 9: values[8] = PyTuple_GET_ITEM(__pyx_args, 8); CYTHON_FALLTHROUGH; case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_learn_rate); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_beta1); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_beta2); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_eps); if (value) { values[4] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 5: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_max_grad_norm); if (value) { values[5] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 6: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2_is_weight_decay); if (value) { values[6] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 7: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_use_averages); if (value) { values[7] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 8: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_ops); if (value) { values[8] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 9: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_schedules); if (value) { values[9] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "create_Adam") < 0)) __PYX_ERR(0, 68, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 10: values[9] = PyTuple_GET_ITEM(__pyx_args, 9); CYTHON_FALLTHROUGH; case 9: values[8] = PyTuple_GET_ITEM(__pyx_args, 8); CYTHON_FALLTHROUGH; case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_learn_rate = values[0]; __pyx_v_L2 = values[1]; __pyx_v_beta1 = values[2]; __pyx_v_beta2 = values[3]; __pyx_v_eps = values[4]; __pyx_v_max_grad_norm = values[5]; __pyx_v_L2_is_weight_decay = values[6]; __pyx_v_use_averages = values[7]; __pyx_v_ops = values[8]; __pyx_v_schedules = values[9]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("create_Adam", 0, 0, 10, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 68, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.create_Adam", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_2create_Adam(__pyx_self, __pyx_v_learn_rate, __pyx_v_L2, __pyx_v_beta1, __pyx_v_beta2, __pyx_v_eps, __pyx_v_max_grad_norm, __pyx_v_L2_is_weight_decay, __pyx_v_use_averages, __pyx_v_ops, __pyx_v_schedules); /* "thinc/neural/optimizers.pyx":68 * * @registry.optimizers.register("Adam.v1") * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_2create_Adam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_learn_rate, PyObject *__pyx_v_L2, PyObject *__pyx_v_beta1, PyObject *__pyx_v_beta2, PyObject *__pyx_v_eps, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_L2_is_weight_decay, CYTHON_UNUSED PyObject *__pyx_v_use_averages, PyObject *__pyx_v_ops, PyObject *__pyx_v_schedules) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__16) __Pyx_RefNannySetupContext("create_Adam", 0); __Pyx_TraceCall("create_Adam", __pyx_f[0], 68, 0, __PYX_ERR(0, 68, __pyx_L1_error)); __Pyx_INCREF(__pyx_v_ops); /* "thinc/neural/optimizers.pyx":79 * schedules=None * ): * ops = _make_ops(ops) # <<<<<<<<<<<<<< * return Optimizer( * ops, */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_make_ops); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 79, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_3, __pyx_v_ops) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_ops); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 79, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_ops, __pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":80 * ): * ops = _make_ops(ops) * return Optimizer( # <<<<<<<<<<<<<< * ops, * learn_rate, */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Optimizer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); /* "thinc/neural/optimizers.pyx":82 * return Optimizer( * ops, * learn_rate, # <<<<<<<<<<<<<< * L2=L2, * beta1=beta1, */ __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_ops); __Pyx_GIVEREF(__pyx_v_ops); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_ops); __Pyx_INCREF(__pyx_v_learn_rate); __Pyx_GIVEREF(__pyx_v_learn_rate); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_learn_rate); /* "thinc/neural/optimizers.pyx":83 * ops, * learn_rate, * L2=L2, # <<<<<<<<<<<<<< * beta1=beta1, * beta2=beta2, */ __pyx_t_3 = __Pyx_PyDict_NewPresized(17); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_L2, __pyx_v_L2) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":84 * learn_rate, * L2=L2, * beta1=beta1, # <<<<<<<<<<<<<< * beta2=beta2, * eps=eps, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_beta1, __pyx_v_beta1) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":85 * L2=L2, * beta1=beta1, * beta2=beta2, # <<<<<<<<<<<<<< * eps=eps, * max_grad_norm=max_grad_norm, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_beta2, __pyx_v_beta2) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":86 * beta1=beta1, * beta2=beta2, * eps=eps, # <<<<<<<<<<<<<< * max_grad_norm=max_grad_norm, * L2_is_weight_decay=L2_is_weight_decay, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_eps, __pyx_v_eps) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":87 * beta2=beta2, * eps=eps, * max_grad_norm=max_grad_norm, # <<<<<<<<<<<<<< * L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_max_grad_norm, __pyx_v_max_grad_norm) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":88 * eps=eps, * max_grad_norm=max_grad_norm, * L2_is_weight_decay=L2_is_weight_decay, # <<<<<<<<<<<<<< * schedules=schedules, * use_averages=True, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_L2_is_weight_decay, __pyx_v_L2_is_weight_decay) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":89 * max_grad_norm=max_grad_norm, * L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, # <<<<<<<<<<<<<< * use_averages=True, * decay=0.0, decay_steps=0, b1_decay=0, b2_decay=0, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_schedules, __pyx_v_schedules) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":90 * L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, * use_averages=True, # <<<<<<<<<<<<<< * decay=0.0, decay_steps=0, b1_decay=0, b2_decay=0, * nesterov=None, lookahead_k=0, lookahead_alpha=0, */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_use_averages, Py_True) < 0) __PYX_ERR(0, 83, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_decay, __pyx_float_0_0) < 0) __PYX_ERR(0, 83, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_decay_steps, __pyx_int_0) < 0) __PYX_ERR(0, 83, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_b1_decay, __pyx_int_0) < 0) __PYX_ERR(0, 83, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_b2_decay, __pyx_int_0) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":92 * use_averages=True, * decay=0.0, decay_steps=0, b1_decay=0, b2_decay=0, * nesterov=None, lookahead_k=0, lookahead_alpha=0, # <<<<<<<<<<<<<< * use_radam=False, use_lars=False * ) */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_nesterov, Py_None) < 0) __PYX_ERR(0, 83, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_lookahead_k, __pyx_int_0) < 0) __PYX_ERR(0, 83, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_lookahead_alpha, __pyx_int_0) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":93 * decay=0.0, decay_steps=0, b1_decay=0, b2_decay=0, * nesterov=None, lookahead_k=0, lookahead_alpha=0, * use_radam=False, use_lars=False # <<<<<<<<<<<<<< * ) * */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_use_radam, Py_False) < 0) __PYX_ERR(0, 83, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_use_lars, Py_False) < 0) __PYX_ERR(0, 83, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":80 * ): * ops = _make_ops(ops) * return Optimizer( # <<<<<<<<<<<<<< * ops, * learn_rate, */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":68 * * @registry.optimizers.register("Adam.v1") * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("thinc.neural.optimizers.create_Adam", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_ops); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":98 * * @registry.optimizers.register("SGD.v1") * def create_SGD(learn_rate, # <<<<<<<<<<<<<< * ops=None, * L2=SGD_DEFAULTS["L2"], */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_5create_SGD(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_5create_SGD = {"create_SGD", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_5create_SGD, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_5create_SGD(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_learn_rate = 0; PyObject *__pyx_v_ops = 0; PyObject *__pyx_v_L2 = 0; PyObject *__pyx_v_max_grad_norm = 0; PyObject *__pyx_v_L2_is_weight_decay = 0; CYTHON_UNUSED PyObject *__pyx_v_use_averages = 0; PyObject *__pyx_v_schedules = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("create_SGD (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_learn_rate,&__pyx_n_s_ops,&__pyx_n_s_L2,&__pyx_n_s_max_grad_norm,&__pyx_n_s_L2_is_weight_decay,&__pyx_n_s_use_averages,&__pyx_n_s_schedules,0}; PyObject* values[7] = {0,0,0,0,0,0,0}; /* "thinc/neural/optimizers.pyx":99 * @registry.optimizers.register("SGD.v1") * def create_SGD(learn_rate, * ops=None, # <<<<<<<<<<<<<< * L2=SGD_DEFAULTS["L2"], * max_grad_norm=SGD_DEFAULTS["max_grad_norm"], */ values[1] = ((PyObject *)Py_None); values[2] = __pyx_k__17; values[3] = __pyx_k__18; values[4] = __pyx_k__19; /* "thinc/neural/optimizers.pyx":103 * max_grad_norm=SGD_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=SGD_DEFAULTS["L2_is_weight_decay"], * use_averages=True, # <<<<<<<<<<<<<< * schedules=None * ): */ values[5] = ((PyObject *)Py_True); /* "thinc/neural/optimizers.pyx":104 * L2_is_weight_decay=SGD_DEFAULTS["L2_is_weight_decay"], * use_averages=True, * schedules=None # <<<<<<<<<<<<<< * ): * ops = _make_ops(ops) */ values[6] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_learn_rate)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_ops); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_max_grad_norm); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2_is_weight_decay); if (value) { values[4] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 5: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_use_averages); if (value) { values[5] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 6: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_schedules); if (value) { values[6] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "create_SGD") < 0)) __PYX_ERR(0, 98, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_learn_rate = values[0]; __pyx_v_ops = values[1]; __pyx_v_L2 = values[2]; __pyx_v_max_grad_norm = values[3]; __pyx_v_L2_is_weight_decay = values[4]; __pyx_v_use_averages = values[5]; __pyx_v_schedules = values[6]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("create_SGD", 0, 1, 7, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 98, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.create_SGD", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_4create_SGD(__pyx_self, __pyx_v_learn_rate, __pyx_v_ops, __pyx_v_L2, __pyx_v_max_grad_norm, __pyx_v_L2_is_weight_decay, __pyx_v_use_averages, __pyx_v_schedules); /* "thinc/neural/optimizers.pyx":98 * * @registry.optimizers.register("SGD.v1") * def create_SGD(learn_rate, # <<<<<<<<<<<<<< * ops=None, * L2=SGD_DEFAULTS["L2"], */ /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_4create_SGD(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_learn_rate, PyObject *__pyx_v_ops, PyObject *__pyx_v_L2, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_L2_is_weight_decay, CYTHON_UNUSED PyObject *__pyx_v_use_averages, PyObject *__pyx_v_schedules) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__20) __Pyx_RefNannySetupContext("create_SGD", 0); __Pyx_TraceCall("create_SGD", __pyx_f[0], 98, 0, __PYX_ERR(0, 98, __pyx_L1_error)); __Pyx_INCREF(__pyx_v_ops); /* "thinc/neural/optimizers.pyx":106 * schedules=None * ): * ops = _make_ops(ops) # <<<<<<<<<<<<<< * return Optimizer(ops, learn_rate, * L2=L2, max_grad_norm=max_grad_norm, L2_is_weight_decay=L2_is_weight_decay, */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_make_ops); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 106, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_3, __pyx_v_ops) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_ops); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_ops, __pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":107 * ): * ops = _make_ops(ops) * return Optimizer(ops, learn_rate, # <<<<<<<<<<<<<< * L2=L2, max_grad_norm=max_grad_norm, L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, beta1=0.0, beta2=0.0) */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Optimizer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_ops); __Pyx_GIVEREF(__pyx_v_ops); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_ops); __Pyx_INCREF(__pyx_v_learn_rate); __Pyx_GIVEREF(__pyx_v_learn_rate); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_learn_rate); /* "thinc/neural/optimizers.pyx":108 * ops = _make_ops(ops) * return Optimizer(ops, learn_rate, * L2=L2, max_grad_norm=max_grad_norm, L2_is_weight_decay=L2_is_weight_decay, # <<<<<<<<<<<<<< * schedules=schedules, beta1=0.0, beta2=0.0) * */ __pyx_t_3 = __Pyx_PyDict_NewPresized(6); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 108, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_L2, __pyx_v_L2) < 0) __PYX_ERR(0, 108, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_max_grad_norm, __pyx_v_max_grad_norm) < 0) __PYX_ERR(0, 108, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_L2_is_weight_decay, __pyx_v_L2_is_weight_decay) < 0) __PYX_ERR(0, 108, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":109 * return Optimizer(ops, learn_rate, * L2=L2, max_grad_norm=max_grad_norm, L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, beta1=0.0, beta2=0.0) # <<<<<<<<<<<<<< * * */ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_schedules, __pyx_v_schedules) < 0) __PYX_ERR(0, 108, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_beta1, __pyx_float_0_0) < 0) __PYX_ERR(0, 108, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_beta2, __pyx_float_0_0) < 0) __PYX_ERR(0, 108, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":107 * ): * ops = _make_ops(ops) * return Optimizer(ops, learn_rate, # <<<<<<<<<<<<<< * L2=L2, max_grad_norm=max_grad_norm, L2_is_weight_decay=L2_is_weight_decay, * schedules=schedules, beta1=0.0, beta2=0.0) */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":98 * * @registry.optimizers.register("SGD.v1") * def create_SGD(learn_rate, # <<<<<<<<<<<<<< * ops=None, * L2=SGD_DEFAULTS["L2"], */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("thinc.neural.optimizers.create_SGD", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_ops); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":124 * ''' * @classmethod * def from_config(cls, config): # <<<<<<<<<<<<<< * return registry.make_from_config(config) * */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_1from_config(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_1from_config = {"from_config", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_1from_config, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_1from_config(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { CYTHON_UNUSED PyObject *__pyx_v_cls = 0; PyObject *__pyx_v_config = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("from_config (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_cls,&__pyx_n_s_config,0}; PyObject* values[2] = {0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_cls)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_config)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("from_config", 1, 2, 2, 1); __PYX_ERR(0, 124, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "from_config") < 0)) __PYX_ERR(0, 124, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); } __pyx_v_cls = values[0]; __pyx_v_config = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("from_config", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 124, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.from_config", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_from_config(__pyx_self, __pyx_v_cls, __pyx_v_config); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_from_config(CYTHON_UNUSED PyObject *__pyx_self, CYTHON_UNUSED PyObject *__pyx_v_cls, PyObject *__pyx_v_config) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__21) __Pyx_RefNannySetupContext("from_config", 0); __Pyx_TraceCall("from_config", __pyx_f[0], 124, 0, __PYX_ERR(0, 124, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":125 * @classmethod * def from_config(cls, config): * return registry.make_from_config(config) # <<<<<<<<<<<<<< * * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_registry); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 125, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_make_from_config); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 125, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_v_config) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_config); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 125, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":124 * ''' * @classmethod * def from_config(cls, config): # <<<<<<<<<<<<<< * return registry.make_from_config(config) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.from_config", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":127 * return registry.make_from_config(config) * * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, # <<<<<<<<<<<<<< * max_grad_norm=10., gradient_noise=0.0, nesterov=True, * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_3__init__(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_3__init__ = {"__init__", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_3__init__, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_3__init__(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_self = 0; PyObject *__pyx_v_ops = 0; PyObject *__pyx_v_lr = 0; PyObject *__pyx_v_L2 = 0; PyObject *__pyx_v_beta1 = 0; PyObject *__pyx_v_beta2 = 0; PyObject *__pyx_v_eps = 0; PyObject *__pyx_v_max_grad_norm = 0; PyObject *__pyx_v_gradient_noise = 0; PyObject *__pyx_v_nesterov = 0; PyObject *__pyx_v_L2_is_weight_decay = 0; PyObject *__pyx_v_lookahead_k = 0; PyObject *__pyx_v_lookahead_alpha = 0; PyObject *__pyx_v_use_averages = 0; PyObject *__pyx_v_use_radam = 0; PyObject *__pyx_v_use_lars = 0; PyObject *__pyx_v_schedule = 0; CYTHON_UNUSED PyObject *__pyx_v__ = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); __pyx_v__ = PyDict_New(); if (unlikely(!__pyx_v__)) return NULL; __Pyx_GOTREF(__pyx_v__); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_ops,&__pyx_n_s_lr,&__pyx_n_s_L2,&__pyx_n_s_beta1,&__pyx_n_s_beta2,&__pyx_n_s_eps,&__pyx_n_s_max_grad_norm,&__pyx_n_s_gradient_noise,&__pyx_n_s_nesterov,&__pyx_n_s_L2_is_weight_decay,&__pyx_n_s_lookahead_k,&__pyx_n_s_lookahead_alpha,&__pyx_n_s_use_averages,&__pyx_n_s_use_radam,&__pyx_n_s_use_lars,&__pyx_n_s_schedule,0}; PyObject* values[17] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; values[3] = ((PyObject *)((PyObject*)__pyx_float_1eneg_4)); values[4] = ((PyObject *)((PyObject*)__pyx_float_0_90)); values[5] = ((PyObject *)((PyObject*)__pyx_float_0_999)); values[6] = ((PyObject *)((PyObject*)__pyx_float_1eneg_08)); values[7] = ((PyObject *)((PyObject*)__pyx_float_10_)); values[8] = ((PyObject *)((PyObject*)__pyx_float_0_0)); /* "thinc/neural/optimizers.pyx":128 * * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, * max_grad_norm=10., gradient_noise=0.0, nesterov=True, # <<<<<<<<<<<<<< * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, * use_averages=True, use_radam=False, use_lars=False, schedule=None, **_): */ values[9] = ((PyObject *)((PyObject *)Py_True)); /* "thinc/neural/optimizers.pyx":129 * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, * max_grad_norm=10., gradient_noise=0.0, nesterov=True, * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, # <<<<<<<<<<<<<< * use_averages=True, use_radam=False, use_lars=False, schedule=None, **_): * self.ops = ops */ values[10] = ((PyObject *)((PyObject *)Py_False)); values[11] = ((PyObject *)((PyObject *)__pyx_int_0)); values[12] = ((PyObject *)((PyObject*)__pyx_float_0_5)); /* "thinc/neural/optimizers.pyx":130 * max_grad_norm=10., gradient_noise=0.0, nesterov=True, * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, * use_averages=True, use_radam=False, use_lars=False, schedule=None, **_): # <<<<<<<<<<<<<< * self.ops = ops * if schedule is None: */ values[13] = ((PyObject *)((PyObject *)Py_True)); values[14] = ((PyObject *)((PyObject *)Py_False)); values[15] = ((PyObject *)((PyObject *)Py_False)); values[16] = ((PyObject *)((PyObject *)Py_None)); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 17: values[16] = PyTuple_GET_ITEM(__pyx_args, 16); CYTHON_FALLTHROUGH; case 16: values[15] = PyTuple_GET_ITEM(__pyx_args, 15); CYTHON_FALLTHROUGH; case 15: values[14] = PyTuple_GET_ITEM(__pyx_args, 14); CYTHON_FALLTHROUGH; case 14: values[13] = PyTuple_GET_ITEM(__pyx_args, 13); CYTHON_FALLTHROUGH; case 13: values[12] = PyTuple_GET_ITEM(__pyx_args, 12); CYTHON_FALLTHROUGH; case 12: values[11] = PyTuple_GET_ITEM(__pyx_args, 11); CYTHON_FALLTHROUGH; case 11: values[10] = PyTuple_GET_ITEM(__pyx_args, 10); CYTHON_FALLTHROUGH; case 10: values[9] = PyTuple_GET_ITEM(__pyx_args, 9); CYTHON_FALLTHROUGH; case 9: values[8] = PyTuple_GET_ITEM(__pyx_args, 8); CYTHON_FALLTHROUGH; case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_self)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_ops)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__init__", 0, 3, 17, 1); __PYX_ERR(0, 127, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lr)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__init__", 0, 3, 17, 2); __PYX_ERR(0, 127, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_beta1); if (value) { values[4] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 5: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_beta2); if (value) { values[5] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 6: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_eps); if (value) { values[6] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 7: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_max_grad_norm); if (value) { values[7] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 8: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_gradient_noise); if (value) { values[8] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 9: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nesterov); if (value) { values[9] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 10: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_L2_is_weight_decay); if (value) { values[10] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 11: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lookahead_k); if (value) { values[11] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 12: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lookahead_alpha); if (value) { values[12] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 13: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_use_averages); if (value) { values[13] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 14: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_use_radam); if (value) { values[14] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 15: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_use_lars); if (value) { values[15] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 16: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_schedule); if (value) { values[16] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, __pyx_v__, values, pos_args, "__init__") < 0)) __PYX_ERR(0, 127, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 17: values[16] = PyTuple_GET_ITEM(__pyx_args, 16); CYTHON_FALLTHROUGH; case 16: values[15] = PyTuple_GET_ITEM(__pyx_args, 15); CYTHON_FALLTHROUGH; case 15: values[14] = PyTuple_GET_ITEM(__pyx_args, 14); CYTHON_FALLTHROUGH; case 14: values[13] = PyTuple_GET_ITEM(__pyx_args, 13); CYTHON_FALLTHROUGH; case 13: values[12] = PyTuple_GET_ITEM(__pyx_args, 12); CYTHON_FALLTHROUGH; case 12: values[11] = PyTuple_GET_ITEM(__pyx_args, 11); CYTHON_FALLTHROUGH; case 11: values[10] = PyTuple_GET_ITEM(__pyx_args, 10); CYTHON_FALLTHROUGH; case 10: values[9] = PyTuple_GET_ITEM(__pyx_args, 9); CYTHON_FALLTHROUGH; case 9: values[8] = PyTuple_GET_ITEM(__pyx_args, 8); CYTHON_FALLTHROUGH; case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_self = values[0]; __pyx_v_ops = values[1]; __pyx_v_lr = values[2]; __pyx_v_L2 = values[3]; __pyx_v_beta1 = values[4]; __pyx_v_beta2 = values[5]; __pyx_v_eps = values[6]; __pyx_v_max_grad_norm = values[7]; __pyx_v_gradient_noise = values[8]; __pyx_v_nesterov = values[9]; __pyx_v_L2_is_weight_decay = values[10]; __pyx_v_lookahead_k = values[11]; __pyx_v_lookahead_alpha = values[12]; __pyx_v_use_averages = values[13]; __pyx_v_use_radam = values[14]; __pyx_v_use_lars = values[15]; __pyx_v_schedule = values[16]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__init__", 0, 3, 17, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 127, __pyx_L3_error) __pyx_L3_error:; __Pyx_DECREF(__pyx_v__); __pyx_v__ = 0; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_2__init__(__pyx_self, __pyx_v_self, __pyx_v_ops, __pyx_v_lr, __pyx_v_L2, __pyx_v_beta1, __pyx_v_beta2, __pyx_v_eps, __pyx_v_max_grad_norm, __pyx_v_gradient_noise, __pyx_v_nesterov, __pyx_v_L2_is_weight_decay, __pyx_v_lookahead_k, __pyx_v_lookahead_alpha, __pyx_v_use_averages, __pyx_v_use_radam, __pyx_v_use_lars, __pyx_v_schedule, __pyx_v__); /* "thinc/neural/optimizers.pyx":127 * return registry.make_from_config(config) * * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, # <<<<<<<<<<<<<< * max_grad_norm=10., gradient_noise=0.0, nesterov=True, * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, */ /* function exit code */ __Pyx_XDECREF(__pyx_v__); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_2__init__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_ops, PyObject *__pyx_v_lr, PyObject *__pyx_v_L2, PyObject *__pyx_v_beta1, PyObject *__pyx_v_beta2, PyObject *__pyx_v_eps, PyObject *__pyx_v_max_grad_norm, PyObject *__pyx_v_gradient_noise, PyObject *__pyx_v_nesterov, PyObject *__pyx_v_L2_is_weight_decay, PyObject *__pyx_v_lookahead_k, PyObject *__pyx_v_lookahead_alpha, PyObject *__pyx_v_use_averages, PyObject *__pyx_v_use_radam, PyObject *__pyx_v_use_lars, PyObject *__pyx_v_schedule, CYTHON_UNUSED PyObject *__pyx_v__) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__22) __Pyx_RefNannySetupContext("__init__", 0); __Pyx_TraceCall("__init__", __pyx_f[0], 127, 0, __PYX_ERR(0, 127, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":131 * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, * use_averages=True, use_radam=False, use_lars=False, schedule=None, **_): * self.ops = ops # <<<<<<<<<<<<<< * if schedule is None: * self.schedule = {} */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_ops, __pyx_v_ops) < 0) __PYX_ERR(0, 131, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":132 * use_averages=True, use_radam=False, use_lars=False, schedule=None, **_): * self.ops = ops * if schedule is None: # <<<<<<<<<<<<<< * self.schedule = {} * else: */ __pyx_t_1 = (__pyx_v_schedule == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":133 * self.ops = ops * if schedule is None: * self.schedule = {} # <<<<<<<<<<<<<< * else: * self.schedule = dict(schedule) */ __pyx_t_3 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_schedule, __pyx_t_3) < 0) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":132 * use_averages=True, use_radam=False, use_lars=False, schedule=None, **_): * self.ops = ops * if schedule is None: # <<<<<<<<<<<<<< * self.schedule = {} * else: */ goto __pyx_L3; } /* "thinc/neural/optimizers.pyx":135 * self.schedule = {} * else: * self.schedule = dict(schedule) # <<<<<<<<<<<<<< * self.mom1 = {} * self.mom2 = {} */ /*else*/ { __pyx_t_3 = __Pyx_PyObject_CallOneArg(((PyObject *)(&PyDict_Type)), __pyx_v_schedule); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 135, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_schedule, __pyx_t_3) < 0) __PYX_ERR(0, 135, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L3:; /* "thinc/neural/optimizers.pyx":136 * else: * self.schedule = dict(schedule) * self.mom1 = {} # <<<<<<<<<<<<<< * self.mom2 = {} * self.slow_weights = {} # For lookahead */ __pyx_t_3 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 136, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_mom1, __pyx_t_3) < 0) __PYX_ERR(0, 136, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":137 * self.schedule = dict(schedule) * self.mom1 = {} * self.mom2 = {} # <<<<<<<<<<<<<< * self.slow_weights = {} # For lookahead * if use_averages: */ __pyx_t_3 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_mom2, __pyx_t_3) < 0) __PYX_ERR(0, 137, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":138 * self.mom1 = {} * self.mom2 = {} * self.slow_weights = {} # For lookahead # <<<<<<<<<<<<<< * if use_averages: * self.averages = {} */ __pyx_t_3 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_slow_weights, __pyx_t_3) < 0) __PYX_ERR(0, 138, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":139 * self.mom2 = {} * self.slow_weights = {} # For lookahead * if use_averages: # <<<<<<<<<<<<<< * self.averages = {} * else: */ __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_use_averages); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 139, __pyx_L1_error) if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":140 * self.slow_weights = {} # For lookahead * if use_averages: * self.averages = {} # <<<<<<<<<<<<<< * else: * self.averages = None */ __pyx_t_3 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_averages, __pyx_t_3) < 0) __PYX_ERR(0, 140, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":139 * self.mom2 = {} * self.slow_weights = {} # For lookahead * if use_averages: # <<<<<<<<<<<<<< * self.averages = {} * else: */ goto __pyx_L4; } /* "thinc/neural/optimizers.pyx":142 * self.averages = {} * else: * self.averages = None # <<<<<<<<<<<<<< * self.nr_update = defaultdict(int) * self.last_seen = defaultdict(int) */ /*else*/ { if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_averages, Py_None) < 0) __PYX_ERR(0, 142, __pyx_L1_error) } __pyx_L4:; /* "thinc/neural/optimizers.pyx":143 * else: * self.averages = None * self.nr_update = defaultdict(int) # <<<<<<<<<<<<<< * self.last_seen = defaultdict(int) * self.max_grad_norm = max_grad_norm */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_defaultdict); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, ((PyObject *)(&PyInt_Type))) : __Pyx_PyObject_CallOneArg(__pyx_t_4, ((PyObject *)(&PyInt_Type))); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_nr_update, __pyx_t_3) < 0) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":144 * self.averages = None * self.nr_update = defaultdict(int) * self.last_seen = defaultdict(int) # <<<<<<<<<<<<<< * self.max_grad_norm = max_grad_norm * self.alpha = lr */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_defaultdict); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 144, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, ((PyObject *)(&PyInt_Type))) : __Pyx_PyObject_CallOneArg(__pyx_t_4, ((PyObject *)(&PyInt_Type))); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 144, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_last_seen, __pyx_t_3) < 0) __PYX_ERR(0, 144, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":145 * self.nr_update = defaultdict(int) * self.last_seen = defaultdict(int) * self.max_grad_norm = max_grad_norm # <<<<<<<<<<<<<< * self.alpha = lr * self.b1 = beta1 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_max_grad_norm, __pyx_v_max_grad_norm) < 0) __PYX_ERR(0, 145, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":146 * self.last_seen = defaultdict(int) * self.max_grad_norm = max_grad_norm * self.alpha = lr # <<<<<<<<<<<<<< * self.b1 = beta1 * self.b2 = beta2 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_alpha, __pyx_v_lr) < 0) __PYX_ERR(0, 146, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":147 * self.max_grad_norm = max_grad_norm * self.alpha = lr * self.b1 = beta1 # <<<<<<<<<<<<<< * self.b2 = beta2 * self.gradient_noise = gradient_noise */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_b1, __pyx_v_beta1) < 0) __PYX_ERR(0, 147, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":148 * self.alpha = lr * self.b1 = beta1 * self.b2 = beta2 # <<<<<<<<<<<<<< * self.gradient_noise = gradient_noise * self.eps = eps */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_b2, __pyx_v_beta2) < 0) __PYX_ERR(0, 148, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":149 * self.b1 = beta1 * self.b2 = beta2 * self.gradient_noise = gradient_noise # <<<<<<<<<<<<<< * self.eps = eps * self.L2 = L2 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_gradient_noise, __pyx_v_gradient_noise) < 0) __PYX_ERR(0, 149, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":150 * self.b2 = beta2 * self.gradient_noise = gradient_noise * self.eps = eps # <<<<<<<<<<<<<< * self.L2 = L2 * self.nesterov = nesterov */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_eps, __pyx_v_eps) < 0) __PYX_ERR(0, 150, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":151 * self.gradient_noise = gradient_noise * self.eps = eps * self.L2 = L2 # <<<<<<<<<<<<<< * self.nesterov = nesterov * self.L2_is_weight_decay = L2_is_weight_decay */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_L2, __pyx_v_L2) < 0) __PYX_ERR(0, 151, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":152 * self.eps = eps * self.L2 = L2 * self.nesterov = nesterov # <<<<<<<<<<<<<< * self.L2_is_weight_decay = L2_is_weight_decay * self.lookahead_k = lookahead_k */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_nesterov, __pyx_v_nesterov) < 0) __PYX_ERR(0, 152, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":153 * self.L2 = L2 * self.nesterov = nesterov * self.L2_is_weight_decay = L2_is_weight_decay # <<<<<<<<<<<<<< * self.lookahead_k = lookahead_k * self.lookahead_alpha = lookahead_alpha */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_L2_is_weight_decay, __pyx_v_L2_is_weight_decay) < 0) __PYX_ERR(0, 153, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":154 * self.nesterov = nesterov * self.L2_is_weight_decay = L2_is_weight_decay * self.lookahead_k = lookahead_k # <<<<<<<<<<<<<< * self.lookahead_alpha = lookahead_alpha * self.use_radam = use_radam */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_lookahead_k, __pyx_v_lookahead_k) < 0) __PYX_ERR(0, 154, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":155 * self.L2_is_weight_decay = L2_is_weight_decay * self.lookahead_k = lookahead_k * self.lookahead_alpha = lookahead_alpha # <<<<<<<<<<<<<< * self.use_radam = use_radam * # Deprecated */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_lookahead_alpha, __pyx_v_lookahead_alpha) < 0) __PYX_ERR(0, 155, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":156 * self.lookahead_k = lookahead_k * self.lookahead_alpha = lookahead_alpha * self.use_radam = use_radam # <<<<<<<<<<<<<< * # Deprecated * self.use_lars = use_lars */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_use_radam, __pyx_v_use_radam) < 0) __PYX_ERR(0, 156, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":158 * self.use_radam = use_radam * # Deprecated * self.use_lars = use_lars # <<<<<<<<<<<<<< * self.decay = 0.0 * self.decay_steps = 0 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_use_lars, __pyx_v_use_lars) < 0) __PYX_ERR(0, 158, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":159 * # Deprecated * self.use_lars = use_lars * self.decay = 0.0 # <<<<<<<<<<<<<< * self.decay_steps = 0 * self.lars_min = 0 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_decay, __pyx_float_0_0) < 0) __PYX_ERR(0, 159, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":160 * self.use_lars = use_lars * self.decay = 0.0 * self.decay_steps = 0 # <<<<<<<<<<<<<< * self.lars_min = 0 * self.lars_max = 10 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_decay_steps, __pyx_int_0) < 0) __PYX_ERR(0, 160, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":161 * self.decay = 0.0 * self.decay_steps = 0 * self.lars_min = 0 # <<<<<<<<<<<<<< * self.lars_max = 10 * self.b1_decay = 0.0 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_lars_min, __pyx_int_0) < 0) __PYX_ERR(0, 161, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":162 * self.decay_steps = 0 * self.lars_min = 0 * self.lars_max = 10 # <<<<<<<<<<<<<< * self.b1_decay = 0.0 * self.b2_decay = 0.0 */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_lars_max, __pyx_int_10) < 0) __PYX_ERR(0, 162, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":163 * self.lars_min = 0 * self.lars_max = 10 * self.b1_decay = 0.0 # <<<<<<<<<<<<<< * self.b2_decay = 0.0 * */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_b1_decay, __pyx_float_0_0) < 0) __PYX_ERR(0, 163, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":164 * self.lars_max = 10 * self.b1_decay = 0.0 * self.b2_decay = 0.0 # <<<<<<<<<<<<<< * * def to_gpu(self): */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_b2_decay, __pyx_float_0_0) < 0) __PYX_ERR(0, 164, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":127 * return registry.make_from_config(config) * * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, # <<<<<<<<<<<<<< * max_grad_norm=10., gradient_noise=0.0, nesterov=True, * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":166 * self.b2_decay = 0.0 * * def to_gpu(self): # <<<<<<<<<<<<<< * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_5to_gpu(PyObject *__pyx_self, PyObject *__pyx_v_self); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_5to_gpu = {"to_gpu", (PyCFunction)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_5to_gpu, METH_O, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_5to_gpu(PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("to_gpu (wrapper)", 0); __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_4to_gpu(__pyx_self, ((PyObject *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_4to_gpu(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_v_params = NULL; PyObject *__pyx_v_key = NULL; PyObject *__pyx_v_value = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; PyObject *(*__pyx_t_7)(PyObject *); PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *(*__pyx_t_10)(PyObject *); int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__23) __Pyx_RefNannySetupContext("to_gpu", 0); __Pyx_TraceCall("to_gpu", __pyx_f[0], 166, 0, __PYX_ERR(0, 166, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":167 * * def to_gpu(self): * self.ops = CupyOps() # <<<<<<<<<<<<<< * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_CupyOps); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 167, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_3) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 167, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_ops, __pyx_t_1) < 0) __PYX_ERR(0, 167, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":168 * def to_gpu(self): * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): # <<<<<<<<<<<<<< * for key, value in params.items(): * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_averages); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; for (;;) { if (__pyx_t_5 >= 3) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_5); __Pyx_INCREF(__pyx_t_4); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(0, 168, __pyx_L1_error) #else __pyx_t_4 = PySequence_ITEM(__pyx_t_3, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif __Pyx_XDECREF_SET(__pyx_v_params, __pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":169 * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): # <<<<<<<<<<<<<< * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_params, __pyx_n_s_items); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_4 = (__pyx_t_1) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_1) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (likely(PyList_CheckExact(__pyx_t_4)) || PyTuple_CheckExact(__pyx_t_4)) { __pyx_t_2 = __pyx_t_4; __Pyx_INCREF(__pyx_t_2); __pyx_t_6 = 0; __pyx_t_7 = NULL; } else { __pyx_t_6 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_7 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 169, __pyx_L1_error) } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; for (;;) { if (likely(!__pyx_t_7)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_6 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_6); __Pyx_INCREF(__pyx_t_4); __pyx_t_6++; if (unlikely(0 < 0)) __PYX_ERR(0, 169, __pyx_L1_error) #else __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_6); __pyx_t_6++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif } else { if (__pyx_t_6 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_6); __Pyx_INCREF(__pyx_t_4); __pyx_t_6++; if (unlikely(0 < 0)) __PYX_ERR(0, 169, __pyx_L1_error) #else __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_6); __pyx_t_6++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif } } else { __pyx_t_4 = __pyx_t_7(__pyx_t_2); if (unlikely(!__pyx_t_4)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(0, 169, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_4); } if ((likely(PyTuple_CheckExact(__pyx_t_4))) || (PyList_CheckExact(__pyx_t_4))) { PyObject* sequence = __pyx_t_4; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(0, 169, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_1 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_8 = PyTuple_GET_ITEM(sequence, 1); } else { __pyx_t_1 = PyList_GET_ITEM(sequence, 0); __pyx_t_8 = PyList_GET_ITEM(sequence, 1); } __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_8); #else __pyx_t_1 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_8 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); #endif __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else { Py_ssize_t index = -1; __pyx_t_9 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_10 = Py_TYPE(__pyx_t_9)->tp_iternext; index = 0; __pyx_t_1 = __pyx_t_10(__pyx_t_9); if (unlikely(!__pyx_t_1)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_1); index = 1; __pyx_t_8 = __pyx_t_10(__pyx_t_9); if (unlikely(!__pyx_t_8)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_8); if (__Pyx_IternextUnpackEndCheck(__pyx_t_10(__pyx_t_9), 2) < 0) __PYX_ERR(0, 169, __pyx_L1_error) __pyx_t_10 = NULL; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L8_unpacking_done; __pyx_L7_unpacking_failed:; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_10 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); __PYX_ERR(0, 169, __pyx_L1_error) __pyx_L8_unpacking_done:; } __Pyx_XDECREF_SET(__pyx_v_key, __pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF_SET(__pyx_v_value, __pyx_t_8); __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":170 * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) # <<<<<<<<<<<<<< * * def to_cpu(self): */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_xp); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_asarray); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = PyTuple_New(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_INCREF(__pyx_v_value); __Pyx_GIVEREF(__pyx_v_value); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_value); __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_value, __pyx_n_s_dtype); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_9) < 0) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_8, __pyx_t_1); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(PyObject_SetItem(__pyx_v_params, __pyx_v_key, __pyx_t_9) < 0)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; /* "thinc/neural/optimizers.pyx":169 * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): # <<<<<<<<<<<<<< * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) * */ } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":168 * def to_gpu(self): * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): # <<<<<<<<<<<<<< * for key, value in params.items(): * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":166 * self.b2_decay = 0.0 * * def to_gpu(self): # <<<<<<<<<<<<<< * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.to_gpu", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_params); __Pyx_XDECREF(__pyx_v_key); __Pyx_XDECREF(__pyx_v_value); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":172 * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) * * def to_cpu(self): # <<<<<<<<<<<<<< * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_7to_cpu(PyObject *__pyx_self, PyObject *__pyx_v_self); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_7to_cpu = {"to_cpu", (PyCFunction)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_7to_cpu, METH_O, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_7to_cpu(PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("to_cpu (wrapper)", 0); __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_6to_cpu(__pyx_self, ((PyObject *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_6to_cpu(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_v_params = NULL; PyObject *__pyx_v_key = NULL; PyObject *__pyx_v_value = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; PyObject *(*__pyx_t_7)(PyObject *); PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *(*__pyx_t_10)(PyObject *); int __pyx_t_11; int __pyx_t_12; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__24) __Pyx_RefNannySetupContext("to_cpu", 0); __Pyx_TraceCall("to_cpu", __pyx_f[0], 172, 0, __PYX_ERR(0, 172, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":173 * * def to_cpu(self): * self.ops = NumpyOps() # <<<<<<<<<<<<<< * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_NumpyOps); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_3) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_ops, __pyx_t_1) < 0) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":174 * def to_cpu(self): * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): # <<<<<<<<<<<<<< * for key, value in params.items(): * if hasattr(value, 'get'): */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_averages); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_3 = __pyx_t_4; __Pyx_INCREF(__pyx_t_3); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; for (;;) { if (__pyx_t_5 >= 3) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_5); __Pyx_INCREF(__pyx_t_4); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(0, 174, __pyx_L1_error) #else __pyx_t_4 = PySequence_ITEM(__pyx_t_3, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif __Pyx_XDECREF_SET(__pyx_v_params, __pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":175 * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): # <<<<<<<<<<<<<< * if hasattr(value, 'get'): * params[key] = value.get() */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_params, __pyx_n_s_items); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_4 = (__pyx_t_1) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_1) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (likely(PyList_CheckExact(__pyx_t_4)) || PyTuple_CheckExact(__pyx_t_4)) { __pyx_t_2 = __pyx_t_4; __Pyx_INCREF(__pyx_t_2); __pyx_t_6 = 0; __pyx_t_7 = NULL; } else { __pyx_t_6 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_7 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 175, __pyx_L1_error) } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; for (;;) { if (likely(!__pyx_t_7)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_6 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_6); __Pyx_INCREF(__pyx_t_4); __pyx_t_6++; if (unlikely(0 < 0)) __PYX_ERR(0, 175, __pyx_L1_error) #else __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_6); __pyx_t_6++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif } else { if (__pyx_t_6 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_6); __Pyx_INCREF(__pyx_t_4); __pyx_t_6++; if (unlikely(0 < 0)) __PYX_ERR(0, 175, __pyx_L1_error) #else __pyx_t_4 = PySequence_ITEM(__pyx_t_2, __pyx_t_6); __pyx_t_6++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif } } else { __pyx_t_4 = __pyx_t_7(__pyx_t_2); if (unlikely(!__pyx_t_4)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(0, 175, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_4); } if ((likely(PyTuple_CheckExact(__pyx_t_4))) || (PyList_CheckExact(__pyx_t_4))) { PyObject* sequence = __pyx_t_4; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(0, 175, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_1 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_8 = PyTuple_GET_ITEM(sequence, 1); } else { __pyx_t_1 = PyList_GET_ITEM(sequence, 0); __pyx_t_8 = PyList_GET_ITEM(sequence, 1); } __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_8); #else __pyx_t_1 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_8 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); #endif __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else { Py_ssize_t index = -1; __pyx_t_9 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_10 = Py_TYPE(__pyx_t_9)->tp_iternext; index = 0; __pyx_t_1 = __pyx_t_10(__pyx_t_9); if (unlikely(!__pyx_t_1)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_1); index = 1; __pyx_t_8 = __pyx_t_10(__pyx_t_9); if (unlikely(!__pyx_t_8)) goto __pyx_L7_unpacking_failed; __Pyx_GOTREF(__pyx_t_8); if (__Pyx_IternextUnpackEndCheck(__pyx_t_10(__pyx_t_9), 2) < 0) __PYX_ERR(0, 175, __pyx_L1_error) __pyx_t_10 = NULL; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L8_unpacking_done; __pyx_L7_unpacking_failed:; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_10 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); __PYX_ERR(0, 175, __pyx_L1_error) __pyx_L8_unpacking_done:; } __Pyx_XDECREF_SET(__pyx_v_key, __pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF_SET(__pyx_v_value, __pyx_t_8); __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":176 * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): * if hasattr(value, 'get'): # <<<<<<<<<<<<<< * params[key] = value.get() * */ __pyx_t_11 = __Pyx_HasAttr(__pyx_v_value, __pyx_n_s_get); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(0, 176, __pyx_L1_error) __pyx_t_12 = (__pyx_t_11 != 0); if (__pyx_t_12) { /* "thinc/neural/optimizers.pyx":177 * for key, value in params.items(): * if hasattr(value, 'get'): * params[key] = value.get() # <<<<<<<<<<<<<< * * def step_schedules(self): */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_value, __pyx_n_s_get); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_4 = (__pyx_t_1) ? __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_1) : __Pyx_PyObject_CallNoArg(__pyx_t_8); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (unlikely(PyObject_SetItem(__pyx_v_params, __pyx_v_key, __pyx_t_4) < 0)) __PYX_ERR(0, 177, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":176 * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): * if hasattr(value, 'get'): # <<<<<<<<<<<<<< * params[key] = value.get() * */ } /* "thinc/neural/optimizers.pyx":175 * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): * for key, value in params.items(): # <<<<<<<<<<<<<< * if hasattr(value, 'get'): * params[key] = value.get() */ } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":174 * def to_cpu(self): * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): # <<<<<<<<<<<<<< * for key, value in params.items(): * if hasattr(value, 'get'): */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":172 * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) * * def to_cpu(self): # <<<<<<<<<<<<<< * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.to_cpu", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_params); __Pyx_XDECREF(__pyx_v_key); __Pyx_XDECREF(__pyx_v_value); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":179 * params[key] = value.get() * * def step_schedules(self): # <<<<<<<<<<<<<< * for key, schedule in self.schedules.items(): * setattr(self, key, next(schedule)) */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_9step_schedules(PyObject *__pyx_self, PyObject *__pyx_v_self); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_9step_schedules = {"step_schedules", (PyCFunction)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_9step_schedules, METH_O, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_9step_schedules(PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("step_schedules (wrapper)", 0); __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_8step_schedules(__pyx_self, ((PyObject *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_8step_schedules(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_v_key = NULL; PyObject *__pyx_v_schedule = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; Py_ssize_t __pyx_t_4; PyObject *(*__pyx_t_5)(PyObject *); PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *(*__pyx_t_8)(PyObject *); int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__25) __Pyx_RefNannySetupContext("step_schedules", 0); __Pyx_TraceCall("step_schedules", __pyx_f[0], 179, 0, __PYX_ERR(0, 179, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":180 * * def step_schedules(self): * for key, schedule in self.schedules.items(): # <<<<<<<<<<<<<< * setattr(self, key, next(schedule)) * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_schedules); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_items); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_2) : __Pyx_PyObject_CallNoArg(__pyx_t_3); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (likely(PyList_CheckExact(__pyx_t_1)) || PyTuple_CheckExact(__pyx_t_1)) { __pyx_t_3 = __pyx_t_1; __Pyx_INCREF(__pyx_t_3); __pyx_t_4 = 0; __pyx_t_5 = NULL; } else { __pyx_t_4 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 180, __pyx_L1_error) } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; for (;;) { if (likely(!__pyx_t_5)) { if (likely(PyList_CheckExact(__pyx_t_3))) { if (__pyx_t_4 >= PyList_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_1 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_4); __Pyx_INCREF(__pyx_t_1); __pyx_t_4++; if (unlikely(0 < 0)) __PYX_ERR(0, 180, __pyx_L1_error) #else __pyx_t_1 = PySequence_ITEM(__pyx_t_3, __pyx_t_4); __pyx_t_4++; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); #endif } else { if (__pyx_t_4 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_1 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_4); __Pyx_INCREF(__pyx_t_1); __pyx_t_4++; if (unlikely(0 < 0)) __PYX_ERR(0, 180, __pyx_L1_error) #else __pyx_t_1 = PySequence_ITEM(__pyx_t_3, __pyx_t_4); __pyx_t_4++; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); #endif } } else { __pyx_t_1 = __pyx_t_5(__pyx_t_3); if (unlikely(!__pyx_t_1)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(0, 180, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_1); } if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { PyObject* sequence = __pyx_t_1; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(0, 180, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_6 = PyTuple_GET_ITEM(sequence, 1); } else { __pyx_t_2 = PyList_GET_ITEM(sequence, 0); __pyx_t_6 = PyList_GET_ITEM(sequence, 1); } __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(__pyx_t_6); #else __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); #endif __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else { Py_ssize_t index = -1; __pyx_t_7 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_8 = Py_TYPE(__pyx_t_7)->tp_iternext; index = 0; __pyx_t_2 = __pyx_t_8(__pyx_t_7); if (unlikely(!__pyx_t_2)) goto __pyx_L5_unpacking_failed; __Pyx_GOTREF(__pyx_t_2); index = 1; __pyx_t_6 = __pyx_t_8(__pyx_t_7); if (unlikely(!__pyx_t_6)) goto __pyx_L5_unpacking_failed; __Pyx_GOTREF(__pyx_t_6); if (__Pyx_IternextUnpackEndCheck(__pyx_t_8(__pyx_t_7), 2) < 0) __PYX_ERR(0, 180, __pyx_L1_error) __pyx_t_8 = NULL; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; goto __pyx_L6_unpacking_done; __pyx_L5_unpacking_failed:; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_8 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); __PYX_ERR(0, 180, __pyx_L1_error) __pyx_L6_unpacking_done:; } __Pyx_XDECREF_SET(__pyx_v_key, __pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF_SET(__pyx_v_schedule, __pyx_t_6); __pyx_t_6 = 0; /* "thinc/neural/optimizers.pyx":181 * def step_schedules(self): * for key, schedule in self.schedules.items(): * setattr(self, key, next(schedule)) # <<<<<<<<<<<<<< * * @property */ __pyx_t_1 = __Pyx_PyIter_Next(__pyx_v_schedule); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 181, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_9 = PyObject_SetAttr(__pyx_v_self, __pyx_v_key, __pyx_t_1); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(0, 181, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":180 * * def step_schedules(self): * for key, schedule in self.schedules.items(): # <<<<<<<<<<<<<< * setattr(self, key, next(schedule)) * */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":179 * params[key] = value.get() * * def step_schedules(self): # <<<<<<<<<<<<<< * for key, schedule in self.schedules.items(): * setattr(self, key, next(schedule)) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.step_schedules", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_key); __Pyx_XDECREF(__pyx_v_schedule); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":184 * * @property * def learn_rate(self): # <<<<<<<<<<<<<< * return self.alpha * */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_11learn_rate(PyObject *__pyx_self, PyObject *__pyx_v_self); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_11learn_rate = {"learn_rate", (PyCFunction)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_11learn_rate, METH_O, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_11learn_rate(PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("learn_rate (wrapper)", 0); __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_10learn_rate(__pyx_self, ((PyObject *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_10learn_rate(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__26) __Pyx_RefNannySetupContext("learn_rate", 0); __Pyx_TraceCall("learn_rate", __pyx_f[0], 184, 0, __PYX_ERR(0, 184, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":185 * @property * def learn_rate(self): * return self.alpha # <<<<<<<<<<<<<< * * @learn_rate.setter */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_alpha); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 185, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":184 * * @property * def learn_rate(self): # <<<<<<<<<<<<<< * return self.alpha * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.learn_rate", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":188 * * @learn_rate.setter * def learn_rate(self, learn_rate): # <<<<<<<<<<<<<< * self.alpha = learn_rate * */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_13learn_rate(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_13learn_rate = {"learn_rate", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_13learn_rate, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_13learn_rate(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_self = 0; PyObject *__pyx_v_learn_rate = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("learn_rate (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_learn_rate,0}; PyObject* values[2] = {0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_self)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_learn_rate)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("learn_rate", 1, 2, 2, 1); __PYX_ERR(0, 188, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "learn_rate") < 0)) __PYX_ERR(0, 188, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); } __pyx_v_self = values[0]; __pyx_v_learn_rate = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("learn_rate", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 188, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.learn_rate", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_12learn_rate(__pyx_self, __pyx_v_self, __pyx_v_learn_rate); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_12learn_rate(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_learn_rate) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__27) __Pyx_RefNannySetupContext("learn_rate", 0); __Pyx_TraceCall("learn_rate", __pyx_f[0], 188, 0, __PYX_ERR(0, 188, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":189 * @learn_rate.setter * def learn_rate(self, learn_rate): * self.alpha = learn_rate # <<<<<<<<<<<<<< * * def lr(self, nr_upd): */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_alpha, __pyx_v_learn_rate) < 0) __PYX_ERR(0, 189, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":188 * * @learn_rate.setter * def learn_rate(self, learn_rate): # <<<<<<<<<<<<<< * self.alpha = learn_rate * */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.learn_rate", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":191 * self.alpha = learn_rate * * def lr(self, nr_upd): # <<<<<<<<<<<<<< * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) * if self.b1 == 0. or self.b2 == 0.: */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_15lr(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_15lr = {"lr", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_15lr, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_15lr(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_self = 0; PyObject *__pyx_v_nr_upd = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("lr (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_nr_upd,0}; PyObject* values[2] = {0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_self)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nr_upd)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("lr", 1, 2, 2, 1); __PYX_ERR(0, 191, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "lr") < 0)) __PYX_ERR(0, 191, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); } __pyx_v_self = values[0]; __pyx_v_nr_upd = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("lr", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 191, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.lr", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_14lr(__pyx_self, __pyx_v_self, __pyx_v_nr_upd); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_14lr(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_nr_upd) { PyObject *__pyx_v_alpha = NULL; PyObject *__pyx_v_fix1 = NULL; PyObject *__pyx_v_fix2 = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; int __pyx_t_10; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__28) __Pyx_RefNannySetupContext("lr", 0); __Pyx_TraceCall("lr", __pyx_f[0], 191, 0, __PYX_ERR(0, 191, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":192 * * def lr(self, nr_upd): * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) # <<<<<<<<<<<<<< * if self.b1 == 0. or self.b2 == 0.: * return alpha */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_anneal); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_alpha); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_decay); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_decay_steps); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_2)) { PyObject *__pyx_temp[5] = {__pyx_t_6, __pyx_t_3, __pyx_t_4, __pyx_t_5, __pyx_v_nr_upd}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_2, __pyx_temp+1-__pyx_t_7, 4+__pyx_t_7); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_2)) { PyObject *__pyx_temp[5] = {__pyx_t_6, __pyx_t_3, __pyx_t_4, __pyx_t_5, __pyx_v_nr_upd}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_2, __pyx_temp+1-__pyx_t_7, 4+__pyx_t_7); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } else #endif { __pyx_t_8 = PyTuple_New(4+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_6) { __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_6); __pyx_t_6 = NULL; } __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 2+__pyx_t_7, __pyx_t_5); __Pyx_INCREF(__pyx_v_nr_upd); __Pyx_GIVEREF(__pyx_v_nr_upd); PyTuple_SET_ITEM(__pyx_t_8, 3+__pyx_t_7, __pyx_v_nr_upd); __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_t_5 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_8, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_alpha = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":193 * def lr(self, nr_upd): * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) * if self.b1 == 0. or self.b2 == 0.: # <<<<<<<<<<<<<< * return alpha * fix1 = 1.- (self.b1 ** nr_upd) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyFloat_EqObjC(__pyx_t_1, __pyx_float_0_, 0., 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_10 < 0)) __PYX_ERR(0, 193, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (!__pyx_t_10) { } else { __pyx_t_9 = __pyx_t_10; goto __pyx_L4_bool_binop_done; } __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyFloat_EqObjC(__pyx_t_2, __pyx_float_0_, 0., 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_10 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_10 < 0)) __PYX_ERR(0, 193, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_9 = __pyx_t_10; __pyx_L4_bool_binop_done:; if (__pyx_t_9) { /* "thinc/neural/optimizers.pyx":194 * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) * if self.b1 == 0. or self.b2 == 0.: * return alpha # <<<<<<<<<<<<<< * fix1 = 1.- (self.b1 ** nr_upd) * fix2 = 1.- (self.b2 ** nr_upd) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_alpha); __pyx_r = __pyx_v_alpha; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":193 * def lr(self, nr_upd): * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) * if self.b1 == 0. or self.b2 == 0.: # <<<<<<<<<<<<<< * return alpha * fix1 = 1.- (self.b1 ** nr_upd) */ } /* "thinc/neural/optimizers.pyx":195 * if self.b1 == 0. or self.b2 == 0.: * return alpha * fix1 = 1.- (self.b1 ** nr_upd) # <<<<<<<<<<<<<< * fix2 = 1.- (self.b2 ** nr_upd) * return alpha * numpy.sqrt(fix2) / fix1 */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyNumber_Power(__pyx_t_1, __pyx_v_nr_upd, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyFloat_SubtractCObj(__pyx_float_1_, __pyx_t_2, 1., 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_fix1 = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":196 * return alpha * fix1 = 1.- (self.b1 ** nr_upd) * fix2 = 1.- (self.b2 ** nr_upd) # <<<<<<<<<<<<<< * return alpha * numpy.sqrt(fix2) / fix1 * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyNumber_Power(__pyx_t_1, __pyx_v_nr_upd, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyFloat_SubtractCObj(__pyx_float_1_, __pyx_t_2, 1., 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_fix2 = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":197 * fix1 = 1.- (self.b1 ** nr_upd) * fix2 = 1.- (self.b2 ** nr_upd) * return alpha * numpy.sqrt(fix2) / fix1 # <<<<<<<<<<<<<< * * def __call__(self, weights, gradient, lr_scale=1., key=None): */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_8))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_2, __pyx_v_fix2) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_v_fix2); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = PyNumber_Multiply(__pyx_v_alpha, __pyx_t_1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyNumber_Divide(__pyx_t_8, __pyx_v_fix1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":191 * self.alpha = learn_rate * * def lr(self, nr_upd): # <<<<<<<<<<<<<< * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) * if self.b1 == 0. or self.b2 == 0.: */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.lr", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_alpha); __Pyx_XDECREF(__pyx_v_fix1); __Pyx_XDECREF(__pyx_v_fix2); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":199 * return alpha * numpy.sqrt(fix2) / fix1 * * def __call__(self, weights, gradient, lr_scale=1., key=None): # <<<<<<<<<<<<<< * assert len(gradient) >= 1 * xp = get_array_module(weights) */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_17__call__(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_17__call__ = {"__call__", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_17__call__, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_17__call__(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_self = 0; PyObject *__pyx_v_weights = 0; PyObject *__pyx_v_gradient = 0; PyObject *__pyx_v_lr_scale = 0; PyObject *__pyx_v_key = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__call__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_weights,&__pyx_n_s_gradient,&__pyx_n_s_lr_scale,&__pyx_n_s_key,0}; PyObject* values[5] = {0,0,0,0,0}; values[3] = ((PyObject *)((PyObject*)__pyx_float_1_)); values[4] = ((PyObject *)((PyObject *)Py_None)); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_self)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_weights)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__call__", 0, 3, 5, 1); __PYX_ERR(0, 199, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_gradient)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__call__", 0, 3, 5, 2); __PYX_ERR(0, 199, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lr_scale); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_key); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__call__") < 0)) __PYX_ERR(0, 199, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_self = values[0]; __pyx_v_weights = values[1]; __pyx_v_gradient = values[2]; __pyx_v_lr_scale = values[3]; __pyx_v_key = values[4]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__call__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 199, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.__call__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_16__call__(__pyx_self, __pyx_v_self, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_16__call__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key) { PyObject *__pyx_v_xp = NULL; PyObject *__pyx_v_nr_upd = NULL; PyObject *__pyx_v_slow = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_t_5; int __pyx_t_6; PyObject *__pyx_t_7 = NULL; int __pyx_t_8; int __pyx_t_9; PyObject *__pyx_t_10 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__29) __Pyx_RefNannySetupContext("__call__", 0); __Pyx_TraceCall("__call__", __pyx_f[0], 199, 0, __PYX_ERR(0, 199, __pyx_L1_error)); __Pyx_INCREF(__pyx_v_weights); __Pyx_INCREF(__pyx_v_gradient); /* "thinc/neural/optimizers.pyx":200 * * def __call__(self, weights, gradient, lr_scale=1., key=None): * assert len(gradient) >= 1 # <<<<<<<<<<<<<< * xp = get_array_module(weights) * if xp is not self.ops.xp: */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { __pyx_t_1 = PyObject_Length(__pyx_v_gradient); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(0, 200, __pyx_L1_error) if (unlikely(!((__pyx_t_1 >= 1) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(0, 200, __pyx_L1_error) } } #endif /* "thinc/neural/optimizers.pyx":201 * def __call__(self, weights, gradient, lr_scale=1., key=None): * assert len(gradient) >= 1 * xp = get_array_module(weights) # <<<<<<<<<<<<<< * if xp is not self.ops.xp: * if xp is numpy: */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_get_array_module); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_2 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_4, __pyx_v_weights) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_weights); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_xp = __pyx_t_2; __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":202 * assert len(gradient) >= 1 * xp = get_array_module(weights) * if xp is not self.ops.xp: # <<<<<<<<<<<<<< * if xp is numpy: * self.ops = NumpyOps() */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_xp); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_5 = (__pyx_v_xp != __pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = (__pyx_t_5 != 0); if (__pyx_t_6) { /* "thinc/neural/optimizers.pyx":203 * xp = get_array_module(weights) * if xp is not self.ops.xp: * if xp is numpy: # <<<<<<<<<<<<<< * self.ops = NumpyOps() * else: */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 203, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = (__pyx_v_xp == __pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = (__pyx_t_6 != 0); if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":204 * if xp is not self.ops.xp: * if xp is numpy: * self.ops = NumpyOps() # <<<<<<<<<<<<<< * else: * self.ops = CupyOps() */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_NumpyOps); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 204, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_3 = (__pyx_t_4) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_4) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 204, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_ops, __pyx_t_3) < 0) __PYX_ERR(0, 204, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":203 * xp = get_array_module(weights) * if xp is not self.ops.xp: * if xp is numpy: # <<<<<<<<<<<<<< * self.ops = NumpyOps() * else: */ goto __pyx_L4; } /* "thinc/neural/optimizers.pyx":206 * self.ops = NumpyOps() * else: * self.ops = CupyOps() # <<<<<<<<<<<<<< * * self.nr_update[key] += 1 */ /*else*/ { __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_CupyOps); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_3 = (__pyx_t_4) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_4) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_ops, __pyx_t_3) < 0) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L4:; /* "thinc/neural/optimizers.pyx":202 * assert len(gradient) >= 1 * xp = get_array_module(weights) * if xp is not self.ops.xp: # <<<<<<<<<<<<<< * if xp is numpy: * self.ops = NumpyOps() */ } /* "thinc/neural/optimizers.pyx":208 * self.ops = CupyOps() * * self.nr_update[key] += 1 # <<<<<<<<<<<<<< * nr_upd = self.nr_update[key] * if self.L2 != 0 and not self.L2_is_weight_decay: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_nr_update); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_key); __pyx_t_2 = __pyx_v_key; __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_t_3, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_4, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(PyObject_SetItem(__pyx_t_3, __pyx_t_2, __pyx_t_7) < 0)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":209 * * self.nr_update[key] += 1 * nr_upd = self.nr_update[key] # <<<<<<<<<<<<<< * if self.L2 != 0 and not self.L2_is_weight_decay: * gradient += self.L2 * weights */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_nr_update); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_t_3, __pyx_v_key); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_nr_upd = __pyx_t_2; __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":210 * self.nr_update[key] += 1 * nr_upd = self.nr_update[key] * if self.L2 != 0 and not self.L2_is_weight_decay: # <<<<<<<<<<<<<< * gradient += self.L2 * weights * if self.max_grad_norm: */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_L2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyInt_NeObjC(__pyx_t_2, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 210, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { } else { __pyx_t_5 = __pyx_t_6; goto __pyx_L6_bool_binop_done; } __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_L2_is_weight_decay); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 210, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_8 = ((!__pyx_t_6) != 0); __pyx_t_5 = __pyx_t_8; __pyx_L6_bool_binop_done:; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":211 * nr_upd = self.nr_update[key] * if self.L2 != 0 and not self.L2_is_weight_decay: * gradient += self.L2 * weights # <<<<<<<<<<<<<< * if self.max_grad_norm: * self.ops.clip_gradient(gradient, self.max_grad_norm) */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_L2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 211, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyNumber_Multiply(__pyx_t_3, __pyx_v_weights); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 211, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyNumber_InPlaceAdd(__pyx_v_gradient, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 211, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_gradient, __pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":210 * self.nr_update[key] += 1 * nr_upd = self.nr_update[key] * if self.L2 != 0 and not self.L2_is_weight_decay: # <<<<<<<<<<<<<< * gradient += self.L2 * weights * if self.max_grad_norm: */ } /* "thinc/neural/optimizers.pyx":212 * if self.L2 != 0 and not self.L2_is_weight_decay: * gradient += self.L2 * weights * if self.max_grad_norm: # <<<<<<<<<<<<<< * self.ops.clip_gradient(gradient, self.max_grad_norm) * if self.gradient_noise: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_max_grad_norm); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":213 * gradient += self.L2 * weights * if self.max_grad_norm: * self.ops.clip_gradient(gradient, self.max_grad_norm) # <<<<<<<<<<<<<< * if self.gradient_noise: * add_gradient_noise(gradient, self.gradient_noise, nr_upd) */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_clip_gradient); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_max_grad_norm); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_4, __pyx_v_gradient, __pyx_t_2}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 2+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_4, __pyx_v_gradient, __pyx_t_2}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 2+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else #endif { __pyx_t_10 = PyTuple_New(2+__pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); if (__pyx_t_4) { __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_4); __pyx_t_4 = NULL; } __Pyx_INCREF(__pyx_v_gradient); __Pyx_GIVEREF(__pyx_v_gradient); PyTuple_SET_ITEM(__pyx_t_10, 0+__pyx_t_9, __pyx_v_gradient); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_10, 1+__pyx_t_9, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_10, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":212 * if self.L2 != 0 and not self.L2_is_weight_decay: * gradient += self.L2 * weights * if self.max_grad_norm: # <<<<<<<<<<<<<< * self.ops.clip_gradient(gradient, self.max_grad_norm) * if self.gradient_noise: */ } /* "thinc/neural/optimizers.pyx":214 * if self.max_grad_norm: * self.ops.clip_gradient(gradient, self.max_grad_norm) * if self.gradient_noise: # <<<<<<<<<<<<<< * add_gradient_noise(gradient, self.gradient_noise, nr_upd) * if self.use_radam: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_gradient_noise); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 214, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 214, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":215 * self.ops.clip_gradient(gradient, self.max_grad_norm) * if self.gradient_noise: * add_gradient_noise(gradient, self.gradient_noise, nr_upd) # <<<<<<<<<<<<<< * if self.use_radam: * self._radam(xp, weights, gradient, lr_scale, key, nr_upd) */ __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_add_gradient_noise); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 215, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_gradient_noise); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 215, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __pyx_t_2 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_7))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[4] = {__pyx_t_2, __pyx_v_gradient, __pyx_t_10, __pyx_v_nr_upd}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 215, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[4] = {__pyx_t_2, __pyx_v_gradient, __pyx_t_10, __pyx_v_nr_upd}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 215, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } else #endif { __pyx_t_4 = PyTuple_New(3+__pyx_t_9); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 215, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(__pyx_v_gradient); __Pyx_GIVEREF(__pyx_v_gradient); PyTuple_SET_ITEM(__pyx_t_4, 0+__pyx_t_9, __pyx_v_gradient); __Pyx_GIVEREF(__pyx_t_10); PyTuple_SET_ITEM(__pyx_t_4, 1+__pyx_t_9, __pyx_t_10); __Pyx_INCREF(__pyx_v_nr_upd); __Pyx_GIVEREF(__pyx_v_nr_upd); PyTuple_SET_ITEM(__pyx_t_4, 2+__pyx_t_9, __pyx_v_nr_upd); __pyx_t_10 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 215, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":214 * if self.max_grad_norm: * self.ops.clip_gradient(gradient, self.max_grad_norm) * if self.gradient_noise: # <<<<<<<<<<<<<< * add_gradient_noise(gradient, self.gradient_noise, nr_upd) * if self.use_radam: */ } /* "thinc/neural/optimizers.pyx":216 * if self.gradient_noise: * add_gradient_noise(gradient, self.gradient_noise, nr_upd) * if self.use_radam: # <<<<<<<<<<<<<< * self._radam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and self.b2 > 0.: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_use_radam); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 216, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 216, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":217 * add_gradient_noise(gradient, self.gradient_noise, nr_upd) * if self.use_radam: * self._radam(xp, weights, gradient, lr_scale, key, nr_upd) # <<<<<<<<<<<<<< * elif self.b1 > 0. and self.b2 > 0.: * self._adam(xp, weights, gradient, lr_scale, key, nr_upd) */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_radam); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 217, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_4 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[7] = {__pyx_t_4, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key, __pyx_v_nr_upd}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 6+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 217, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_GOTREF(__pyx_t_3); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[7] = {__pyx_t_4, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key, __pyx_v_nr_upd}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 6+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 217, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_GOTREF(__pyx_t_3); } else #endif { __pyx_t_10 = PyTuple_New(6+__pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 217, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); if (__pyx_t_4) { __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_4); __pyx_t_4 = NULL; } __Pyx_INCREF(__pyx_v_xp); __Pyx_GIVEREF(__pyx_v_xp); PyTuple_SET_ITEM(__pyx_t_10, 0+__pyx_t_9, __pyx_v_xp); __Pyx_INCREF(__pyx_v_weights); __Pyx_GIVEREF(__pyx_v_weights); PyTuple_SET_ITEM(__pyx_t_10, 1+__pyx_t_9, __pyx_v_weights); __Pyx_INCREF(__pyx_v_gradient); __Pyx_GIVEREF(__pyx_v_gradient); PyTuple_SET_ITEM(__pyx_t_10, 2+__pyx_t_9, __pyx_v_gradient); __Pyx_INCREF(__pyx_v_lr_scale); __Pyx_GIVEREF(__pyx_v_lr_scale); PyTuple_SET_ITEM(__pyx_t_10, 3+__pyx_t_9, __pyx_v_lr_scale); __Pyx_INCREF(__pyx_v_key); __Pyx_GIVEREF(__pyx_v_key); PyTuple_SET_ITEM(__pyx_t_10, 4+__pyx_t_9, __pyx_v_key); __Pyx_INCREF(__pyx_v_nr_upd); __Pyx_GIVEREF(__pyx_v_nr_upd); PyTuple_SET_ITEM(__pyx_t_10, 5+__pyx_t_9, __pyx_v_nr_upd); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_10, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 217, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":216 * if self.gradient_noise: * add_gradient_noise(gradient, self.gradient_noise, nr_upd) * if self.use_radam: # <<<<<<<<<<<<<< * self._radam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and self.b2 > 0.: */ goto __pyx_L10; } /* "thinc/neural/optimizers.pyx":218 * if self.use_radam: * self._radam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and self.b2 > 0.: # <<<<<<<<<<<<<< * self._adam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and not self.nesterov: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 218, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_7 = PyObject_RichCompare(__pyx_t_3, __pyx_float_0_, Py_GT); __Pyx_XGOTREF(__pyx_t_7); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 218, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_8 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_8 < 0)) __PYX_ERR(0, 218, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; if (__pyx_t_8) { } else { __pyx_t_5 = __pyx_t_8; goto __pyx_L11_bool_binop_done; } __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b2); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 218, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_3 = PyObject_RichCompare(__pyx_t_7, __pyx_float_0_, Py_GT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 218, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_8 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_8 < 0)) __PYX_ERR(0, 218, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __pyx_t_8; __pyx_L11_bool_binop_done:; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":219 * self._radam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and self.b2 > 0.: * self._adam(xp, weights, gradient, lr_scale, key, nr_upd) # <<<<<<<<<<<<<< * elif self.b1 > 0. and not self.nesterov: * raise NotImplementedError */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_adam); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 219, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_10 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_10 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_10)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_10); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[7] = {__pyx_t_10, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key, __pyx_v_nr_upd}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 6+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 219, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_GOTREF(__pyx_t_3); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[7] = {__pyx_t_10, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key, __pyx_v_nr_upd}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 6+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 219, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_GOTREF(__pyx_t_3); } else #endif { __pyx_t_4 = PyTuple_New(6+__pyx_t_9); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 219, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (__pyx_t_10) { __Pyx_GIVEREF(__pyx_t_10); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_10); __pyx_t_10 = NULL; } __Pyx_INCREF(__pyx_v_xp); __Pyx_GIVEREF(__pyx_v_xp); PyTuple_SET_ITEM(__pyx_t_4, 0+__pyx_t_9, __pyx_v_xp); __Pyx_INCREF(__pyx_v_weights); __Pyx_GIVEREF(__pyx_v_weights); PyTuple_SET_ITEM(__pyx_t_4, 1+__pyx_t_9, __pyx_v_weights); __Pyx_INCREF(__pyx_v_gradient); __Pyx_GIVEREF(__pyx_v_gradient); PyTuple_SET_ITEM(__pyx_t_4, 2+__pyx_t_9, __pyx_v_gradient); __Pyx_INCREF(__pyx_v_lr_scale); __Pyx_GIVEREF(__pyx_v_lr_scale); PyTuple_SET_ITEM(__pyx_t_4, 3+__pyx_t_9, __pyx_v_lr_scale); __Pyx_INCREF(__pyx_v_key); __Pyx_GIVEREF(__pyx_v_key); PyTuple_SET_ITEM(__pyx_t_4, 4+__pyx_t_9, __pyx_v_key); __Pyx_INCREF(__pyx_v_nr_upd); __Pyx_GIVEREF(__pyx_v_nr_upd); PyTuple_SET_ITEM(__pyx_t_4, 5+__pyx_t_9, __pyx_v_nr_upd); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 219, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":218 * if self.use_radam: * self._radam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and self.b2 > 0.: # <<<<<<<<<<<<<< * self._adam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and not self.nesterov: */ goto __pyx_L10; } /* "thinc/neural/optimizers.pyx":220 * elif self.b1 > 0. and self.b2 > 0.: * self._adam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and not self.nesterov: # <<<<<<<<<<<<<< * raise NotImplementedError * elif self.b1 > 0.: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 220, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_7 = PyObject_RichCompare(__pyx_t_3, __pyx_float_0_, Py_GT); __Pyx_XGOTREF(__pyx_t_7); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 220, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_8 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_8 < 0)) __PYX_ERR(0, 220, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; if (__pyx_t_8) { } else { __pyx_t_5 = __pyx_t_8; goto __pyx_L13_bool_binop_done; } __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_nesterov); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 220, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_8 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_8 < 0)) __PYX_ERR(0, 220, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_6 = ((!__pyx_t_8) != 0); __pyx_t_5 = __pyx_t_6; __pyx_L13_bool_binop_done:; if (unlikely(__pyx_t_5)) { /* "thinc/neural/optimizers.pyx":221 * self._adam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and not self.nesterov: * raise NotImplementedError # <<<<<<<<<<<<<< * elif self.b1 > 0.: * self._nesterov(xp, weights, gradient, lr_scale, key) */ __Pyx_Raise(__pyx_builtin_NotImplementedError, 0, 0, 0); __PYX_ERR(0, 221, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":220 * elif self.b1 > 0. and self.b2 > 0.: * self._adam(xp, weights, gradient, lr_scale, key, nr_upd) * elif self.b1 > 0. and not self.nesterov: # <<<<<<<<<<<<<< * raise NotImplementedError * elif self.b1 > 0.: */ } /* "thinc/neural/optimizers.pyx":222 * elif self.b1 > 0. and not self.nesterov: * raise NotImplementedError * elif self.b1 > 0.: # <<<<<<<<<<<<<< * self._nesterov(xp, weights, gradient, lr_scale, key) * elif self.b2 > 0.: */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 222, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_3 = PyObject_RichCompare(__pyx_t_7, __pyx_float_0_, Py_GT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 222, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 222, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":223 * raise NotImplementedError * elif self.b1 > 0.: * self._nesterov(xp, weights, gradient, lr_scale, key) # <<<<<<<<<<<<<< * elif self.b2 > 0.: * raise NotImplementedError */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_nesterov_2); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 223, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_4 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[6] = {__pyx_t_4, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 5+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 223, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_GOTREF(__pyx_t_3); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[6] = {__pyx_t_4, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_9, 5+__pyx_t_9); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 223, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_GOTREF(__pyx_t_3); } else #endif { __pyx_t_10 = PyTuple_New(5+__pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 223, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); if (__pyx_t_4) { __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_4); __pyx_t_4 = NULL; } __Pyx_INCREF(__pyx_v_xp); __Pyx_GIVEREF(__pyx_v_xp); PyTuple_SET_ITEM(__pyx_t_10, 0+__pyx_t_9, __pyx_v_xp); __Pyx_INCREF(__pyx_v_weights); __Pyx_GIVEREF(__pyx_v_weights); PyTuple_SET_ITEM(__pyx_t_10, 1+__pyx_t_9, __pyx_v_weights); __Pyx_INCREF(__pyx_v_gradient); __Pyx_GIVEREF(__pyx_v_gradient); PyTuple_SET_ITEM(__pyx_t_10, 2+__pyx_t_9, __pyx_v_gradient); __Pyx_INCREF(__pyx_v_lr_scale); __Pyx_GIVEREF(__pyx_v_lr_scale); PyTuple_SET_ITEM(__pyx_t_10, 3+__pyx_t_9, __pyx_v_lr_scale); __Pyx_INCREF(__pyx_v_key); __Pyx_GIVEREF(__pyx_v_key); PyTuple_SET_ITEM(__pyx_t_10, 4+__pyx_t_9, __pyx_v_key); __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_10, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 223, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":222 * elif self.b1 > 0. and not self.nesterov: * raise NotImplementedError * elif self.b1 > 0.: # <<<<<<<<<<<<<< * self._nesterov(xp, weights, gradient, lr_scale, key) * elif self.b2 > 0.: */ goto __pyx_L10; } /* "thinc/neural/optimizers.pyx":224 * elif self.b1 > 0.: * self._nesterov(xp, weights, gradient, lr_scale, key) * elif self.b2 > 0.: # <<<<<<<<<<<<<< * raise NotImplementedError * else: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 224, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_7 = PyObject_RichCompare(__pyx_t_3, __pyx_float_0_, Py_GT); __Pyx_XGOTREF(__pyx_t_7); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 224, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 224, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; if (unlikely(__pyx_t_5)) { /* "thinc/neural/optimizers.pyx":225 * self._nesterov(xp, weights, gradient, lr_scale, key) * elif self.b2 > 0.: * raise NotImplementedError # <<<<<<<<<<<<<< * else: * weights -= lr_scale * self.alpha * gradient */ __Pyx_Raise(__pyx_builtin_NotImplementedError, 0, 0, 0); __PYX_ERR(0, 225, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":224 * elif self.b1 > 0.: * self._nesterov(xp, weights, gradient, lr_scale, key) * elif self.b2 > 0.: # <<<<<<<<<<<<<< * raise NotImplementedError * else: */ } /* "thinc/neural/optimizers.pyx":227 * raise NotImplementedError * else: * weights -= lr_scale * self.alpha * gradient # <<<<<<<<<<<<<< * gradient.fill(0.) * if self.L2 != 0 and self.L2_is_weight_decay: */ /*else*/ { __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_alpha); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_3 = PyNumber_Multiply(__pyx_v_lr_scale, __pyx_t_7); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = PyNumber_Multiply(__pyx_t_3, __pyx_v_gradient); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyNumber_InPlaceSubtract(__pyx_v_weights, __pyx_t_7); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF_SET(__pyx_v_weights, __pyx_t_3); __pyx_t_3 = 0; } __pyx_L10:; /* "thinc/neural/optimizers.pyx":228 * else: * weights -= lr_scale * self.alpha * gradient * gradient.fill(0.) # <<<<<<<<<<<<<< * if self.L2 != 0 and self.L2_is_weight_decay: * weights -= self.L2 * weights */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_gradient, __pyx_n_s_fill); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 228, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_10 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_10 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_10)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_10); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); } } __pyx_t_3 = (__pyx_t_10) ? __Pyx_PyObject_Call2Args(__pyx_t_7, __pyx_t_10, __pyx_float_0_) : __Pyx_PyObject_CallOneArg(__pyx_t_7, __pyx_float_0_); __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 228, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":229 * weights -= lr_scale * self.alpha * gradient * gradient.fill(0.) * if self.L2 != 0 and self.L2_is_weight_decay: # <<<<<<<<<<<<<< * weights -= self.L2 * weights * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_L2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_7 = __Pyx_PyInt_NeObjC(__pyx_t_3, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 229, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; if (__pyx_t_6) { } else { __pyx_t_5 = __pyx_t_6; goto __pyx_L16_bool_binop_done; } __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_L2_is_weight_decay); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 229, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_5 = __pyx_t_6; __pyx_L16_bool_binop_done:; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":230 * gradient.fill(0.) * if self.L2 != 0 and self.L2_is_weight_decay: * weights -= self.L2 * weights # <<<<<<<<<<<<<< * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: * if key not in self.slow_weights: */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_L2); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 230, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_3 = PyNumber_Multiply(__pyx_t_7, __pyx_v_weights); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 230, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = PyNumber_InPlaceSubtract(__pyx_v_weights, __pyx_t_3); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 230, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_weights, __pyx_t_7); __pyx_t_7 = 0; /* "thinc/neural/optimizers.pyx":229 * weights -= lr_scale * self.alpha * gradient * gradient.fill(0.) * if self.L2 != 0 and self.L2_is_weight_decay: # <<<<<<<<<<<<<< * weights -= self.L2 * weights * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: */ } /* "thinc/neural/optimizers.pyx":231 * if self.L2 != 0 and self.L2_is_weight_decay: * weights -= self.L2 * weights * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: # <<<<<<<<<<<<<< * if key not in self.slow_weights: * self.slow_weights[key] = self.ops.allocate((weights.size,), dtype='float32') */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lookahead_k); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; if (__pyx_t_6) { } else { __pyx_t_5 = __pyx_t_6; goto __pyx_L19_bool_binop_done; } __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_nr_update); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_3 = __Pyx_PyObject_GetItem(__pyx_t_7, __pyx_v_key); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lookahead_k); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_10 = PyNumber_Remainder(__pyx_t_3, __pyx_t_7); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = __Pyx_PyInt_EqObjC(__pyx_t_10, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 231, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_5 = __pyx_t_6; __pyx_L19_bool_binop_done:; if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":232 * weights -= self.L2 * weights * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: * if key not in self.slow_weights: # <<<<<<<<<<<<<< * self.slow_weights[key] = self.ops.allocate((weights.size,), dtype='float32') * slow = self.slow_weights[key] */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_slow_weights); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 232, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_5 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_7, Py_NE)); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 232, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_6 = (__pyx_t_5 != 0); if (__pyx_t_6) { /* "thinc/neural/optimizers.pyx":233 * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: * if key not in self.slow_weights: * self.slow_weights[key] = self.ops.allocate((weights.size,), dtype='float32') # <<<<<<<<<<<<<< * slow = self.slow_weights[key] * slow += self.lookahead_alpha * (weights - slow) */ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_allocate); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_size); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = PyTuple_New(1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_n_s_float32) < 0) __PYX_ERR(0, 233, __pyx_L1_error) __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_t_7, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_slow_weights); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (unlikely(PyObject_SetItem(__pyx_t_3, __pyx_v_key, __pyx_t_4) < 0)) __PYX_ERR(0, 233, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":232 * weights -= self.L2 * weights * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: * if key not in self.slow_weights: # <<<<<<<<<<<<<< * self.slow_weights[key] = self.ops.allocate((weights.size,), dtype='float32') * slow = self.slow_weights[key] */ } /* "thinc/neural/optimizers.pyx":234 * if key not in self.slow_weights: * self.slow_weights[key] = self.ops.allocate((weights.size,), dtype='float32') * slow = self.slow_weights[key] # <<<<<<<<<<<<<< * slow += self.lookahead_alpha * (weights - slow) * weights[:] = slow */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_slow_weights); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 234, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetItem(__pyx_t_4, __pyx_v_key); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 234, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_slow = __pyx_t_3; __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":235 * self.slow_weights[key] = self.ops.allocate((weights.size,), dtype='float32') * slow = self.slow_weights[key] * slow += self.lookahead_alpha * (weights - slow) # <<<<<<<<<<<<<< * weights[:] = slow * if self.averages is not None: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lookahead_alpha); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyNumber_Subtract(__pyx_v_weights, __pyx_v_slow); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_7 = PyNumber_Multiply(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_slow, __pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF_SET(__pyx_v_slow, __pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":236 * slow = self.slow_weights[key] * slow += self.lookahead_alpha * (weights - slow) * weights[:] = slow # <<<<<<<<<<<<<< * if self.averages is not None: * if key not in self.averages: */ if (__Pyx_PyObject_SetSlice(__pyx_v_weights, __pyx_v_slow, 0, 0, NULL, NULL, &__pyx_slice__30, 0, 0, 1) < 0) __PYX_ERR(0, 236, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":231 * if self.L2 != 0 and self.L2_is_weight_decay: * weights -= self.L2 * weights * if self.lookahead_k and self.nr_update[key] % self.lookahead_k == 0: # <<<<<<<<<<<<<< * if key not in self.slow_weights: * self.slow_weights[key] = self.ops.allocate((weights.size,), dtype='float32') */ } /* "thinc/neural/optimizers.pyx":237 * slow += self.lookahead_alpha * (weights - slow) * weights[:] = slow * if self.averages is not None: # <<<<<<<<<<<<<< * if key not in self.averages: * self.averages[key] = self.ops.allocate((weights.size,), dtype='float32') */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_averages); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 237, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = (__pyx_t_4 != Py_None); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = (__pyx_t_6 != 0); if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":238 * weights[:] = slow * if self.averages is not None: * if key not in self.averages: # <<<<<<<<<<<<<< * self.averages[key] = self.ops.allocate((weights.size,), dtype='float32') * self.ops.update_averages(self.averages[key], weights, nr_upd) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_averages); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_4, Py_NE)); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 238, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = (__pyx_t_5 != 0); if (__pyx_t_6) { /* "thinc/neural/optimizers.pyx":239 * if self.averages is not None: * if key not in self.averages: * self.averages[key] = self.ops.allocate((weights.size,), dtype='float32') # <<<<<<<<<<<<<< * self.ops.update_averages(self.averages[key], weights, nr_upd) * */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_allocate); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_size); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_n_s_float32) < 0) __PYX_ERR(0, 239, __pyx_L1_error) __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_4, __pyx_t_3); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_averages); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (unlikely(PyObject_SetItem(__pyx_t_3, __pyx_v_key, __pyx_t_10) < 0)) __PYX_ERR(0, 239, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; /* "thinc/neural/optimizers.pyx":238 * weights[:] = slow * if self.averages is not None: * if key not in self.averages: # <<<<<<<<<<<<<< * self.averages[key] = self.ops.allocate((weights.size,), dtype='float32') * self.ops.update_averages(self.averages[key], weights, nr_upd) */ } /* "thinc/neural/optimizers.pyx":240 * if key not in self.averages: * self.averages[key] = self.ops.allocate((weights.size,), dtype='float32') * self.ops.update_averages(self.averages[key], weights, nr_upd) # <<<<<<<<<<<<<< * * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_update_averages); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_averages); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_7 = __Pyx_PyObject_GetItem(__pyx_t_3, __pyx_v_key); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[4] = {__pyx_t_3, __pyx_t_7, __pyx_v_weights, __pyx_v_nr_upd}; __pyx_t_10 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[4] = {__pyx_t_3, __pyx_t_7, __pyx_v_weights, __pyx_v_nr_upd}; __pyx_t_10 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; } else #endif { __pyx_t_2 = PyTuple_New(3+__pyx_t_9); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (__pyx_t_3) { __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); __pyx_t_3 = NULL; } __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_2, 0+__pyx_t_9, __pyx_t_7); __Pyx_INCREF(__pyx_v_weights); __Pyx_GIVEREF(__pyx_v_weights); PyTuple_SET_ITEM(__pyx_t_2, 1+__pyx_t_9, __pyx_v_weights); __Pyx_INCREF(__pyx_v_nr_upd); __Pyx_GIVEREF(__pyx_v_nr_upd); PyTuple_SET_ITEM(__pyx_t_2, 2+__pyx_t_9, __pyx_v_nr_upd); __pyx_t_7 = 0; __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 240, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; /* "thinc/neural/optimizers.pyx":237 * slow += self.lookahead_alpha * (weights - slow) * weights[:] = slow * if self.averages is not None: # <<<<<<<<<<<<<< * if key not in self.averages: * self.averages[key] = self.ops.allocate((weights.size,), dtype='float32') */ } /* "thinc/neural/optimizers.pyx":199 * return alpha * numpy.sqrt(fix2) / fix1 * * def __call__(self, weights, gradient, lr_scale=1., key=None): # <<<<<<<<<<<<<< * assert len(gradient) >= 1 * xp = get_array_module(weights) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer.__call__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_xp); __Pyx_XDECREF(__pyx_v_nr_upd); __Pyx_XDECREF(__pyx_v_slow); __Pyx_XDECREF(__pyx_v_weights); __Pyx_XDECREF(__pyx_v_gradient); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":242 * self.ops.update_averages(self.averages[key], weights, nr_upd) * * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_19_radam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_19_radam = {"_radam", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_19_radam, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_19_radam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_self = 0; CYTHON_UNUSED PyObject *__pyx_v_xp = 0; PyObject *__pyx_v_weights = 0; PyObject *__pyx_v_gradient = 0; PyObject *__pyx_v_lr_scale = 0; PyObject *__pyx_v_key = 0; PyObject *__pyx_v_nr_upd = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_radam (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_xp,&__pyx_n_s_weights,&__pyx_n_s_gradient,&__pyx_n_s_lr_scale,&__pyx_n_s_key,&__pyx_n_s_nr_upd,0}; PyObject* values[7] = {0,0,0,0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_self)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_xp)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_radam", 1, 7, 7, 1); __PYX_ERR(0, 242, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_weights)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_radam", 1, 7, 7, 2); __PYX_ERR(0, 242, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_gradient)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_radam", 1, 7, 7, 3); __PYX_ERR(0, 242, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 4: if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lr_scale)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_radam", 1, 7, 7, 4); __PYX_ERR(0, 242, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 5: if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_key)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_radam", 1, 7, 7, 5); __PYX_ERR(0, 242, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 6: if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nr_upd)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_radam", 1, 7, 7, 6); __PYX_ERR(0, 242, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "_radam") < 0)) __PYX_ERR(0, 242, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 7) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); values[4] = PyTuple_GET_ITEM(__pyx_args, 4); values[5] = PyTuple_GET_ITEM(__pyx_args, 5); values[6] = PyTuple_GET_ITEM(__pyx_args, 6); } __pyx_v_self = values[0]; __pyx_v_xp = values[1]; __pyx_v_weights = values[2]; __pyx_v_gradient = values[3]; __pyx_v_lr_scale = values[4]; __pyx_v_key = values[5]; __pyx_v_nr_upd = values[6]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("_radam", 1, 7, 7, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 242, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer._radam", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_18_radam(__pyx_self, __pyx_v_self, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key, __pyx_v_nr_upd); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_18_radam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v_xp, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key, PyObject *__pyx_v_nr_upd) { PyObject *__pyx_v_beta1 = NULL; PyObject *__pyx_v_beta2 = NULL; PyObject *__pyx_v_eps = NULL; PyObject *__pyx_v_sma_inf = NULL; PyObject *__pyx_v_exp_avg = NULL; PyObject *__pyx_v_exp_avg_sq = NULL; PyObject *__pyx_v_bias_correction1 = NULL; PyObject *__pyx_v_bias_correction2 = NULL; PyObject *__pyx_v_sma_t = NULL; PyObject *__pyx_v_update = NULL; PyObject *__pyx_v_r_t = NULL; PyObject *__pyx_v_w_norm = NULL; PyObject *__pyx_v_u_norm = NULL; PyObject *__pyx_v_phi_p = NULL; PyObject *__pyx_v_local_lr = NULL; PyObject *__pyx_v_lr = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__31) __Pyx_RefNannySetupContext("_radam", 0); __Pyx_TraceCall("_radam", __pyx_f[0], 242, 0, __PYX_ERR(0, 242, __pyx_L1_error)); __Pyx_INCREF(__pyx_v_weights); /* "thinc/neural/optimizers.pyx":243 * * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): * if key not in self.mom1: # <<<<<<<<<<<<<< * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 243, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_1, Py_NE)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 243, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "thinc/neural/optimizers.pyx":244 * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) # <<<<<<<<<<<<<< * if key not in self.mom2: * self.mom2[key] = self.ops.allocate(weights.size) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_allocate); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_size); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_4); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (unlikely(PyObject_SetItem(__pyx_t_5, __pyx_v_key, __pyx_t_1) < 0)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":243 * * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): * if key not in self.mom1: # <<<<<<<<<<<<<< * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: */ } /* "thinc/neural/optimizers.pyx":245 * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: # <<<<<<<<<<<<<< * self.mom2[key] = self.ops.allocate(weights.size) * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 245, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_1, Py_NE)); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 245, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":246 * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: * self.mom2[key] = self.ops.allocate(weights.size) # <<<<<<<<<<<<<< * * beta1 = self.b1 */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 246, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_allocate); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 246, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_size); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 246, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_6, __pyx_t_5) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 246, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 246, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (unlikely(PyObject_SetItem(__pyx_t_4, __pyx_v_key, __pyx_t_1) < 0)) __PYX_ERR(0, 246, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":245 * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: # <<<<<<<<<<<<<< * self.mom2[key] = self.ops.allocate(weights.size) * */ } /* "thinc/neural/optimizers.pyx":248 * self.mom2[key] = self.ops.allocate(weights.size) * * beta1 = self.b1 # <<<<<<<<<<<<<< * beta2 = self.b2 * eps = self.eps */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 248, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_beta1 = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":249 * * beta1 = self.b1 * beta2 = self.b2 # <<<<<<<<<<<<<< * eps = self.eps * sma_inf = 2 / (1-beta2) - 1 */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 249, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_beta2 = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":250 * beta1 = self.b1 * beta2 = self.b2 * eps = self.eps # <<<<<<<<<<<<<< * sma_inf = 2 / (1-beta2) - 1 * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_eps); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_eps = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":251 * beta2 = self.b2 * eps = self.eps * sma_inf = 2 / (1-beta2) - 1 # <<<<<<<<<<<<<< * * exp_avg = self.mom1[key] */ __pyx_t_1 = __Pyx_PyInt_SubtractCObj(__pyx_int_1, __pyx_v_beta2, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 251, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyNumber_Divide(__pyx_int_2, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 251, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_SubtractObjC(__pyx_t_4, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 251, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_sma_inf = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":253 * sma_inf = 2 / (1-beta2) - 1 * * exp_avg = self.mom1[key] # <<<<<<<<<<<<<< * exp_avg_sq = self.mom2[key] * # Decay the first and second moment running average coefficient */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 253, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_v_key); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 253, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_exp_avg = __pyx_t_4; __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":254 * * exp_avg = self.mom1[key] * exp_avg_sq = self.mom2[key] # <<<<<<<<<<<<<< * # Decay the first and second moment running average coefficient * exp_avg *= beta1 */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 254, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_t_4, __pyx_v_key); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 254, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_exp_avg_sq = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":256 * exp_avg_sq = self.mom2[key] * # Decay the first and second moment running average coefficient * exp_avg *= beta1 # <<<<<<<<<<<<<< * exp_avg += (1-beta1) * gradient * exp_avg_sq *= beta2 */ __pyx_t_1 = PyNumber_InPlaceMultiply(__pyx_v_exp_avg, __pyx_v_beta1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF_SET(__pyx_v_exp_avg, __pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":257 * # Decay the first and second moment running average coefficient * exp_avg *= beta1 * exp_avg += (1-beta1) * gradient # <<<<<<<<<<<<<< * exp_avg_sq *= beta2 * exp_avg_sq += (1-beta2) * gradient**2 */ __pyx_t_1 = __Pyx_PyInt_SubtractCObj(__pyx_int_1, __pyx_v_beta1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 257, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyNumber_Multiply(__pyx_t_1, __pyx_v_gradient); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 257, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyNumber_InPlaceAdd(__pyx_v_exp_avg, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 257, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_exp_avg, __pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":258 * exp_avg *= beta1 * exp_avg += (1-beta1) * gradient * exp_avg_sq *= beta2 # <<<<<<<<<<<<<< * exp_avg_sq += (1-beta2) * gradient**2 * # Bias correction */ __pyx_t_1 = PyNumber_InPlaceMultiply(__pyx_v_exp_avg_sq, __pyx_v_beta2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 258, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF_SET(__pyx_v_exp_avg_sq, __pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":259 * exp_avg += (1-beta1) * gradient * exp_avg_sq *= beta2 * exp_avg_sq += (1-beta2) * gradient**2 # <<<<<<<<<<<<<< * # Bias correction * bias_correction1 = 1 - beta1 ** nr_upd */ __pyx_t_1 = __Pyx_PyInt_SubtractCObj(__pyx_int_1, __pyx_v_beta2, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 259, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyNumber_Power(__pyx_v_gradient, __pyx_int_2, Py_None); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 259, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyNumber_Multiply(__pyx_t_1, __pyx_t_4); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 259, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_exp_avg_sq, __pyx_t_5); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 259, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF_SET(__pyx_v_exp_avg_sq, __pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":261 * exp_avg_sq += (1-beta2) * gradient**2 * # Bias correction * bias_correction1 = 1 - beta1 ** nr_upd # <<<<<<<<<<<<<< * bias_correction2 = 1 - beta2 ** nr_upd * */ __pyx_t_4 = PyNumber_Power(__pyx_v_beta1, __pyx_v_nr_upd, Py_None); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 261, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyInt_SubtractCObj(__pyx_int_1, __pyx_t_4, 1, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 261, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_bias_correction1 = __pyx_t_5; __pyx_t_5 = 0; /* "thinc/neural/optimizers.pyx":262 * # Bias correction * bias_correction1 = 1 - beta1 ** nr_upd * bias_correction2 = 1 - beta2 ** nr_upd # <<<<<<<<<<<<<< * * # Compute length of SMA */ __pyx_t_5 = PyNumber_Power(__pyx_v_beta2, __pyx_v_nr_upd, Py_None); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 262, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = __Pyx_PyInt_SubtractCObj(__pyx_int_1, __pyx_t_5, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 262, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_bias_correction2 = __pyx_t_4; __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":265 * * # Compute length of SMA * sma_t = sma_inf - 2 * nr_upd * (1 - bias_correction2) / bias_correction2 # <<<<<<<<<<<<<< * update = self.ops.allocate(weights.shape, dtype="f") * if sma_t > 4: */ __pyx_t_4 = PyNumber_Multiply(__pyx_int_2, __pyx_v_nr_upd); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyInt_SubtractCObj(__pyx_int_1, __pyx_v_bias_correction2, 1, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_1 = PyNumber_Multiply(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyNumber_Divide(__pyx_t_1, __pyx_v_bias_correction2); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyNumber_Subtract(__pyx_v_sma_inf, __pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_sma_t = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":266 * # Compute length of SMA * sma_t = sma_inf - 2 * nr_upd * (1 - bias_correction2) / bias_correction2 * update = self.ops.allocate(weights.shape, dtype="f") # <<<<<<<<<<<<<< * if sma_t > 4: * # Variance rectification term */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 266, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_allocate); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 266, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 266, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 266, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 266, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_n_s_f) < 0) __PYX_ERR(0, 266, __pyx_L1_error) __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_4, __pyx_t_1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 266, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_update = __pyx_t_6; __pyx_t_6 = 0; /* "thinc/neural/optimizers.pyx":267 * sma_t = sma_inf - 2 * nr_upd * (1 - bias_correction2) / bias_correction2 * update = self.ops.allocate(weights.shape, dtype="f") * if sma_t > 4: # <<<<<<<<<<<<<< * # Variance rectification term * r_t = math.sqrt((sma_t - 4) * (sma_t - 2) * sma_inf / ((sma_inf - 4) * (sma_inf - 2) * sma_t)) */ __pyx_t_6 = PyObject_RichCompare(__pyx_v_sma_t, __pyx_int_4, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 267, __pyx_L1_error) __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 267, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":269 * if sma_t > 4: * # Variance rectification term * r_t = math.sqrt((sma_t - 4) * (sma_t - 2) * sma_inf / ((sma_inf - 4) * (sma_inf - 2) * sma_t)) # <<<<<<<<<<<<<< * # Adaptive momentum * update += r_t * ( */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_math); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_SubtractObjC(__pyx_v_sma_t, __pyx_int_4, 4, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = __Pyx_PyInt_SubtractObjC(__pyx_v_sma_t, __pyx_int_2, 2, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_7 = PyNumber_Multiply(__pyx_t_1, __pyx_t_5); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyNumber_Multiply(__pyx_t_7, __pyx_v_sma_inf); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = __Pyx_PyInt_SubtractObjC(__pyx_v_sma_inf, __pyx_int_4, 4, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_1 = __Pyx_PyInt_SubtractObjC(__pyx_v_sma_inf, __pyx_int_2, 2, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_8 = PyNumber_Multiply(__pyx_t_7, __pyx_t_1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyNumber_Multiply(__pyx_t_8, __pyx_v_sma_t); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyNumber_Divide(__pyx_t_5, __pyx_t_1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_6 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_1, __pyx_t_8) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_8); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 269, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_r_t = __pyx_t_6; __pyx_t_6 = 0; /* "thinc/neural/optimizers.pyx":272 * # Adaptive momentum * update += r_t * ( * (exp_avg / bias_correction1) # <<<<<<<<<<<<<< * / * (self.ops.xp.sqrt(exp_avg_sq / bias_correction2) + eps) */ __pyx_t_6 = __Pyx_PyNumber_Divide(__pyx_v_exp_avg, __pyx_v_bias_correction1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 272, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); /* "thinc/neural/optimizers.pyx":274 * (exp_avg / bias_correction1) * / * (self.ops.xp.sqrt(exp_avg_sq / bias_correction2) + eps) # <<<<<<<<<<<<<< * ) * else: */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_xp); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyNumber_Divide(__pyx_v_exp_avg_sq, __pyx_v_bias_correction2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_4 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_5, __pyx_t_1) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_1); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = PyNumber_Add(__pyx_t_4, __pyx_v_eps); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":273 * update += r_t * ( * (exp_avg / bias_correction1) * / # <<<<<<<<<<<<<< * (self.ops.xp.sqrt(exp_avg_sq / bias_correction2) + eps) * ) */ __pyx_t_4 = __Pyx_PyNumber_Divide(__pyx_t_6, __pyx_t_8); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 273, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":271 * r_t = math.sqrt((sma_t - 4) * (sma_t - 2) * sma_inf / ((sma_inf - 4) * (sma_inf - 2) * sma_t)) * # Adaptive momentum * update += r_t * ( # <<<<<<<<<<<<<< * (exp_avg / bias_correction1) * / */ __pyx_t_8 = PyNumber_Multiply(__pyx_v_r_t, __pyx_t_4); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 271, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_update, __pyx_t_8); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 271, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF_SET(__pyx_v_update, __pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":267 * sma_t = sma_inf - 2 * nr_upd * (1 - bias_correction2) / bias_correction2 * update = self.ops.allocate(weights.shape, dtype="f") * if sma_t > 4: # <<<<<<<<<<<<<< * # Variance rectification term * r_t = math.sqrt((sma_t - 4) * (sma_t - 2) * sma_inf / ((sma_inf - 4) * (sma_inf - 2) * sma_t)) */ goto __pyx_L5; } /* "thinc/neural/optimizers.pyx":278 * else: * # Unadapted momentum * update += exp_avg / bias_correction1 # <<<<<<<<<<<<<< * if self.use_lars: * # LARS */ /*else*/ { __pyx_t_4 = __Pyx_PyNumber_Divide(__pyx_v_exp_avg, __pyx_v_bias_correction1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 278, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_8 = PyNumber_InPlaceAdd(__pyx_v_update, __pyx_t_4); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 278, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_update, __pyx_t_8); __pyx_t_8 = 0; } __pyx_L5:; /* "thinc/neural/optimizers.pyx":279 * # Unadapted momentum * update += exp_avg / bias_correction1 * if self.use_lars: # <<<<<<<<<<<<<< * # LARS * w_norm = self.ops.xp.linalg.norm(weights) */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_use_lars); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 279, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_8); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 279, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":281 * if self.use_lars: * # LARS * w_norm = self.ops.xp.linalg.norm(weights) # <<<<<<<<<<<<<< * u_norm = self.ops.xp.linalg.norm(update) * phi_p = min(max(w_norm, self.lars_min), self.lars_max) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 281, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_xp); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 281, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_linalg); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 281, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_norm); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 281, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_8 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_4, __pyx_v_weights) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_v_weights); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 281, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_w_norm = __pyx_t_8; __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":282 * # LARS * w_norm = self.ops.xp.linalg.norm(weights) * u_norm = self.ops.xp.linalg.norm(update) # <<<<<<<<<<<<<< * phi_p = min(max(w_norm, self.lars_min), self.lars_max) * # Compute the local LR */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 282, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_xp); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 282, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_linalg); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 282, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_norm); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 282, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_8 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_6, __pyx_v_update) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_v_update); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 282, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_u_norm = __pyx_t_8; __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":283 * w_norm = self.ops.xp.linalg.norm(weights) * u_norm = self.ops.xp.linalg.norm(update) * phi_p = min(max(w_norm, self.lars_min), self.lars_max) # <<<<<<<<<<<<<< * # Compute the local LR * if phi_p == 0 or u_norm == 0: */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lars_max); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 283, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lars_min); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 283, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_w_norm); __pyx_t_6 = __pyx_v_w_norm; __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_6, Py_GT); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 283, __pyx_L1_error) __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 283, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__pyx_t_2) { __Pyx_INCREF(__pyx_t_4); __pyx_t_1 = __pyx_t_4; } else { __Pyx_INCREF(__pyx_t_6); __pyx_t_1 = __pyx_t_6; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_INCREF(__pyx_t_1); __pyx_t_4 = __pyx_t_1; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_6 = PyObject_RichCompare(__pyx_t_8, __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 283, __pyx_L1_error) __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 283, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (__pyx_t_2) { __Pyx_INCREF(__pyx_t_8); __pyx_t_1 = __pyx_t_8; } else { __Pyx_INCREF(__pyx_t_4); __pyx_t_1 = __pyx_t_4; } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __pyx_t_1; __Pyx_INCREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_phi_p = __pyx_t_8; __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":285 * phi_p = min(max(w_norm, self.lars_min), self.lars_max) * # Compute the local LR * if phi_p == 0 or u_norm == 0: # <<<<<<<<<<<<<< * local_lr = 1 * else: */ __pyx_t_8 = __Pyx_PyInt_EqObjC(__pyx_v_phi_p, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_8); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (!__pyx_t_3) { } else { __pyx_t_2 = __pyx_t_3; goto __pyx_L8_bool_binop_done; } __pyx_t_8 = __Pyx_PyInt_EqObjC(__pyx_v_u_norm, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_8); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_2 = __pyx_t_3; __pyx_L8_bool_binop_done:; if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":286 * # Compute the local LR * if phi_p == 0 or u_norm == 0: * local_lr = 1 # <<<<<<<<<<<<<< * else: * local_lr = phi_p / u_norm */ __Pyx_INCREF(__pyx_int_1); __pyx_v_local_lr = __pyx_int_1; /* "thinc/neural/optimizers.pyx":285 * phi_p = min(max(w_norm, self.lars_min), self.lars_max) * # Compute the local LR * if phi_p == 0 or u_norm == 0: # <<<<<<<<<<<<<< * local_lr = 1 * else: */ goto __pyx_L7; } /* "thinc/neural/optimizers.pyx":288 * local_lr = 1 * else: * local_lr = phi_p / u_norm # <<<<<<<<<<<<<< * lr = self.alpha * lr_scale * local_lr * else: */ /*else*/ { __pyx_t_8 = __Pyx_PyNumber_Divide(__pyx_v_phi_p, __pyx_v_u_norm); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_v_local_lr = __pyx_t_8; __pyx_t_8 = 0; } __pyx_L7:; /* "thinc/neural/optimizers.pyx":289 * else: * local_lr = phi_p / u_norm * lr = self.alpha * lr_scale * local_lr # <<<<<<<<<<<<<< * else: * lr = self.alpha * lr_scale */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_alpha); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = PyNumber_Multiply(__pyx_t_8, __pyx_v_lr_scale); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = PyNumber_Multiply(__pyx_t_1, __pyx_v_local_lr); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_lr = __pyx_t_8; __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":279 * # Unadapted momentum * update += exp_avg / bias_correction1 * if self.use_lars: # <<<<<<<<<<<<<< * # LARS * w_norm = self.ops.xp.linalg.norm(weights) */ goto __pyx_L6; } /* "thinc/neural/optimizers.pyx":291 * lr = self.alpha * lr_scale * local_lr * else: * lr = self.alpha * lr_scale # <<<<<<<<<<<<<< * weights -= lr * update * */ /*else*/ { __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_alpha); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 291, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = PyNumber_Multiply(__pyx_t_8, __pyx_v_lr_scale); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 291, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_lr = __pyx_t_1; __pyx_t_1 = 0; } __pyx_L6:; /* "thinc/neural/optimizers.pyx":292 * else: * lr = self.alpha * lr_scale * weights -= lr * update # <<<<<<<<<<<<<< * * def _nesterov(self, xp, weights, gradient, lr_scale, key): */ __pyx_t_1 = PyNumber_Multiply(__pyx_v_lr, __pyx_v_update); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_8 = PyNumber_InPlaceSubtract(__pyx_v_weights, __pyx_t_1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_weights, __pyx_t_8); __pyx_t_8 = 0; /* "thinc/neural/optimizers.pyx":242 * self.ops.update_averages(self.averages[key], weights, nr_upd) * * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer._radam", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_beta1); __Pyx_XDECREF(__pyx_v_beta2); __Pyx_XDECREF(__pyx_v_eps); __Pyx_XDECREF(__pyx_v_sma_inf); __Pyx_XDECREF(__pyx_v_exp_avg); __Pyx_XDECREF(__pyx_v_exp_avg_sq); __Pyx_XDECREF(__pyx_v_bias_correction1); __Pyx_XDECREF(__pyx_v_bias_correction2); __Pyx_XDECREF(__pyx_v_sma_t); __Pyx_XDECREF(__pyx_v_update); __Pyx_XDECREF(__pyx_v_r_t); __Pyx_XDECREF(__pyx_v_w_norm); __Pyx_XDECREF(__pyx_v_u_norm); __Pyx_XDECREF(__pyx_v_phi_p); __Pyx_XDECREF(__pyx_v_local_lr); __Pyx_XDECREF(__pyx_v_lr); __Pyx_XDECREF(__pyx_v_weights); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":294 * weights -= lr * update * * def _nesterov(self, xp, weights, gradient, lr_scale, key): # <<<<<<<<<<<<<< * # http://cs231n.github.io/neural-networks-3/ * # v_prev = v # back this up */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_21_nesterov(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_21_nesterov = {"_nesterov", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_21_nesterov, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_21_nesterov(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_self = 0; CYTHON_UNUSED PyObject *__pyx_v_xp = 0; PyObject *__pyx_v_weights = 0; PyObject *__pyx_v_gradient = 0; PyObject *__pyx_v_lr_scale = 0; PyObject *__pyx_v_key = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_nesterov (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_xp,&__pyx_n_s_weights,&__pyx_n_s_gradient,&__pyx_n_s_lr_scale,&__pyx_n_s_key,0}; PyObject* values[6] = {0,0,0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_self)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_xp)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_nesterov", 1, 6, 6, 1); __PYX_ERR(0, 294, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_weights)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_nesterov", 1, 6, 6, 2); __PYX_ERR(0, 294, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_gradient)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_nesterov", 1, 6, 6, 3); __PYX_ERR(0, 294, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 4: if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lr_scale)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_nesterov", 1, 6, 6, 4); __PYX_ERR(0, 294, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 5: if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_key)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_nesterov", 1, 6, 6, 5); __PYX_ERR(0, 294, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "_nesterov") < 0)) __PYX_ERR(0, 294, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 6) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); values[4] = PyTuple_GET_ITEM(__pyx_args, 4); values[5] = PyTuple_GET_ITEM(__pyx_args, 5); } __pyx_v_self = values[0]; __pyx_v_xp = values[1]; __pyx_v_weights = values[2]; __pyx_v_gradient = values[3]; __pyx_v_lr_scale = values[4]; __pyx_v_key = values[5]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("_nesterov", 1, 6, 6, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 294, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer._nesterov", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_20_nesterov(__pyx_self, __pyx_v_self, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_20_nesterov(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v_xp, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key) { PyObject *__pyx_v_lr = NULL; PyObject *__pyx_v_momentum = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__32) __Pyx_RefNannySetupContext("_nesterov", 0); __Pyx_TraceCall("_nesterov", __pyx_f[0], 294, 0, __PYX_ERR(0, 294, __pyx_L1_error)); __Pyx_INCREF(__pyx_v_weights); /* "thinc/neural/optimizers.pyx":304 * # v -= lr * gradient * # x += (1+mu) * v * lr = self.alpha * lr_scale # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_alpha); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 304, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyNumber_Multiply(__pyx_t_1, __pyx_v_lr_scale); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 304, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_lr = __pyx_t_2; __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":305 * # x += (1+mu) * v * lr = self.alpha * lr_scale * if key not in self.mom1: # <<<<<<<<<<<<<< * self.mom1[key] = self.ops.allocate(weights.size) * momentum = self.mom1[key] */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 305, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_2, Py_NE)); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 305, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = (__pyx_t_3 != 0); if (__pyx_t_4) { /* "thinc/neural/optimizers.pyx":306 * lr = self.alpha * lr_scale * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) # <<<<<<<<<<<<<< * momentum = self.mom1[key] * weights += -self.b1 * momentum */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 306, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_allocate); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 306, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 306, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_2 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_t_1) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_1); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 306, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 306, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (unlikely(PyObject_SetItem(__pyx_t_5, __pyx_v_key, __pyx_t_2) < 0)) __PYX_ERR(0, 306, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":305 * # x += (1+mu) * v * lr = self.alpha * lr_scale * if key not in self.mom1: # <<<<<<<<<<<<<< * self.mom1[key] = self.ops.allocate(weights.size) * momentum = self.mom1[key] */ } /* "thinc/neural/optimizers.pyx":307 * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) * momentum = self.mom1[key] # <<<<<<<<<<<<<< * weights += -self.b1 * momentum * momentum *= self.b1 */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 307, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = __Pyx_PyObject_GetItem(__pyx_t_2, __pyx_v_key); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 307, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_momentum = __pyx_t_5; __pyx_t_5 = 0; /* "thinc/neural/optimizers.pyx":308 * self.mom1[key] = self.ops.allocate(weights.size) * momentum = self.mom1[key] * weights += -self.b1 * momentum # <<<<<<<<<<<<<< * momentum *= self.b1 * momentum -= lr * gradient */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 308, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = PyNumber_Negative(__pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 308, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyNumber_Multiply(__pyx_t_2, __pyx_v_momentum); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 308, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_InPlaceAdd(__pyx_v_weights, __pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 308, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF_SET(__pyx_v_weights, __pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":309 * momentum = self.mom1[key] * weights += -self.b1 * momentum * momentum *= self.b1 # <<<<<<<<<<<<<< * momentum -= lr * gradient * weights += (1+self.b1) * momentum */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 309, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = PyNumber_InPlaceMultiply(__pyx_v_momentum, __pyx_t_2); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 309, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_momentum, __pyx_t_5); __pyx_t_5 = 0; /* "thinc/neural/optimizers.pyx":310 * weights += -self.b1 * momentum * momentum *= self.b1 * momentum -= lr * gradient # <<<<<<<<<<<<<< * weights += (1+self.b1) * momentum * */ __pyx_t_5 = PyNumber_Multiply(__pyx_v_lr, __pyx_v_gradient); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 310, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = PyNumber_InPlaceSubtract(__pyx_v_momentum, __pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 310, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF_SET(__pyx_v_momentum, __pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":311 * momentum *= self.b1 * momentum -= lr * gradient * weights += (1+self.b1) * momentum # <<<<<<<<<<<<<< * * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 311, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = __Pyx_PyInt_AddCObj(__pyx_int_1, __pyx_t_2, 1, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 311, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_Multiply(__pyx_t_5, __pyx_v_momentum); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 311, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_v_weights, __pyx_t_2); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 311, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_weights, __pyx_t_5); __pyx_t_5 = 0; /* "thinc/neural/optimizers.pyx":294 * weights -= lr * update * * def _nesterov(self, xp, weights, gradient, lr_scale, key): # <<<<<<<<<<<<<< * # http://cs231n.github.io/neural-networks-3/ * # v_prev = v # back this up */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer._nesterov", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_lr); __Pyx_XDECREF(__pyx_v_momentum); __Pyx_XDECREF(__pyx_v_weights); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":313 * weights += (1+self.b1) * momentum * * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_23_adam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_23_adam = {"_adam", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_23_adam, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Optimizer_23_adam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_self = 0; CYTHON_UNUSED PyObject *__pyx_v_xp = 0; PyObject *__pyx_v_weights = 0; PyObject *__pyx_v_gradient = 0; PyObject *__pyx_v_lr_scale = 0; PyObject *__pyx_v_key = 0; PyObject *__pyx_v_nr_upd = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_adam (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_xp,&__pyx_n_s_weights,&__pyx_n_s_gradient,&__pyx_n_s_lr_scale,&__pyx_n_s_key,&__pyx_n_s_nr_upd,0}; PyObject* values[7] = {0,0,0,0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_self)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_xp)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_adam", 1, 7, 7, 1); __PYX_ERR(0, 313, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_weights)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_adam", 1, 7, 7, 2); __PYX_ERR(0, 313, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_gradient)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_adam", 1, 7, 7, 3); __PYX_ERR(0, 313, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 4: if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lr_scale)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_adam", 1, 7, 7, 4); __PYX_ERR(0, 313, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 5: if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_key)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_adam", 1, 7, 7, 5); __PYX_ERR(0, 313, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 6: if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nr_upd)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_adam", 1, 7, 7, 6); __PYX_ERR(0, 313, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "_adam") < 0)) __PYX_ERR(0, 313, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 7) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); values[4] = PyTuple_GET_ITEM(__pyx_args, 4); values[5] = PyTuple_GET_ITEM(__pyx_args, 5); values[6] = PyTuple_GET_ITEM(__pyx_args, 6); } __pyx_v_self = values[0]; __pyx_v_xp = values[1]; __pyx_v_weights = values[2]; __pyx_v_gradient = values[3]; __pyx_v_lr_scale = values[4]; __pyx_v_key = values[5]; __pyx_v_nr_upd = values[6]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("_adam", 1, 7, 7, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 313, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer._adam", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_9Optimizer_22_adam(__pyx_self, __pyx_v_self, __pyx_v_xp, __pyx_v_weights, __pyx_v_gradient, __pyx_v_lr_scale, __pyx_v_key, __pyx_v_nr_upd); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_9Optimizer_22_adam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v_xp, PyObject *__pyx_v_weights, PyObject *__pyx_v_gradient, PyObject *__pyx_v_lr_scale, PyObject *__pyx_v_key, PyObject *__pyx_v_nr_upd) { PyObject *__pyx_v_mom1 = NULL; PyObject *__pyx_v_mom2 = NULL; __pyx_t_5thinc_8typedefs_weight_t __pyx_v_lr; __pyx_t_5thinc_8typedefs_weight_t __pyx_v_b1; __pyx_t_5thinc_8typedefs_weight_t __pyx_v_b2; __pyx_t_5thinc_8typedefs_weight_t __pyx_v_eps; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; __pyx_t_5thinc_8typedefs_weight_t __pyx_t_7; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__33) __Pyx_RefNannySetupContext("_adam", 0); __Pyx_TraceCall("_adam", __pyx_f[0], 313, 0, __PYX_ERR(0, 313, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":314 * * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): * if key not in self.mom1: # <<<<<<<<<<<<<< * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 314, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_1, Py_NE)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 314, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "thinc/neural/optimizers.pyx":315 * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) # <<<<<<<<<<<<<< * if key not in self.mom2: * self.mom2[key] = self.ops.allocate(weights.size) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 315, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_allocate); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 315, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_size); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 315, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_4); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 315, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 315, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (unlikely(PyObject_SetItem(__pyx_t_5, __pyx_v_key, __pyx_t_1) < 0)) __PYX_ERR(0, 315, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":314 * * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): * if key not in self.mom1: # <<<<<<<<<<<<<< * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: */ } /* "thinc/neural/optimizers.pyx":316 * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: # <<<<<<<<<<<<<< * self.mom2[key] = self.ops.allocate(weights.size) * mom1 = self.mom1[key] */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 316, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_1, Py_NE)); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 316, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":317 * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: * self.mom2[key] = self.ops.allocate(weights.size) # <<<<<<<<<<<<<< * mom1 = self.mom1[key] * mom2 = self.mom2[key] */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 317, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_allocate); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 317, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_weights, __pyx_n_s_size); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 317, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_6, __pyx_t_5) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 317, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 317, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (unlikely(PyObject_SetItem(__pyx_t_4, __pyx_v_key, __pyx_t_1) < 0)) __PYX_ERR(0, 317, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":316 * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) * if key not in self.mom2: # <<<<<<<<<<<<<< * self.mom2[key] = self.ops.allocate(weights.size) * mom1 = self.mom1[key] */ } /* "thinc/neural/optimizers.pyx":318 * if key not in self.mom2: * self.mom2[key] = self.ops.allocate(weights.size) * mom1 = self.mom1[key] # <<<<<<<<<<<<<< * mom2 = self.mom2[key] * cdef weight_t lr = self.lr(nr_upd) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 318, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_v_key); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 318, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_mom1 = __pyx_t_4; __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":319 * self.mom2[key] = self.ops.allocate(weights.size) * mom1 = self.mom1[key] * mom2 = self.mom2[key] # <<<<<<<<<<<<<< * cdef weight_t lr = self.lr(nr_upd) * cdef weight_t b1 = linear_decay(self.b1, self.b1_decay, nr_upd) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mom2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 319, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_t_4, __pyx_v_key); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 319, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_mom2 = __pyx_t_1; __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":320 * mom1 = self.mom1[key] * mom2 = self.mom2[key] * cdef weight_t lr = self.lr(nr_upd) # <<<<<<<<<<<<<< * cdef weight_t b1 = linear_decay(self.b1, self.b1_decay, nr_upd) * cdef weight_t b2 = linear_decay(self.b2, self.b2_decay, nr_upd) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lr); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 320, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_1 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_v_nr_upd) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_v_nr_upd); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 320, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_7 = __pyx_PyFloat_AsFloat(__pyx_t_1); if (unlikely((__pyx_t_7 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 320, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_lr = __pyx_t_7; /* "thinc/neural/optimizers.pyx":321 * mom2 = self.mom2[key] * cdef weight_t lr = self.lr(nr_upd) * cdef weight_t b1 = linear_decay(self.b1, self.b1_decay, nr_upd) # <<<<<<<<<<<<<< * cdef weight_t b2 = linear_decay(self.b2, self.b2_decay, nr_upd) * cdef weight_t eps = self.eps */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_linear_decay); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b1_decay); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[4] = {__pyx_t_8, __pyx_t_5, __pyx_t_6, __pyx_v_nr_upd}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[4] = {__pyx_t_8, __pyx_t_5, __pyx_t_6, __pyx_v_nr_upd}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { __pyx_t_10 = PyTuple_New(3+__pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); if (__pyx_t_8) { __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_8); __pyx_t_8 = NULL; } __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_10, 0+__pyx_t_9, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_10, 1+__pyx_t_9, __pyx_t_6); __Pyx_INCREF(__pyx_v_nr_upd); __Pyx_GIVEREF(__pyx_v_nr_upd); PyTuple_SET_ITEM(__pyx_t_10, 2+__pyx_t_9, __pyx_v_nr_upd); __pyx_t_5 = 0; __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_10, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_7 = __pyx_PyFloat_AsFloat(__pyx_t_1); if (unlikely((__pyx_t_7 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 321, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_b1 = __pyx_t_7; /* "thinc/neural/optimizers.pyx":322 * cdef weight_t lr = self.lr(nr_upd) * cdef weight_t b1 = linear_decay(self.b1, self.b1_decay, nr_upd) * cdef weight_t b2 = linear_decay(self.b2, self.b2_decay, nr_upd) # <<<<<<<<<<<<<< * cdef weight_t eps = self.eps * self.ops.adam( */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_linear_decay); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b2); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_b2_decay); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[4] = {__pyx_t_5, __pyx_t_10, __pyx_t_6, __pyx_v_nr_upd}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[4] = {__pyx_t_5, __pyx_t_10, __pyx_t_6, __pyx_v_nr_upd}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_9, 3+__pyx_t_9); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { __pyx_t_8 = PyTuple_New(3+__pyx_t_9); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_5) { __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; } __Pyx_GIVEREF(__pyx_t_10); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_9, __pyx_t_10); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_9, __pyx_t_6); __Pyx_INCREF(__pyx_v_nr_upd); __Pyx_GIVEREF(__pyx_v_nr_upd); PyTuple_SET_ITEM(__pyx_t_8, 2+__pyx_t_9, __pyx_v_nr_upd); __pyx_t_10 = 0; __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_8, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_7 = __pyx_PyFloat_AsFloat(__pyx_t_1); if (unlikely((__pyx_t_7 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 322, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_b2 = __pyx_t_7; /* "thinc/neural/optimizers.pyx":323 * cdef weight_t b1 = linear_decay(self.b1, self.b1_decay, nr_upd) * cdef weight_t b2 = linear_decay(self.b2, self.b2_decay, nr_upd) * cdef weight_t eps = self.eps # <<<<<<<<<<<<<< * self.ops.adam( * weights, gradient, mom1, mom2, b1, b2, eps, lr * lr_scale) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_eps); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 323, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_7 = __pyx_PyFloat_AsFloat(__pyx_t_1); if (unlikely((__pyx_t_7 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 323, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_eps = __pyx_t_7; /* "thinc/neural/optimizers.pyx":324 * cdef weight_t b2 = linear_decay(self.b2, self.b2_decay, nr_upd) * cdef weight_t eps = self.eps * self.ops.adam( # <<<<<<<<<<<<<< * weights, gradient, mom1, mom2, b1, b2, eps, lr * lr_scale) * gradient.fill(0) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_ops); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 324, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_adam_2); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 324, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":325 * cdef weight_t eps = self.eps * self.ops.adam( * weights, gradient, mom1, mom2, b1, b2, eps, lr * lr_scale) # <<<<<<<<<<<<<< * gradient.fill(0) * */ __pyx_t_4 = PyFloat_FromDouble(__pyx_v_b1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = PyFloat_FromDouble(__pyx_v_b2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_10 = PyFloat_FromDouble(__pyx_v_eps); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __pyx_t_5 = PyFloat_FromDouble(__pyx_v_lr); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_11 = PyNumber_Multiply(__pyx_t_5, __pyx_v_lr_scale); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = NULL; __pyx_t_9 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); __pyx_t_9 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_8)) { PyObject *__pyx_temp[9] = {__pyx_t_5, __pyx_v_weights, __pyx_v_gradient, __pyx_v_mom1, __pyx_v_mom2, __pyx_t_4, __pyx_t_6, __pyx_t_10, __pyx_t_11}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_8, __pyx_temp+1-__pyx_t_9, 8+__pyx_t_9); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 324, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_8)) { PyObject *__pyx_temp[9] = {__pyx_t_5, __pyx_v_weights, __pyx_v_gradient, __pyx_v_mom1, __pyx_v_mom2, __pyx_t_4, __pyx_t_6, __pyx_t_10, __pyx_t_11}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_8, __pyx_temp+1-__pyx_t_9, 8+__pyx_t_9); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 324, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; } else #endif { __pyx_t_12 = PyTuple_New(8+__pyx_t_9); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 324, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); if (__pyx_t_5) { __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_12, 0, __pyx_t_5); __pyx_t_5 = NULL; } __Pyx_INCREF(__pyx_v_weights); __Pyx_GIVEREF(__pyx_v_weights); PyTuple_SET_ITEM(__pyx_t_12, 0+__pyx_t_9, __pyx_v_weights); __Pyx_INCREF(__pyx_v_gradient); __Pyx_GIVEREF(__pyx_v_gradient); PyTuple_SET_ITEM(__pyx_t_12, 1+__pyx_t_9, __pyx_v_gradient); __Pyx_INCREF(__pyx_v_mom1); __Pyx_GIVEREF(__pyx_v_mom1); PyTuple_SET_ITEM(__pyx_t_12, 2+__pyx_t_9, __pyx_v_mom1); __Pyx_INCREF(__pyx_v_mom2); __Pyx_GIVEREF(__pyx_v_mom2); PyTuple_SET_ITEM(__pyx_t_12, 3+__pyx_t_9, __pyx_v_mom2); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_12, 4+__pyx_t_9, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_12, 5+__pyx_t_9, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_10); PyTuple_SET_ITEM(__pyx_t_12, 6+__pyx_t_9, __pyx_t_10); __Pyx_GIVEREF(__pyx_t_11); PyTuple_SET_ITEM(__pyx_t_12, 7+__pyx_t_9, __pyx_t_11); __pyx_t_4 = 0; __pyx_t_6 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_8, __pyx_t_12, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 324, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; } __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":326 * self.ops.adam( * weights, gradient, mom1, mom2, b1, b2, eps, lr * lr_scale) * gradient.fill(0) # <<<<<<<<<<<<<< * * */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_gradient, __pyx_n_s_fill); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 326, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_12 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_12 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_12)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_12); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_1 = (__pyx_t_12) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_12, __pyx_int_0) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_int_0); __Pyx_XDECREF(__pyx_t_12); __pyx_t_12 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 326, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":313 * weights += (1+self.b1) * momentum * * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_11); __Pyx_XDECREF(__pyx_t_12); __Pyx_AddTraceback("thinc.neural.optimizers.Optimizer._adam", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_mom1); __Pyx_XDECREF(__pyx_v_mom2); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":329 * * * def _make_ops(ops): # <<<<<<<<<<<<<< * if ops == "CupyOps": * return CupyOps() */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_7_make_ops(PyObject *__pyx_self, PyObject *__pyx_v_ops); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_7_make_ops = {"_make_ops", (PyCFunction)__pyx_pw_5thinc_6neural_10optimizers_7_make_ops, METH_O, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_7_make_ops(PyObject *__pyx_self, PyObject *__pyx_v_ops) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_make_ops (wrapper)", 0); __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_6_make_ops(__pyx_self, ((PyObject *)__pyx_v_ops)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_6_make_ops(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_ops) { PyObject *__pyx_v_Model = NULL; PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_t_5; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__34) __Pyx_RefNannySetupContext("_make_ops", 0); __Pyx_TraceCall("_make_ops", __pyx_f[0], 329, 0, __PYX_ERR(0, 329, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":330 * * def _make_ops(ops): * if ops == "CupyOps": # <<<<<<<<<<<<<< * return CupyOps() * elif ops == "NumpyOps": */ __pyx_t_1 = (__Pyx_PyString_Equals(__pyx_v_ops, __pyx_n_s_CupyOps, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 330, __pyx_L1_error) if (__pyx_t_1) { /* "thinc/neural/optimizers.pyx":331 * def _make_ops(ops): * if ops == "CupyOps": * return CupyOps() # <<<<<<<<<<<<<< * elif ops == "NumpyOps": * return NumpyOps() */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_CupyOps); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 331, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_2 = (__pyx_t_4) ? __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4) : __Pyx_PyObject_CallNoArg(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 331, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":330 * * def _make_ops(ops): * if ops == "CupyOps": # <<<<<<<<<<<<<< * return CupyOps() * elif ops == "NumpyOps": */ } /* "thinc/neural/optimizers.pyx":332 * if ops == "CupyOps": * return CupyOps() * elif ops == "NumpyOps": # <<<<<<<<<<<<<< * return NumpyOps() * elif ops is None: */ __pyx_t_1 = (__Pyx_PyString_Equals(__pyx_v_ops, __pyx_n_s_NumpyOps, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 332, __pyx_L1_error) if (__pyx_t_1) { /* "thinc/neural/optimizers.pyx":333 * return CupyOps() * elif ops == "NumpyOps": * return NumpyOps() # <<<<<<<<<<<<<< * elif ops is None: * from ._classes.model import Model */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_NumpyOps); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 333, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_2 = (__pyx_t_4) ? __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4) : __Pyx_PyObject_CallNoArg(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 333, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":332 * if ops == "CupyOps": * return CupyOps() * elif ops == "NumpyOps": # <<<<<<<<<<<<<< * return NumpyOps() * elif ops is None: */ } /* "thinc/neural/optimizers.pyx":334 * elif ops == "NumpyOps": * return NumpyOps() * elif ops is None: # <<<<<<<<<<<<<< * from ._classes.model import Model * return Model.ops */ __pyx_t_1 = (__pyx_v_ops == Py_None); __pyx_t_5 = (__pyx_t_1 != 0); if (__pyx_t_5) { /* "thinc/neural/optimizers.pyx":335 * return NumpyOps() * elif ops is None: * from ._classes.model import Model # <<<<<<<<<<<<<< * return Model.ops * else: */ __pyx_t_2 = PyList_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 335, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_n_s_Model); __Pyx_GIVEREF(__pyx_n_s_Model); PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s_Model); __pyx_t_3 = __Pyx_Import(__pyx_n_s_classes_model, __pyx_t_2, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 335, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_3, __pyx_n_s_Model); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 335, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_t_2); __pyx_v_Model = __pyx_t_2; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":336 * elif ops is None: * from ._classes.model import Model * return Model.ops # <<<<<<<<<<<<<< * else: * return ops */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_Model, __pyx_n_s_ops); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 336, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":334 * elif ops == "NumpyOps": * return NumpyOps() * elif ops is None: # <<<<<<<<<<<<<< * from ._classes.model import Model * return Model.ops */ } /* "thinc/neural/optimizers.pyx":338 * return Model.ops * else: * return ops # <<<<<<<<<<<<<< * * */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_ops); __pyx_r = __pyx_v_ops; goto __pyx_L0; } /* "thinc/neural/optimizers.pyx":329 * * * def _make_ops(ops): # <<<<<<<<<<<<<< * if ops == "CupyOps": * return CupyOps() */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("thinc.neural.optimizers._make_ops", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_Model); __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":343 * # These are deprecated * * def Adam(*args, **kwargs): # <<<<<<<<<<<<<< * return Optimizer(*args, **kwargs) * */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Adam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_9Adam = {"Adam", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_9Adam, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_9Adam(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_v_kwargs = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("Adam (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "Adam", 1))) return NULL; if (unlikely(__pyx_kwds)) { __pyx_v_kwargs = PyDict_Copy(__pyx_kwds); if (unlikely(!__pyx_v_kwargs)) return NULL; __Pyx_GOTREF(__pyx_v_kwargs); } else { __pyx_v_kwargs = NULL; } __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_8Adam(__pyx_self, __pyx_v_args, __pyx_v_kwargs); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_XDECREF(__pyx_v_kwargs); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_8Adam(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__35) __Pyx_RefNannySetupContext("Adam", 0); __Pyx_TraceCall("Adam", __pyx_f[0], 343, 0, __PYX_ERR(0, 343, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":344 * * def Adam(*args, **kwargs): * return Optimizer(*args, **kwargs) # <<<<<<<<<<<<<< * * def SGD(*args, **kwargs): */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Optimizer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 344, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_v_args, __pyx_v_kwargs); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 344, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":343 * # These are deprecated * * def Adam(*args, **kwargs): # <<<<<<<<<<<<<< * return Optimizer(*args, **kwargs) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("thinc.neural.optimizers.Adam", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":346 * return Optimizer(*args, **kwargs) * * def SGD(*args, **kwargs): # <<<<<<<<<<<<<< * kwargs.setdefault('beta1', 0.) * kwargs.setdefault('beta2', 0.) */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_11SGD(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_11SGD = {"SGD", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_11SGD, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_11SGD(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_v_kwargs = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("SGD (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "SGD", 1))) return NULL; __pyx_v_kwargs = (__pyx_kwds) ? PyDict_Copy(__pyx_kwds) : PyDict_New(); if (unlikely(!__pyx_v_kwargs)) return NULL; __Pyx_GOTREF(__pyx_v_kwargs); __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_10SGD(__pyx_self, __pyx_v_args, __pyx_v_kwargs); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_XDECREF(__pyx_v_kwargs); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_10SGD(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__36) __Pyx_RefNannySetupContext("SGD", 0); __Pyx_TraceCall("SGD", __pyx_f[0], 346, 0, __PYX_ERR(0, 346, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":347 * * def SGD(*args, **kwargs): * kwargs.setdefault('beta1', 0.) # <<<<<<<<<<<<<< * kwargs.setdefault('beta2', 0.) * return Optimizer(*args, **kwargs) */ __pyx_t_1 = __Pyx_PyDict_SetDefault(__pyx_v_kwargs, __pyx_n_s_beta1, __pyx_float_0_, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 347, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":348 * def SGD(*args, **kwargs): * kwargs.setdefault('beta1', 0.) * kwargs.setdefault('beta2', 0.) # <<<<<<<<<<<<<< * return Optimizer(*args, **kwargs) * */ __pyx_t_1 = __Pyx_PyDict_SetDefault(__pyx_v_kwargs, __pyx_n_s_beta2, __pyx_float_0_, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 348, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":349 * kwargs.setdefault('beta1', 0.) * kwargs.setdefault('beta2', 0.) * return Optimizer(*args, **kwargs) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Optimizer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 349, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_v_args, __pyx_v_kwargs); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 349, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":346 * return Optimizer(*args, **kwargs) * * def SGD(*args, **kwargs): # <<<<<<<<<<<<<< * kwargs.setdefault('beta1', 0.) * kwargs.setdefault('beta2', 0.) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("thinc.neural.optimizers.SGD", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":352 * * * def linear_decay(rate, decay, nr_upd): # <<<<<<<<<<<<<< * return rate * 1./(1. + decay * nr_upd) * */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_13linear_decay(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_13linear_decay = {"linear_decay", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_13linear_decay, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_13linear_decay(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_rate = 0; PyObject *__pyx_v_decay = 0; PyObject *__pyx_v_nr_upd = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("linear_decay (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_rate,&__pyx_n_s_decay,&__pyx_n_s_nr_upd,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_rate)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_decay)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("linear_decay", 1, 3, 3, 1); __PYX_ERR(0, 352, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nr_upd)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("linear_decay", 1, 3, 3, 2); __PYX_ERR(0, 352, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "linear_decay") < 0)) __PYX_ERR(0, 352, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); } __pyx_v_rate = values[0]; __pyx_v_decay = values[1]; __pyx_v_nr_upd = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("linear_decay", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 352, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.linear_decay", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_12linear_decay(__pyx_self, __pyx_v_rate, __pyx_v_decay, __pyx_v_nr_upd); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_12linear_decay(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_rate, PyObject *__pyx_v_decay, PyObject *__pyx_v_nr_upd) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__37) __Pyx_RefNannySetupContext("linear_decay", 0); __Pyx_TraceCall("linear_decay", __pyx_f[0], 352, 0, __PYX_ERR(0, 352, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":353 * * def linear_decay(rate, decay, nr_upd): * return rate * 1./(1. + decay * nr_upd) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyNumber_Multiply(__pyx_v_rate, __pyx_float_1_); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 353, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyNumber_Multiply(__pyx_v_decay, __pyx_v_nr_upd); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 353, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyFloat_AddCObj(__pyx_float_1_, __pyx_t_2, 1., 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 353, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyNumber_Divide(__pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 353, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":352 * * * def linear_decay(rate, decay, nr_upd): # <<<<<<<<<<<<<< * return rate * 1./(1. + decay * nr_upd) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("thinc.neural.optimizers.linear_decay", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "thinc/neural/optimizers.pyx":356 * * * def anneal(rate, decay, decay_steps, nr_upd): # <<<<<<<<<<<<<< * if decay == 0.0: * return rate */ /* Python wrapper */ static PyObject *__pyx_pw_5thinc_6neural_10optimizers_15anneal(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_5thinc_6neural_10optimizers_15anneal = {"anneal", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5thinc_6neural_10optimizers_15anneal, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_5thinc_6neural_10optimizers_15anneal(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_rate = 0; PyObject *__pyx_v_decay = 0; PyObject *__pyx_v_decay_steps = 0; PyObject *__pyx_v_nr_upd = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("anneal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_rate,&__pyx_n_s_decay,&__pyx_n_s_decay_steps,&__pyx_n_s_nr_upd,0}; PyObject* values[4] = {0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_rate)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_decay)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("anneal", 1, 4, 4, 1); __PYX_ERR(0, 356, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_decay_steps)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("anneal", 1, 4, 4, 2); __PYX_ERR(0, 356, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nr_upd)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("anneal", 1, 4, 4, 3); __PYX_ERR(0, 356, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "anneal") < 0)) __PYX_ERR(0, 356, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } __pyx_v_rate = values[0]; __pyx_v_decay = values[1]; __pyx_v_decay_steps = values[2]; __pyx_v_nr_upd = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("anneal", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 356, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("thinc.neural.optimizers.anneal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5thinc_6neural_10optimizers_14anneal(__pyx_self, __pyx_v_rate, __pyx_v_decay, __pyx_v_decay_steps, __pyx_v_nr_upd); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5thinc_6neural_10optimizers_14anneal(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_rate, PyObject *__pyx_v_decay, PyObject *__pyx_v_decay_steps, PyObject *__pyx_v_nr_upd) { PyObject *__pyx_r = NULL; __Pyx_TraceDeclarations __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_TraceFrameInit(__pyx_codeobj__38) __Pyx_RefNannySetupContext("anneal", 0); __Pyx_TraceCall("anneal", __pyx_f[0], 356, 0, __PYX_ERR(0, 356, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":357 * * def anneal(rate, decay, decay_steps, nr_upd): * if decay == 0.0: # <<<<<<<<<<<<<< * return rate * else: */ __pyx_t_1 = __Pyx_PyFloat_EqObjC(__pyx_v_decay, __pyx_float_0_0, 0.0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 357, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 357, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_2) { /* "thinc/neural/optimizers.pyx":358 * def anneal(rate, decay, decay_steps, nr_upd): * if decay == 0.0: * return rate # <<<<<<<<<<<<<< * else: * return rate * decay ** (nr_upd / decay_steps) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_rate); __pyx_r = __pyx_v_rate; goto __pyx_L0; /* "thinc/neural/optimizers.pyx":357 * * def anneal(rate, decay, decay_steps, nr_upd): * if decay == 0.0: # <<<<<<<<<<<<<< * return rate * else: */ } /* "thinc/neural/optimizers.pyx":360 * return rate * else: * return rate * decay ** (nr_upd / decay_steps) # <<<<<<<<<<<<<< */ /*else*/ { __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyNumber_Divide(__pyx_v_nr_upd, __pyx_v_decay_steps); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 360, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = PyNumber_Power(__pyx_v_decay, __pyx_t_1, Py_None); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 360, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyNumber_Multiply(__pyx_v_rate, __pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 360, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; } /* "thinc/neural/optimizers.pyx":356 * * * def anneal(rate, decay, decay_steps, nr_upd): # <<<<<<<<<<<<<< * if decay == 0.0: * return rate */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("thinc.neural.optimizers.anneal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_TraceReturn(__pyx_r, 0); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyMethodDef __pyx_methods[] = { {0, 0, 0, 0} }; #if PY_MAJOR_VERSION >= 3 #if CYTHON_PEP489_MULTI_PHASE_INIT static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ static int __pyx_pymod_exec_optimizers(PyObject* module); /*proto*/ static PyModuleDef_Slot __pyx_moduledef_slots[] = { {Py_mod_create, (void*)__pyx_pymod_create}, {Py_mod_exec, (void*)__pyx_pymod_exec_optimizers}, {0, NULL} }; #endif static struct PyModuleDef __pyx_moduledef = { PyModuleDef_HEAD_INIT, "optimizers", 0, /* m_doc */ #if CYTHON_PEP489_MULTI_PHASE_INIT 0, /* m_size */ #else -1, /* m_size */ #endif __pyx_methods /* m_methods */, #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_moduledef_slots, /* m_slots */ #else NULL, /* m_reload */ #endif NULL, /* m_traverse */ NULL, /* m_clear */ NULL /* m_free */ }; #endif #ifndef CYTHON_SMALL_CODE #if defined(__clang__) #define CYTHON_SMALL_CODE #elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define CYTHON_SMALL_CODE __attribute__((cold)) #else #define CYTHON_SMALL_CODE #endif #endif static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_ADAM_DEFAULTS, __pyx_k_ADAM_DEFAULTS, sizeof(__pyx_k_ADAM_DEFAULTS), 0, 0, 1, 1}, {&__pyx_n_s_Adam, __pyx_k_Adam, sizeof(__pyx_k_Adam), 0, 0, 1, 1}, {&__pyx_kp_s_Adam_v1, __pyx_k_Adam_v1, sizeof(__pyx_k_Adam_v1), 0, 0, 1, 0}, {&__pyx_n_s_CupyOps, __pyx_k_CupyOps, sizeof(__pyx_k_CupyOps), 0, 0, 1, 1}, {&__pyx_kp_s_Do_various_flavours_of_stochasti, __pyx_k_Do_various_flavours_of_stochasti, sizeof(__pyx_k_Do_various_flavours_of_stochasti), 0, 0, 1, 0}, {&__pyx_n_s_L2, __pyx_k_L2, sizeof(__pyx_k_L2), 0, 0, 1, 1}, {&__pyx_n_s_L2_is_weight_decay, __pyx_k_L2_is_weight_decay, sizeof(__pyx_k_L2_is_weight_decay), 0, 0, 1, 1}, {&__pyx_n_s_Model, __pyx_k_Model, sizeof(__pyx_k_Model), 0, 0, 1, 1}, {&__pyx_n_s_NotImplementedError, __pyx_k_NotImplementedError, sizeof(__pyx_k_NotImplementedError), 0, 0, 1, 1}, {&__pyx_n_s_NumpyOps, __pyx_k_NumpyOps, sizeof(__pyx_k_NumpyOps), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer, __pyx_k_Optimizer, sizeof(__pyx_k_Optimizer), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer___call, __pyx_k_Optimizer___call, sizeof(__pyx_k_Optimizer___call), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer___init, __pyx_k_Optimizer___init, sizeof(__pyx_k_Optimizer___init), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer__adam, __pyx_k_Optimizer__adam, sizeof(__pyx_k_Optimizer__adam), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer__nesterov, __pyx_k_Optimizer__nesterov, sizeof(__pyx_k_Optimizer__nesterov), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer__radam, __pyx_k_Optimizer__radam, sizeof(__pyx_k_Optimizer__radam), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer_from_config, __pyx_k_Optimizer_from_config, sizeof(__pyx_k_Optimizer_from_config), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer_learn_rate, __pyx_k_Optimizer_learn_rate, sizeof(__pyx_k_Optimizer_learn_rate), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer_lr, __pyx_k_Optimizer_lr, sizeof(__pyx_k_Optimizer_lr), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer_step_schedules, __pyx_k_Optimizer_step_schedules, sizeof(__pyx_k_Optimizer_step_schedules), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer_to_cpu, __pyx_k_Optimizer_to_cpu, sizeof(__pyx_k_Optimizer_to_cpu), 0, 0, 1, 1}, {&__pyx_n_s_Optimizer_to_gpu, __pyx_k_Optimizer_to_gpu, sizeof(__pyx_k_Optimizer_to_gpu), 0, 0, 1, 1}, {&__pyx_kp_s_RAdam_v1, __pyx_k_RAdam_v1, sizeof(__pyx_k_RAdam_v1), 0, 0, 1, 0}, {&__pyx_n_s_SGD, __pyx_k_SGD, sizeof(__pyx_k_SGD), 0, 0, 1, 1}, {&__pyx_n_s_SGD_DEFAULTS, __pyx_k_SGD_DEFAULTS, sizeof(__pyx_k_SGD_DEFAULTS), 0, 0, 1, 1}, {&__pyx_kp_s_SGD_v1, __pyx_k_SGD_v1, sizeof(__pyx_k_SGD_v1), 0, 0, 1, 0}, {&__pyx_n_s__47, __pyx_k__47, sizeof(__pyx_k__47), 0, 0, 1, 1}, {&__pyx_n_s_adam, __pyx_k_adam, sizeof(__pyx_k_adam), 0, 0, 1, 1}, {&__pyx_n_s_adam_2, __pyx_k_adam_2, sizeof(__pyx_k_adam_2), 0, 0, 1, 1}, {&__pyx_n_s_add_gradient_noise, __pyx_k_add_gradient_noise, sizeof(__pyx_k_add_gradient_noise), 0, 0, 1, 1}, {&__pyx_n_s_allocate, __pyx_k_allocate, sizeof(__pyx_k_allocate), 0, 0, 1, 1}, {&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1}, {&__pyx_n_s_anneal, __pyx_k_anneal, sizeof(__pyx_k_anneal), 0, 0, 1, 1}, {&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1}, {&__pyx_n_s_asarray, __pyx_k_asarray, sizeof(__pyx_k_asarray), 0, 0, 1, 1}, {&__pyx_n_s_averages, __pyx_k_averages, sizeof(__pyx_k_averages), 0, 0, 1, 1}, {&__pyx_n_s_b1, __pyx_k_b1, sizeof(__pyx_k_b1), 0, 0, 1, 1}, {&__pyx_n_s_b1_decay, __pyx_k_b1_decay, sizeof(__pyx_k_b1_decay), 0, 0, 1, 1}, {&__pyx_n_s_b2, __pyx_k_b2, sizeof(__pyx_k_b2), 0, 0, 1, 1}, {&__pyx_n_s_b2_decay, __pyx_k_b2_decay, sizeof(__pyx_k_b2_decay), 0, 0, 1, 1}, {&__pyx_n_s_beta1, __pyx_k_beta1, sizeof(__pyx_k_beta1), 0, 0, 1, 1}, {&__pyx_n_s_beta2, __pyx_k_beta2, sizeof(__pyx_k_beta2), 0, 0, 1, 1}, {&__pyx_n_s_bias_correction1, __pyx_k_bias_correction1, sizeof(__pyx_k_bias_correction1), 0, 0, 1, 1}, {&__pyx_n_s_bias_correction2, __pyx_k_bias_correction2, sizeof(__pyx_k_bias_correction2), 0, 0, 1, 1}, {&__pyx_n_s_call, __pyx_k_call, sizeof(__pyx_k_call), 0, 0, 1, 1}, {&__pyx_n_s_classes_model, __pyx_k_classes_model, sizeof(__pyx_k_classes_model), 0, 0, 1, 1}, {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, {&__pyx_n_s_clip_gradient, __pyx_k_clip_gradient, sizeof(__pyx_k_clip_gradient), 0, 0, 1, 1}, {&__pyx_n_s_cls, __pyx_k_cls, sizeof(__pyx_k_cls), 0, 0, 1, 1}, {&__pyx_n_s_collections, __pyx_k_collections, sizeof(__pyx_k_collections), 0, 0, 1, 1}, {&__pyx_n_s_config, __pyx_k_config, sizeof(__pyx_k_config), 0, 0, 1, 1}, {&__pyx_n_s_create_Adam, __pyx_k_create_Adam, sizeof(__pyx_k_create_Adam), 0, 0, 1, 1}, {&__pyx_n_s_create_RAdam, __pyx_k_create_RAdam, sizeof(__pyx_k_create_RAdam), 0, 0, 1, 1}, {&__pyx_n_s_create_SGD, __pyx_k_create_SGD, sizeof(__pyx_k_create_SGD), 0, 0, 1, 1}, {&__pyx_n_s_decay, __pyx_k_decay, sizeof(__pyx_k_decay), 0, 0, 1, 1}, {&__pyx_n_s_decay_steps, __pyx_k_decay_steps, sizeof(__pyx_k_decay_steps), 0, 0, 1, 1}, {&__pyx_n_s_defaultdict, __pyx_k_defaultdict, sizeof(__pyx_k_defaultdict), 0, 0, 1, 1}, {&__pyx_n_s_doc, __pyx_k_doc, sizeof(__pyx_k_doc), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_eps, __pyx_k_eps, sizeof(__pyx_k_eps), 0, 0, 1, 1}, {&__pyx_n_s_exp_avg, __pyx_k_exp_avg, sizeof(__pyx_k_exp_avg), 0, 0, 1, 1}, {&__pyx_n_s_exp_avg_sq, __pyx_k_exp_avg_sq, sizeof(__pyx_k_exp_avg_sq), 0, 0, 1, 1}, {&__pyx_n_s_f, __pyx_k_f, sizeof(__pyx_k_f), 0, 0, 1, 1}, {&__pyx_n_s_fill, __pyx_k_fill, sizeof(__pyx_k_fill), 0, 0, 1, 1}, {&__pyx_n_s_fix1, __pyx_k_fix1, sizeof(__pyx_k_fix1), 0, 0, 1, 1}, {&__pyx_n_s_fix2, __pyx_k_fix2, sizeof(__pyx_k_fix2), 0, 0, 1, 1}, {&__pyx_n_s_float32, __pyx_k_float32, sizeof(__pyx_k_float32), 0, 0, 1, 1}, {&__pyx_n_s_from_config, __pyx_k_from_config, sizeof(__pyx_k_from_config), 0, 0, 1, 1}, {&__pyx_n_s_get, __pyx_k_get, sizeof(__pyx_k_get), 0, 0, 1, 1}, {&__pyx_n_s_get_array_module, __pyx_k_get_array_module, sizeof(__pyx_k_get_array_module), 0, 0, 1, 1}, {&__pyx_n_s_gradient, __pyx_k_gradient, sizeof(__pyx_k_gradient), 0, 0, 1, 1}, {&__pyx_n_s_gradient_noise, __pyx_k_gradient_noise, sizeof(__pyx_k_gradient_noise), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, {&__pyx_n_s_init, __pyx_k_init, sizeof(__pyx_k_init), 0, 0, 1, 1}, {&__pyx_n_s_items, __pyx_k_items, sizeof(__pyx_k_items), 0, 0, 1, 1}, {&__pyx_n_s_key, __pyx_k_key, sizeof(__pyx_k_key), 0, 0, 1, 1}, {&__pyx_n_s_kwargs, __pyx_k_kwargs, sizeof(__pyx_k_kwargs), 0, 0, 1, 1}, {&__pyx_n_s_lars_max, __pyx_k_lars_max, sizeof(__pyx_k_lars_max), 0, 0, 1, 1}, {&__pyx_n_s_lars_min, __pyx_k_lars_min, sizeof(__pyx_k_lars_min), 0, 0, 1, 1}, {&__pyx_n_s_last_seen, __pyx_k_last_seen, sizeof(__pyx_k_last_seen), 0, 0, 1, 1}, {&__pyx_n_s_learn_rate, __pyx_k_learn_rate, sizeof(__pyx_k_learn_rate), 0, 0, 1, 1}, {&__pyx_n_s_linalg, __pyx_k_linalg, sizeof(__pyx_k_linalg), 0, 0, 1, 1}, {&__pyx_n_s_linear_decay, __pyx_k_linear_decay, sizeof(__pyx_k_linear_decay), 0, 0, 1, 1}, {&__pyx_n_s_local_lr, __pyx_k_local_lr, sizeof(__pyx_k_local_lr), 0, 0, 1, 1}, {&__pyx_n_s_lookahead_alpha, __pyx_k_lookahead_alpha, sizeof(__pyx_k_lookahead_alpha), 0, 0, 1, 1}, {&__pyx_n_s_lookahead_k, __pyx_k_lookahead_k, sizeof(__pyx_k_lookahead_k), 0, 0, 1, 1}, {&__pyx_n_s_lr, __pyx_k_lr, sizeof(__pyx_k_lr), 0, 0, 1, 1}, {&__pyx_n_s_lr_scale, __pyx_k_lr_scale, sizeof(__pyx_k_lr_scale), 0, 0, 1, 1}, {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, {&__pyx_n_s_make_from_config, __pyx_k_make_from_config, sizeof(__pyx_k_make_from_config), 0, 0, 1, 1}, {&__pyx_n_s_make_ops, __pyx_k_make_ops, sizeof(__pyx_k_make_ops), 0, 0, 1, 1}, {&__pyx_n_s_math, __pyx_k_math, sizeof(__pyx_k_math), 0, 0, 1, 1}, {&__pyx_n_s_max_grad_norm, __pyx_k_max_grad_norm, sizeof(__pyx_k_max_grad_norm), 0, 0, 1, 1}, {&__pyx_n_s_metaclass, __pyx_k_metaclass, sizeof(__pyx_k_metaclass), 0, 0, 1, 1}, {&__pyx_n_s_module, __pyx_k_module, sizeof(__pyx_k_module), 0, 0, 1, 1}, {&__pyx_n_s_mom1, __pyx_k_mom1, sizeof(__pyx_k_mom1), 0, 0, 1, 1}, {&__pyx_n_s_mom2, __pyx_k_mom2, sizeof(__pyx_k_mom2), 0, 0, 1, 1}, {&__pyx_n_s_momentum, __pyx_k_momentum, sizeof(__pyx_k_momentum), 0, 0, 1, 1}, {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, {&__pyx_n_s_nesterov, __pyx_k_nesterov, sizeof(__pyx_k_nesterov), 0, 0, 1, 1}, {&__pyx_n_s_nesterov_2, __pyx_k_nesterov_2, sizeof(__pyx_k_nesterov_2), 0, 0, 1, 1}, {&__pyx_n_s_norm, __pyx_k_norm, sizeof(__pyx_k_norm), 0, 0, 1, 1}, {&__pyx_n_s_nr_upd, __pyx_k_nr_upd, sizeof(__pyx_k_nr_upd), 0, 0, 1, 1}, {&__pyx_n_s_nr_update, __pyx_k_nr_update, sizeof(__pyx_k_nr_update), 0, 0, 1, 1}, {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_n_s_object, __pyx_k_object, sizeof(__pyx_k_object), 0, 0, 1, 1}, {&__pyx_n_s_ops, __pyx_k_ops, sizeof(__pyx_k_ops), 0, 0, 1, 1}, {&__pyx_n_s_optimizers, __pyx_k_optimizers, sizeof(__pyx_k_optimizers), 0, 0, 1, 1}, {&__pyx_kp_s_optimizers_pyx, __pyx_k_optimizers_pyx, sizeof(__pyx_k_optimizers_pyx), 0, 0, 1, 0}, {&__pyx_n_s_params, __pyx_k_params, sizeof(__pyx_k_params), 0, 0, 1, 1}, {&__pyx_n_s_phi_p, __pyx_k_phi_p, sizeof(__pyx_k_phi_p), 0, 0, 1, 1}, {&__pyx_n_s_prepare, __pyx_k_prepare, sizeof(__pyx_k_prepare), 0, 0, 1, 1}, {&__pyx_n_s_property, __pyx_k_property, sizeof(__pyx_k_property), 0, 0, 1, 1}, {&__pyx_n_s_qualname, __pyx_k_qualname, sizeof(__pyx_k_qualname), 0, 0, 1, 1}, {&__pyx_n_s_r_t, __pyx_k_r_t, sizeof(__pyx_k_r_t), 0, 0, 1, 1}, {&__pyx_n_s_radam, __pyx_k_radam, sizeof(__pyx_k_radam), 0, 0, 1, 1}, {&__pyx_n_s_rate, __pyx_k_rate, sizeof(__pyx_k_rate), 0, 0, 1, 1}, {&__pyx_n_s_register, __pyx_k_register, sizeof(__pyx_k_register), 0, 0, 1, 1}, {&__pyx_n_s_registry, __pyx_k_registry, sizeof(__pyx_k_registry), 0, 0, 1, 1}, {&__pyx_n_s_registry_2, __pyx_k_registry_2, sizeof(__pyx_k_registry_2), 0, 0, 1, 1}, {&__pyx_n_s_schedule, __pyx_k_schedule, sizeof(__pyx_k_schedule), 0, 0, 1, 1}, {&__pyx_n_s_schedules, __pyx_k_schedules, sizeof(__pyx_k_schedules), 0, 0, 1, 1}, {&__pyx_n_s_self, __pyx_k_self, sizeof(__pyx_k_self), 0, 0, 1, 1}, {&__pyx_n_s_setdefault, __pyx_k_setdefault, sizeof(__pyx_k_setdefault), 0, 0, 1, 1}, {&__pyx_n_s_setter, __pyx_k_setter, sizeof(__pyx_k_setter), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_n_s_slow, __pyx_k_slow, sizeof(__pyx_k_slow), 0, 0, 1, 1}, {&__pyx_n_s_slow_weights, __pyx_k_slow_weights, sizeof(__pyx_k_slow_weights), 0, 0, 1, 1}, {&__pyx_n_s_sma_inf, __pyx_k_sma_inf, sizeof(__pyx_k_sma_inf), 0, 0, 1, 1}, {&__pyx_n_s_sma_t, __pyx_k_sma_t, sizeof(__pyx_k_sma_t), 0, 0, 1, 1}, {&__pyx_n_s_sqrt, __pyx_k_sqrt, sizeof(__pyx_k_sqrt), 0, 0, 1, 1}, {&__pyx_n_s_step_schedules, __pyx_k_step_schedules, sizeof(__pyx_k_step_schedules), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_n_s_thinc_neural_optimizers, __pyx_k_thinc_neural_optimizers, sizeof(__pyx_k_thinc_neural_optimizers), 0, 0, 1, 1}, {&__pyx_n_s_to_cpu, __pyx_k_to_cpu, sizeof(__pyx_k_to_cpu), 0, 0, 1, 1}, {&__pyx_n_s_to_gpu, __pyx_k_to_gpu, sizeof(__pyx_k_to_gpu), 0, 0, 1, 1}, {&__pyx_n_s_u_norm, __pyx_k_u_norm, sizeof(__pyx_k_u_norm), 0, 0, 1, 1}, {&__pyx_n_s_update, __pyx_k_update, sizeof(__pyx_k_update), 0, 0, 1, 1}, {&__pyx_n_s_update_averages, __pyx_k_update_averages, sizeof(__pyx_k_update_averages), 0, 0, 1, 1}, {&__pyx_n_s_use_averages, __pyx_k_use_averages, sizeof(__pyx_k_use_averages), 0, 0, 1, 1}, {&__pyx_n_s_use_lars, __pyx_k_use_lars, sizeof(__pyx_k_use_lars), 0, 0, 1, 1}, {&__pyx_n_s_use_radam, __pyx_k_use_radam, sizeof(__pyx_k_use_radam), 0, 0, 1, 1}, {&__pyx_n_s_util, __pyx_k_util, sizeof(__pyx_k_util), 0, 0, 1, 1}, {&__pyx_n_s_value, __pyx_k_value, sizeof(__pyx_k_value), 0, 0, 1, 1}, {&__pyx_n_s_w_norm, __pyx_k_w_norm, sizeof(__pyx_k_w_norm), 0, 0, 1, 1}, {&__pyx_n_s_weights, __pyx_k_weights, sizeof(__pyx_k_weights), 0, 0, 1, 1}, {&__pyx_n_s_xp, __pyx_k_xp, sizeof(__pyx_k_xp), 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0} }; static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_object = __Pyx_GetBuiltinName(__pyx_n_s_object); if (!__pyx_builtin_object) __PYX_ERR(0, 112, __pyx_L1_error) __pyx_builtin_property = __Pyx_GetBuiltinName(__pyx_n_s_property); if (!__pyx_builtin_property) __PYX_ERR(0, 183, __pyx_L1_error) __pyx_builtin_NotImplementedError = __Pyx_GetBuiltinName(__pyx_n_s_NotImplementedError); if (!__pyx_builtin_NotImplementedError) __PYX_ERR(0, 221, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); /* "thinc/neural/optimizers.pyx":236 * slow = self.slow_weights[key] * slow += self.lookahead_alpha * (weights - slow) * weights[:] = slow # <<<<<<<<<<<<<< * if self.averages is not None: * if key not in self.averages: */ __pyx_slice__30 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__30)) __PYX_ERR(0, 236, __pyx_L1_error) __Pyx_GOTREF(__pyx_slice__30); __Pyx_GIVEREF(__pyx_slice__30); /* "thinc/neural/optimizers.pyx":38 * * * @registry.optimizers.register("RAdam.v1") # <<<<<<<<<<<<<< * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], */ __pyx_tuple__39 = PyTuple_Pack(1, __pyx_kp_s_RAdam_v1); if (unlikely(!__pyx_tuple__39)) __PYX_ERR(0, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__39); __Pyx_GIVEREF(__pyx_tuple__39); /* "thinc/neural/optimizers.pyx":39 * * @registry.optimizers.register("RAdam.v1") * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ __pyx_tuple__40 = PyTuple_Pack(10, __pyx_n_s_learn_rate, __pyx_n_s_L2, __pyx_n_s_beta1, __pyx_n_s_beta2, __pyx_n_s_eps, __pyx_n_s_max_grad_norm, __pyx_n_s_L2_is_weight_decay, __pyx_n_s_use_averages, __pyx_n_s_schedules, __pyx_n_s_ops); if (unlikely(!__pyx_tuple__40)) __PYX_ERR(0, 39, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__40); __Pyx_GIVEREF(__pyx_tuple__40); __pyx_codeobj__8 = (PyObject*)__Pyx_PyCode_New(10, 0, 10, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__40, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_create_RAdam, 39, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__8)) __PYX_ERR(0, 39, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":67 * * * @registry.optimizers.register("Adam.v1") # <<<<<<<<<<<<<< * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], */ __pyx_tuple__41 = PyTuple_Pack(1, __pyx_kp_s_Adam_v1); if (unlikely(!__pyx_tuple__41)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__41); __Pyx_GIVEREF(__pyx_tuple__41); /* "thinc/neural/optimizers.pyx":68 * * @registry.optimizers.register("Adam.v1") * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ __pyx_tuple__42 = PyTuple_Pack(10, __pyx_n_s_learn_rate, __pyx_n_s_L2, __pyx_n_s_beta1, __pyx_n_s_beta2, __pyx_n_s_eps, __pyx_n_s_max_grad_norm, __pyx_n_s_L2_is_weight_decay, __pyx_n_s_use_averages, __pyx_n_s_ops, __pyx_n_s_schedules); if (unlikely(!__pyx_tuple__42)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__42); __Pyx_GIVEREF(__pyx_tuple__42); __pyx_codeobj__16 = (PyObject*)__Pyx_PyCode_New(10, 0, 10, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__42, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_create_Adam, 68, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__16)) __PYX_ERR(0, 68, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":97 * * * @registry.optimizers.register("SGD.v1") # <<<<<<<<<<<<<< * def create_SGD(learn_rate, * ops=None, */ __pyx_tuple__43 = PyTuple_Pack(1, __pyx_kp_s_SGD_v1); if (unlikely(!__pyx_tuple__43)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__43); __Pyx_GIVEREF(__pyx_tuple__43); /* "thinc/neural/optimizers.pyx":98 * * @registry.optimizers.register("SGD.v1") * def create_SGD(learn_rate, # <<<<<<<<<<<<<< * ops=None, * L2=SGD_DEFAULTS["L2"], */ __pyx_tuple__44 = PyTuple_Pack(7, __pyx_n_s_learn_rate, __pyx_n_s_ops, __pyx_n_s_L2, __pyx_n_s_max_grad_norm, __pyx_n_s_L2_is_weight_decay, __pyx_n_s_use_averages, __pyx_n_s_schedules); if (unlikely(!__pyx_tuple__44)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__44); __Pyx_GIVEREF(__pyx_tuple__44); __pyx_codeobj__20 = (PyObject*)__Pyx_PyCode_New(7, 0, 7, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__44, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_create_SGD, 98, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__20)) __PYX_ERR(0, 98, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":112 * * * class Optimizer(object): # <<<<<<<<<<<<<< * '''Do various flavours of stochastic gradient descent, with first and * second order momentum. */ __pyx_tuple__45 = PyTuple_Pack(1, __pyx_builtin_object); if (unlikely(!__pyx_tuple__45)) __PYX_ERR(0, 112, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__45); __Pyx_GIVEREF(__pyx_tuple__45); /* "thinc/neural/optimizers.pyx":124 * ''' * @classmethod * def from_config(cls, config): # <<<<<<<<<<<<<< * return registry.make_from_config(config) * */ __pyx_tuple__46 = PyTuple_Pack(2, __pyx_n_s_cls, __pyx_n_s_config); if (unlikely(!__pyx_tuple__46)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__46); __Pyx_GIVEREF(__pyx_tuple__46); __pyx_codeobj__21 = (PyObject*)__Pyx_PyCode_New(2, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__46, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_from_config, 124, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__21)) __PYX_ERR(0, 124, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":127 * return registry.make_from_config(config) * * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, # <<<<<<<<<<<<<< * max_grad_norm=10., gradient_noise=0.0, nesterov=True, * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, */ __pyx_tuple__48 = PyTuple_Pack(18, __pyx_n_s_self, __pyx_n_s_ops, __pyx_n_s_lr, __pyx_n_s_L2, __pyx_n_s_beta1, __pyx_n_s_beta2, __pyx_n_s_eps, __pyx_n_s_max_grad_norm, __pyx_n_s_gradient_noise, __pyx_n_s_nesterov, __pyx_n_s_L2_is_weight_decay, __pyx_n_s_lookahead_k, __pyx_n_s_lookahead_alpha, __pyx_n_s_use_averages, __pyx_n_s_use_radam, __pyx_n_s_use_lars, __pyx_n_s_schedule, __pyx_n_s__47); if (unlikely(!__pyx_tuple__48)) __PYX_ERR(0, 127, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__48); __Pyx_GIVEREF(__pyx_tuple__48); __pyx_codeobj__22 = (PyObject*)__Pyx_PyCode_New(17, 0, 18, 0, CO_OPTIMIZED|CO_NEWLOCALS|CO_VARKEYWORDS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__48, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_init, 127, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__22)) __PYX_ERR(0, 127, __pyx_L1_error) __pyx_tuple__49 = PyTuple_Pack(14, ((PyObject*)__pyx_float_1eneg_4), ((PyObject*)__pyx_float_0_90), ((PyObject*)__pyx_float_0_999), ((PyObject*)__pyx_float_1eneg_08), ((PyObject*)__pyx_float_10_), ((PyObject*)__pyx_float_0_0), ((PyObject *)Py_True), ((PyObject *)Py_False), ((PyObject *)__pyx_int_0), ((PyObject*)__pyx_float_0_5), ((PyObject *)Py_True), ((PyObject *)Py_False), ((PyObject *)Py_False), ((PyObject *)Py_None)); if (unlikely(!__pyx_tuple__49)) __PYX_ERR(0, 127, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__49); __Pyx_GIVEREF(__pyx_tuple__49); /* "thinc/neural/optimizers.pyx":166 * self.b2_decay = 0.0 * * def to_gpu(self): # <<<<<<<<<<<<<< * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): */ __pyx_tuple__50 = PyTuple_Pack(4, __pyx_n_s_self, __pyx_n_s_params, __pyx_n_s_key, __pyx_n_s_value); if (unlikely(!__pyx_tuple__50)) __PYX_ERR(0, 166, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__50); __Pyx_GIVEREF(__pyx_tuple__50); __pyx_codeobj__23 = (PyObject*)__Pyx_PyCode_New(1, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__50, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_to_gpu, 166, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__23)) __PYX_ERR(0, 166, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":172 * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) * * def to_cpu(self): # <<<<<<<<<<<<<< * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): */ __pyx_tuple__51 = PyTuple_Pack(4, __pyx_n_s_self, __pyx_n_s_params, __pyx_n_s_key, __pyx_n_s_value); if (unlikely(!__pyx_tuple__51)) __PYX_ERR(0, 172, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__51); __Pyx_GIVEREF(__pyx_tuple__51); __pyx_codeobj__24 = (PyObject*)__Pyx_PyCode_New(1, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__51, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_to_cpu, 172, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__24)) __PYX_ERR(0, 172, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":179 * params[key] = value.get() * * def step_schedules(self): # <<<<<<<<<<<<<< * for key, schedule in self.schedules.items(): * setattr(self, key, next(schedule)) */ __pyx_tuple__52 = PyTuple_Pack(3, __pyx_n_s_self, __pyx_n_s_key, __pyx_n_s_schedule); if (unlikely(!__pyx_tuple__52)) __PYX_ERR(0, 179, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__52); __Pyx_GIVEREF(__pyx_tuple__52); __pyx_codeobj__25 = (PyObject*)__Pyx_PyCode_New(1, 0, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__52, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_step_schedules, 179, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__25)) __PYX_ERR(0, 179, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":184 * * @property * def learn_rate(self): # <<<<<<<<<<<<<< * return self.alpha * */ __pyx_tuple__53 = PyTuple_Pack(1, __pyx_n_s_self); if (unlikely(!__pyx_tuple__53)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__53); __Pyx_GIVEREF(__pyx_tuple__53); __pyx_codeobj__26 = (PyObject*)__Pyx_PyCode_New(1, 0, 1, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__53, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_learn_rate, 184, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__26)) __PYX_ERR(0, 184, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":188 * * @learn_rate.setter * def learn_rate(self, learn_rate): # <<<<<<<<<<<<<< * self.alpha = learn_rate * */ __pyx_tuple__54 = PyTuple_Pack(2, __pyx_n_s_self, __pyx_n_s_learn_rate); if (unlikely(!__pyx_tuple__54)) __PYX_ERR(0, 188, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__54); __Pyx_GIVEREF(__pyx_tuple__54); __pyx_codeobj__27 = (PyObject*)__Pyx_PyCode_New(2, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__54, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_learn_rate, 188, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__27)) __PYX_ERR(0, 188, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":191 * self.alpha = learn_rate * * def lr(self, nr_upd): # <<<<<<<<<<<<<< * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) * if self.b1 == 0. or self.b2 == 0.: */ __pyx_tuple__55 = PyTuple_Pack(5, __pyx_n_s_self, __pyx_n_s_nr_upd, __pyx_n_s_alpha, __pyx_n_s_fix1, __pyx_n_s_fix2); if (unlikely(!__pyx_tuple__55)) __PYX_ERR(0, 191, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__55); __Pyx_GIVEREF(__pyx_tuple__55); __pyx_codeobj__28 = (PyObject*)__Pyx_PyCode_New(2, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__55, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_lr, 191, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__28)) __PYX_ERR(0, 191, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":199 * return alpha * numpy.sqrt(fix2) / fix1 * * def __call__(self, weights, gradient, lr_scale=1., key=None): # <<<<<<<<<<<<<< * assert len(gradient) >= 1 * xp = get_array_module(weights) */ __pyx_tuple__56 = PyTuple_Pack(8, __pyx_n_s_self, __pyx_n_s_weights, __pyx_n_s_gradient, __pyx_n_s_lr_scale, __pyx_n_s_key, __pyx_n_s_xp, __pyx_n_s_nr_upd, __pyx_n_s_slow); if (unlikely(!__pyx_tuple__56)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__56); __Pyx_GIVEREF(__pyx_tuple__56); __pyx_codeobj__29 = (PyObject*)__Pyx_PyCode_New(5, 0, 8, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__56, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_call, 199, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__29)) __PYX_ERR(0, 199, __pyx_L1_error) __pyx_tuple__57 = PyTuple_Pack(2, ((PyObject*)__pyx_float_1_), ((PyObject *)Py_None)); if (unlikely(!__pyx_tuple__57)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__57); __Pyx_GIVEREF(__pyx_tuple__57); /* "thinc/neural/optimizers.pyx":242 * self.ops.update_averages(self.averages[key], weights, nr_upd) * * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ __pyx_tuple__58 = PyTuple_Pack(23, __pyx_n_s_self, __pyx_n_s_xp, __pyx_n_s_weights, __pyx_n_s_gradient, __pyx_n_s_lr_scale, __pyx_n_s_key, __pyx_n_s_nr_upd, __pyx_n_s_beta1, __pyx_n_s_beta2, __pyx_n_s_eps, __pyx_n_s_sma_inf, __pyx_n_s_exp_avg, __pyx_n_s_exp_avg_sq, __pyx_n_s_bias_correction1, __pyx_n_s_bias_correction2, __pyx_n_s_sma_t, __pyx_n_s_update, __pyx_n_s_r_t, __pyx_n_s_w_norm, __pyx_n_s_u_norm, __pyx_n_s_phi_p, __pyx_n_s_local_lr, __pyx_n_s_lr); if (unlikely(!__pyx_tuple__58)) __PYX_ERR(0, 242, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__58); __Pyx_GIVEREF(__pyx_tuple__58); __pyx_codeobj__31 = (PyObject*)__Pyx_PyCode_New(7, 0, 23, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__58, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_radam, 242, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__31)) __PYX_ERR(0, 242, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":294 * weights -= lr * update * * def _nesterov(self, xp, weights, gradient, lr_scale, key): # <<<<<<<<<<<<<< * # http://cs231n.github.io/neural-networks-3/ * # v_prev = v # back this up */ __pyx_tuple__59 = PyTuple_Pack(8, __pyx_n_s_self, __pyx_n_s_xp, __pyx_n_s_weights, __pyx_n_s_gradient, __pyx_n_s_lr_scale, __pyx_n_s_key, __pyx_n_s_lr, __pyx_n_s_momentum); if (unlikely(!__pyx_tuple__59)) __PYX_ERR(0, 294, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__59); __Pyx_GIVEREF(__pyx_tuple__59); __pyx_codeobj__32 = (PyObject*)__Pyx_PyCode_New(6, 0, 8, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__59, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_nesterov_2, 294, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__32)) __PYX_ERR(0, 294, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":313 * weights += (1+self.b1) * momentum * * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ __pyx_tuple__60 = PyTuple_Pack(13, __pyx_n_s_self, __pyx_n_s_xp, __pyx_n_s_weights, __pyx_n_s_gradient, __pyx_n_s_lr_scale, __pyx_n_s_key, __pyx_n_s_nr_upd, __pyx_n_s_mom1, __pyx_n_s_mom2, __pyx_n_s_lr, __pyx_n_s_b1, __pyx_n_s_b2, __pyx_n_s_eps); if (unlikely(!__pyx_tuple__60)) __PYX_ERR(0, 313, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__60); __Pyx_GIVEREF(__pyx_tuple__60); __pyx_codeobj__33 = (PyObject*)__Pyx_PyCode_New(7, 0, 13, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__60, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_adam, 313, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__33)) __PYX_ERR(0, 313, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":329 * * * def _make_ops(ops): # <<<<<<<<<<<<<< * if ops == "CupyOps": * return CupyOps() */ __pyx_tuple__61 = PyTuple_Pack(2, __pyx_n_s_ops, __pyx_n_s_Model); if (unlikely(!__pyx_tuple__61)) __PYX_ERR(0, 329, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__61); __Pyx_GIVEREF(__pyx_tuple__61); __pyx_codeobj__34 = (PyObject*)__Pyx_PyCode_New(1, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__61, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_make_ops, 329, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__34)) __PYX_ERR(0, 329, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":343 * # These are deprecated * * def Adam(*args, **kwargs): # <<<<<<<<<<<<<< * return Optimizer(*args, **kwargs) * */ __pyx_tuple__62 = PyTuple_Pack(2, __pyx_n_s_args, __pyx_n_s_kwargs); if (unlikely(!__pyx_tuple__62)) __PYX_ERR(0, 343, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__62); __Pyx_GIVEREF(__pyx_tuple__62); __pyx_codeobj__35 = (PyObject*)__Pyx_PyCode_New(0, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS|CO_VARARGS|CO_VARKEYWORDS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__62, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_Adam, 343, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__35)) __PYX_ERR(0, 343, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":346 * return Optimizer(*args, **kwargs) * * def SGD(*args, **kwargs): # <<<<<<<<<<<<<< * kwargs.setdefault('beta1', 0.) * kwargs.setdefault('beta2', 0.) */ __pyx_tuple__63 = PyTuple_Pack(2, __pyx_n_s_args, __pyx_n_s_kwargs); if (unlikely(!__pyx_tuple__63)) __PYX_ERR(0, 346, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__63); __Pyx_GIVEREF(__pyx_tuple__63); __pyx_codeobj__36 = (PyObject*)__Pyx_PyCode_New(0, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS|CO_VARARGS|CO_VARKEYWORDS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__63, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_SGD, 346, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__36)) __PYX_ERR(0, 346, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":352 * * * def linear_decay(rate, decay, nr_upd): # <<<<<<<<<<<<<< * return rate * 1./(1. + decay * nr_upd) * */ __pyx_tuple__64 = PyTuple_Pack(3, __pyx_n_s_rate, __pyx_n_s_decay, __pyx_n_s_nr_upd); if (unlikely(!__pyx_tuple__64)) __PYX_ERR(0, 352, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__64); __Pyx_GIVEREF(__pyx_tuple__64); __pyx_codeobj__37 = (PyObject*)__Pyx_PyCode_New(3, 0, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__64, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_linear_decay, 352, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__37)) __PYX_ERR(0, 352, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":356 * * * def anneal(rate, decay, decay_steps, nr_upd): # <<<<<<<<<<<<<< * if decay == 0.0: * return rate */ __pyx_tuple__65 = PyTuple_Pack(4, __pyx_n_s_rate, __pyx_n_s_decay, __pyx_n_s_decay_steps, __pyx_n_s_nr_upd); if (unlikely(!__pyx_tuple__65)) __PYX_ERR(0, 356, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__65); __Pyx_GIVEREF(__pyx_tuple__65); __pyx_codeobj__38 = (PyObject*)__Pyx_PyCode_New(4, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__65, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_optimizers_pyx, __pyx_n_s_anneal, 356, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__38)) __PYX_ERR(0, 356, __pyx_L1_error) __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { __pyx_umethod_PyDict_Type_setdefault.type = (PyObject*)&PyDict_Type; if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); __pyx_float_0_ = PyFloat_FromDouble(0.); if (unlikely(!__pyx_float_0_)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_1_ = PyFloat_FromDouble(1.); if (unlikely(!__pyx_float_1_)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_0_0 = PyFloat_FromDouble(0.0); if (unlikely(!__pyx_float_0_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_0_5 = PyFloat_FromDouble(0.5); if (unlikely(!__pyx_float_0_5)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_0_9 = PyFloat_FromDouble(0.9); if (unlikely(!__pyx_float_0_9)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_10_ = PyFloat_FromDouble(10.); if (unlikely(!__pyx_float_10_)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_0_90 = PyFloat_FromDouble(0.90); if (unlikely(!__pyx_float_0_90)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_1eneg_4 = PyFloat_FromDouble(1e-4); if (unlikely(!__pyx_float_1eneg_4)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_0_001 = PyFloat_FromDouble(0.001); if (unlikely(!__pyx_float_0_001)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_0_999 = PyFloat_FromDouble(0.999); if (unlikely(!__pyx_float_0_999)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_1eneg_08 = PyFloat_FromDouble(1e-08); if (unlikely(!__pyx_float_1eneg_08)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_2 = PyInt_FromLong(2); if (unlikely(!__pyx_int_2)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_4 = PyInt_FromLong(4); if (unlikely(!__pyx_int_4)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_10 = PyInt_FromLong(10); if (unlikely(!__pyx_int_10)) __PYX_ERR(0, 1, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ static int __Pyx_modinit_global_init_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); /*--- Global init code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_variable_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); /*--- Variable export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); /*--- Function export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_type_init_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); /*--- Type init code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_type_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); /*--- Type import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_variable_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); /*--- Variable import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); /*--- Function import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } #ifndef CYTHON_NO_PYINIT_EXPORT #define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC #elif PY_MAJOR_VERSION < 3 #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" void #else #define __Pyx_PyMODINIT_FUNC void #endif #else #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" PyObject * #else #define __Pyx_PyMODINIT_FUNC PyObject * #endif #endif #if PY_MAJOR_VERSION < 3 __Pyx_PyMODINIT_FUNC initoptimizers(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC initoptimizers(void) #else __Pyx_PyMODINIT_FUNC PyInit_optimizers(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC PyInit_optimizers(void) #if CYTHON_PEP489_MULTI_PHASE_INIT { return PyModuleDef_Init(&__pyx_moduledef); } static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { #if PY_VERSION_HEX >= 0x030700A1 static PY_INT64_T main_interpreter_id = -1; PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); if (main_interpreter_id == -1) { main_interpreter_id = current_id; return (unlikely(current_id == -1)) ? -1 : 0; } else if (unlikely(main_interpreter_id != current_id)) #else static PyInterpreterState *main_interpreter = NULL; PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; if (!main_interpreter) { main_interpreter = current_interpreter; } else if (unlikely(main_interpreter != current_interpreter)) #endif { PyErr_SetString( PyExc_ImportError, "Interpreter change detected - this module can only be loaded into one interpreter per process."); return -1; } return 0; } static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { PyObject *value = PyObject_GetAttrString(spec, from_name); int result = 0; if (likely(value)) { if (allow_none || value != Py_None) { result = PyDict_SetItemString(moddict, to_name, value); } Py_DECREF(value); } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); } else { result = -1; } return result; } static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { PyObject *module = NULL, *moddict, *modname; if (__Pyx_check_single_interpreter()) return NULL; if (__pyx_m) return __Pyx_NewRef(__pyx_m); modname = PyObject_GetAttrString(spec, "name"); if (unlikely(!modname)) goto bad; module = PyModule_NewObject(modname); Py_DECREF(modname); if (unlikely(!module)) goto bad; moddict = PyModule_GetDict(module); if (unlikely(!moddict)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; return module; bad: Py_XDECREF(module); return NULL; } static CYTHON_SMALL_CODE int __pyx_pymod_exec_optimizers(PyObject *__pyx_pyinit_module) #endif #endif { __Pyx_TraceDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannyDeclarations #if CYTHON_PEP489_MULTI_PHASE_INIT if (__pyx_m) { if (__pyx_m == __pyx_pyinit_module) return 0; PyErr_SetString(PyExc_RuntimeError, "Module 'optimizers' has already been imported. Re-initialisation is not supported."); return -1; } #elif PY_MAJOR_VERSION >= 3 if (__pyx_m) return __Pyx_NewRef(__pyx_m); #endif #if CYTHON_REFNANNY __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); if (!__Pyx_RefNanny) { PyErr_Clear(); __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); if (!__Pyx_RefNanny) Py_FatalError("failed to import 'refnanny' module"); } #endif __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_optimizers(void)", 0); if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pxy_PyFrame_Initialize_Offsets __Pxy_PyFrame_Initialize_Offsets(); #endif __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pyx_CyFunction_USED if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_FusedFunction_USED if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Coroutine_USED if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Generator_USED if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_AsyncGen_USED if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_StopAsyncIteration_USED if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif /*--- Library function declarations ---*/ /*--- Threads initialization code ---*/ #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS #ifdef WITH_THREAD /* Python build with threading support? */ PyEval_InitThreads(); #endif #endif /*--- Module creation code ---*/ #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_m = __pyx_pyinit_module; Py_INCREF(__pyx_m); #else #if PY_MAJOR_VERSION < 3 __pyx_m = Py_InitModule4("optimizers", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); #else __pyx_m = PyModule_Create(&__pyx_moduledef); #endif if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) #endif __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_d); __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_b); __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_cython_runtime); if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error); /*--- Initialize various global constants etc. ---*/ if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif if (__pyx_module_is_main_thinc__neural__optimizers) { if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name, __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) } #if PY_MAJOR_VERSION >= 3 { PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) if (!PyDict_GetItemString(modules, "thinc.neural.optimizers")) { if (unlikely(PyDict_SetItemString(modules, "thinc.neural.optimizers", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) } } #endif /*--- Builtin init code ---*/ if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Constants init code ---*/ if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Global type/function init code ---*/ (void)__Pyx_modinit_global_init_code(); (void)__Pyx_modinit_variable_export_code(); (void)__Pyx_modinit_function_export_code(); (void)__Pyx_modinit_type_init_code(); (void)__Pyx_modinit_type_import_code(); (void)__Pyx_modinit_variable_import_code(); (void)__Pyx_modinit_function_import_code(); /*--- Execution code ---*/ #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif __Pyx_TraceCall("__Pyx_PyMODINIT_FUNC PyInit_optimizers(void)", __pyx_f[0], 1, 0, __PYX_ERR(0, 1, __pyx_L1_error)); /* "thinc/neural/optimizers.pyx":8 * from libc.math cimport exp, sqrt * from libc.stdlib cimport calloc, malloc, free * import math # <<<<<<<<<<<<<< * * from collections import defaultdict */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_math, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_math, __pyx_t_1) < 0) __PYX_ERR(0, 8, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":10 * import math * * from collections import defaultdict # <<<<<<<<<<<<<< * import numpy * */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 10, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_defaultdict); __Pyx_GIVEREF(__pyx_n_s_defaultdict); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_defaultdict); __pyx_t_2 = __Pyx_Import(__pyx_n_s_collections, __pyx_t_1, -1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 10, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_defaultdict); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 10, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_defaultdict, __pyx_t_1) < 0) __PYX_ERR(0, 10, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":11 * * from collections import defaultdict * import numpy # <<<<<<<<<<<<<< * * from ..typedefs cimport weight_t */ __pyx_t_2 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 11, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_numpy, __pyx_t_2) < 0) __PYX_ERR(0, 11, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":14 * * from ..typedefs cimport weight_t * from .ops import NumpyOps, CupyOps, add_gradient_noise # <<<<<<<<<<<<<< * from .util import get_array_module * from .._registry import registry */ __pyx_t_2 = PyList_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_n_s_NumpyOps); __Pyx_GIVEREF(__pyx_n_s_NumpyOps); PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s_NumpyOps); __Pyx_INCREF(__pyx_n_s_CupyOps); __Pyx_GIVEREF(__pyx_n_s_CupyOps); PyList_SET_ITEM(__pyx_t_2, 1, __pyx_n_s_CupyOps); __Pyx_INCREF(__pyx_n_s_add_gradient_noise); __Pyx_GIVEREF(__pyx_n_s_add_gradient_noise); PyList_SET_ITEM(__pyx_t_2, 2, __pyx_n_s_add_gradient_noise); __pyx_t_1 = __Pyx_Import(__pyx_n_s_ops, __pyx_t_2, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_1, __pyx_n_s_NumpyOps); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_NumpyOps, __pyx_t_2) < 0) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_1, __pyx_n_s_CupyOps); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_CupyOps, __pyx_t_2) < 0) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_1, __pyx_n_s_add_gradient_noise); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_add_gradient_noise, __pyx_t_2) < 0) __PYX_ERR(0, 14, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":15 * from ..typedefs cimport weight_t * from .ops import NumpyOps, CupyOps, add_gradient_noise * from .util import get_array_module # <<<<<<<<<<<<<< * from .._registry import registry * */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_get_array_module); __Pyx_GIVEREF(__pyx_n_s_get_array_module); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_get_array_module); __pyx_t_2 = __Pyx_Import(__pyx_n_s_util, __pyx_t_1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_get_array_module); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_get_array_module, __pyx_t_1) < 0) __PYX_ERR(0, 15, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":16 * from .ops import NumpyOps, CupyOps, add_gradient_noise * from .util import get_array_module * from .._registry import registry # <<<<<<<<<<<<<< * * */ __pyx_t_2 = PyList_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 16, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_n_s_registry); __Pyx_GIVEREF(__pyx_n_s_registry); PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s_registry); __pyx_t_1 = __Pyx_Import(__pyx_n_s_registry_2, __pyx_t_2, 2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 16, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_1, __pyx_n_s_registry); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 16, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_registry, __pyx_t_2) < 0) __PYX_ERR(0, 16, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":20 * * SGD_DEFAULTS = { * "L2": 1e-4, # <<<<<<<<<<<<<< * "max_grad_norm": 10, * "L2_is_weight_decay": False */ __pyx_t_1 = __Pyx_PyDict_NewPresized(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 20, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_L2, __pyx_float_1eneg_4) < 0) __PYX_ERR(0, 20, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_max_grad_norm, __pyx_int_10) < 0) __PYX_ERR(0, 20, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":22 * "L2": 1e-4, * "max_grad_norm": 10, * "L2_is_weight_decay": False # <<<<<<<<<<<<<< * } * */ if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_L2_is_weight_decay, Py_False) < 0) __PYX_ERR(0, 20, __pyx_L1_error) if (PyDict_SetItem(__pyx_d, __pyx_n_s_SGD_DEFAULTS, __pyx_t_1) < 0) __PYX_ERR(0, 19, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":27 * * ADAM_DEFAULTS = { * "learn_rate": 0.001, # <<<<<<<<<<<<<< * "beta1": 0.9, * "beta2": 0.999, */ __pyx_t_1 = __Pyx_PyDict_NewPresized(8); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 27, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_learn_rate, __pyx_float_0_001) < 0) __PYX_ERR(0, 27, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_beta1, __pyx_float_0_9) < 0) __PYX_ERR(0, 27, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_beta2, __pyx_float_0_999) < 0) __PYX_ERR(0, 27, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_eps, __pyx_float_1eneg_08) < 0) __PYX_ERR(0, 27, __pyx_L1_error) /* "thinc/neural/optimizers.pyx":31 * "beta2": 0.999, * "eps": 1e-08, * "L2": SGD_DEFAULTS["L2"], # <<<<<<<<<<<<<< * "max_grad_norm": SGD_DEFAULTS["max_grad_norm"], * "L2_is_weight_decay": SGD_DEFAULTS["L2_is_weight_decay"], */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_SGD_DEFAULTS); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_2, __pyx_n_s_L2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_L2, __pyx_t_3) < 0) __PYX_ERR(0, 27, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":32 * "eps": 1e-08, * "L2": SGD_DEFAULTS["L2"], * "max_grad_norm": SGD_DEFAULTS["max_grad_norm"], # <<<<<<<<<<<<<< * "L2_is_weight_decay": SGD_DEFAULTS["L2_is_weight_decay"], * "schedules": None */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_SGD_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 32, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_max_grad_norm); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 32, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_max_grad_norm, __pyx_t_2) < 0) __PYX_ERR(0, 27, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":33 * "L2": SGD_DEFAULTS["L2"], * "max_grad_norm": SGD_DEFAULTS["max_grad_norm"], * "L2_is_weight_decay": SGD_DEFAULTS["L2_is_weight_decay"], # <<<<<<<<<<<<<< * "schedules": None * } */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_SGD_DEFAULTS); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 33, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_2, __pyx_n_s_L2_is_weight_decay); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 33, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_L2_is_weight_decay, __pyx_t_3) < 0) __PYX_ERR(0, 27, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":34 * "max_grad_norm": SGD_DEFAULTS["max_grad_norm"], * "L2_is_weight_decay": SGD_DEFAULTS["L2_is_weight_decay"], * "schedules": None # <<<<<<<<<<<<<< * } * */ if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_schedules, Py_None) < 0) __PYX_ERR(0, 27, __pyx_L1_error) if (PyDict_SetItem(__pyx_d, __pyx_n_s_ADAM_DEFAULTS, __pyx_t_1) < 0) __PYX_ERR(0, 26, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":39 * * @registry.optimizers.register("RAdam.v1") * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 39, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_s_learn_rate); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 39, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_k_ = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":40 * @registry.optimizers.register("RAdam.v1") * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], # <<<<<<<<<<<<<< * beta1=ADAM_DEFAULTS["beta1"], * beta2=ADAM_DEFAULTS["beta2"], */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 40, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_L2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 40, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_k__2 = __pyx_t_1; __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":41 * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], # <<<<<<<<<<<<<< * beta2=ADAM_DEFAULTS["beta2"], * eps=ADAM_DEFAULTS["eps"], */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 41, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_s_beta1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 41, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_k__3 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":42 * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], * beta2=ADAM_DEFAULTS["beta2"], # <<<<<<<<<<<<<< * eps=ADAM_DEFAULTS["eps"], * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_beta2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_k__4 = __pyx_t_1; __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":43 * beta1=ADAM_DEFAULTS["beta1"], * beta2=ADAM_DEFAULTS["beta2"], * eps=ADAM_DEFAULTS["eps"], # <<<<<<<<<<<<<< * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 43, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_s_eps); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 43, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_k__5 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":44 * beta2=ADAM_DEFAULTS["beta2"], * eps=ADAM_DEFAULTS["eps"], * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], # <<<<<<<<<<<<<< * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], * use_averages=True, */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 44, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_max_grad_norm); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 44, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_k__6 = __pyx_t_1; __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":45 * eps=ADAM_DEFAULTS["eps"], * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], # <<<<<<<<<<<<<< * use_averages=True, * schedules=None, */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 45, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_s_L2_is_weight_decay); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 45, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_k__7 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":38 * * * @registry.optimizers.register("RAdam.v1") # <<<<<<<<<<<<<< * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_registry); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_optimizers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_register); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__39, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":39 * * @registry.optimizers.register("RAdam.v1") * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ __pyx_t_3 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_1create_RAdam, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 39, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); /* "thinc/neural/optimizers.pyx":38 * * * @registry.optimizers.register("RAdam.v1") # <<<<<<<<<<<<<< * def create_RAdam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], */ __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 38, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_create_RAdam, __pyx_t_2) < 0) __PYX_ERR(0, 39, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":68 * * @registry.optimizers.register("Adam.v1") * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_2, __pyx_n_s_learn_rate); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_k__9 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":69 * @registry.optimizers.register("Adam.v1") * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], # <<<<<<<<<<<<<< * beta1=ADAM_DEFAULTS["beta1"], * beta2=ADAM_DEFAULTS["beta2"], */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 69, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_L2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 69, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_k__10 = __pyx_t_2; __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":70 * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], # <<<<<<<<<<<<<< * beta2=ADAM_DEFAULTS["beta2"], * eps=ADAM_DEFAULTS["eps"], */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 70, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_2, __pyx_n_s_beta1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 70, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_k__11 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":71 * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], * beta2=ADAM_DEFAULTS["beta2"], # <<<<<<<<<<<<<< * eps=ADAM_DEFAULTS["eps"], * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_beta2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_k__12 = __pyx_t_2; __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":72 * beta1=ADAM_DEFAULTS["beta1"], * beta2=ADAM_DEFAULTS["beta2"], * eps=ADAM_DEFAULTS["eps"], # <<<<<<<<<<<<<< * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 72, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_2, __pyx_n_s_eps); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 72, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_k__13 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":73 * beta2=ADAM_DEFAULTS["beta2"], * eps=ADAM_DEFAULTS["eps"], * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], # <<<<<<<<<<<<<< * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], * use_averages=True, */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_max_grad_norm); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_k__14 = __pyx_t_2; __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":74 * eps=ADAM_DEFAULTS["eps"], * max_grad_norm=ADAM_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=ADAM_DEFAULTS["L2_is_weight_decay"], # <<<<<<<<<<<<<< * use_averages=True, * ops=None, */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_ADAM_DEFAULTS); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_2, __pyx_n_s_L2_is_weight_decay); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_k__15 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":67 * * * @registry.optimizers.register("Adam.v1") # <<<<<<<<<<<<<< * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_registry); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_optimizers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_register); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__41, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":68 * * @registry.optimizers.register("Adam.v1") * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], # <<<<<<<<<<<<<< * L2=ADAM_DEFAULTS["L2"], * beta1=ADAM_DEFAULTS["beta1"], */ __pyx_t_3 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_3create_Adam, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); /* "thinc/neural/optimizers.pyx":67 * * * @registry.optimizers.register("Adam.v1") # <<<<<<<<<<<<<< * def create_Adam(learn_rate=ADAM_DEFAULTS["learn_rate"], * L2=ADAM_DEFAULTS["L2"], */ __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_create_Adam, __pyx_t_1) < 0) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":100 * def create_SGD(learn_rate, * ops=None, * L2=SGD_DEFAULTS["L2"], # <<<<<<<<<<<<<< * max_grad_norm=SGD_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=SGD_DEFAULTS["L2_is_weight_decay"], */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_SGD_DEFAULTS); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 100, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_s_L2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 100, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_k__17 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":101 * ops=None, * L2=SGD_DEFAULTS["L2"], * max_grad_norm=SGD_DEFAULTS["max_grad_norm"], # <<<<<<<<<<<<<< * L2_is_weight_decay=SGD_DEFAULTS["L2_is_weight_decay"], * use_averages=True, */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_SGD_DEFAULTS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_Dict_GetItem(__pyx_t_3, __pyx_n_s_max_grad_norm); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_k__18 = __pyx_t_1; __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":102 * L2=SGD_DEFAULTS["L2"], * max_grad_norm=SGD_DEFAULTS["max_grad_norm"], * L2_is_weight_decay=SGD_DEFAULTS["L2_is_weight_decay"], # <<<<<<<<<<<<<< * use_averages=True, * schedules=None */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_SGD_DEFAULTS); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_Dict_GetItem(__pyx_t_1, __pyx_n_s_L2_is_weight_decay); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_k__19 = __pyx_t_3; __Pyx_GIVEREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":97 * * * @registry.optimizers.register("SGD.v1") # <<<<<<<<<<<<<< * def create_SGD(learn_rate, * ops=None, */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_registry); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_optimizers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_register); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__43, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "thinc/neural/optimizers.pyx":98 * * @registry.optimizers.register("SGD.v1") * def create_SGD(learn_rate, # <<<<<<<<<<<<<< * ops=None, * L2=SGD_DEFAULTS["L2"], */ __pyx_t_3 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_5create_SGD, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); /* "thinc/neural/optimizers.pyx":97 * * * @registry.optimizers.register("SGD.v1") # <<<<<<<<<<<<<< * def create_SGD(learn_rate, * ops=None, */ __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_create_SGD, __pyx_t_2) < 0) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":112 * * * class Optimizer(object): # <<<<<<<<<<<<<< * '''Do various flavours of stochastic gradient descent, with first and * second order momentum. */ __pyx_t_2 = __Pyx_CalculateMetaclass(NULL, __pyx_tuple__45); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 112, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_Py3MetaclassPrepare(__pyx_t_2, __pyx_tuple__45, __pyx_n_s_Optimizer, __pyx_n_s_Optimizer, (PyObject *) NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_kp_s_Do_various_flavours_of_stochasti); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 112, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); /* "thinc/neural/optimizers.pyx":124 * ''' * @classmethod * def from_config(cls, config): # <<<<<<<<<<<<<< * return registry.make_from_config(config) * */ __pyx_t_1 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_1from_config, __Pyx_CYFUNCTION_CLASSMETHOD, __pyx_n_s_Optimizer_from_config, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__21)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); /* "thinc/neural/optimizers.pyx":123 * * b1=0.999, b2=0.9: Adam * ''' * @classmethod # <<<<<<<<<<<<<< * def from_config(cls, config): * return registry.make_from_config(config) */ __pyx_t_4 = __Pyx_Method_ClassMethod(__pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 123, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_from_config, __pyx_t_4) < 0) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":127 * return registry.make_from_config(config) * * def __init__(self, ops, lr, L2=1e-4, beta1=0.90, beta2=0.999, eps=1e-08, # <<<<<<<<<<<<<< * max_grad_norm=10., gradient_noise=0.0, nesterov=True, * L2_is_weight_decay=False, lookahead_k=0, lookahead_alpha=0.5, */ __pyx_t_4 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_3__init__, 0, __pyx_n_s_Optimizer___init, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__22)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 127, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_CyFunction_SetDefaultsTuple(__pyx_t_4, __pyx_tuple__49); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_init, __pyx_t_4) < 0) __PYX_ERR(0, 127, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":166 * self.b2_decay = 0.0 * * def to_gpu(self): # <<<<<<<<<<<<<< * self.ops = CupyOps() * for params in (self.mom1, self.mom2, self.averages): */ __pyx_t_4 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_5to_gpu, 0, __pyx_n_s_Optimizer_to_gpu, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__23)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 166, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_to_gpu, __pyx_t_4) < 0) __PYX_ERR(0, 166, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":172 * params[key] = self.ops.xp.asarray(value, dtype=value.dtype) * * def to_cpu(self): # <<<<<<<<<<<<<< * self.ops = NumpyOps() * for params in (self.mom1, self.mom2, self.averages): */ __pyx_t_4 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_7to_cpu, 0, __pyx_n_s_Optimizer_to_cpu, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__24)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 172, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_to_cpu, __pyx_t_4) < 0) __PYX_ERR(0, 172, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":179 * params[key] = value.get() * * def step_schedules(self): # <<<<<<<<<<<<<< * for key, schedule in self.schedules.items(): * setattr(self, key, next(schedule)) */ __pyx_t_4 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_9step_schedules, 0, __pyx_n_s_Optimizer_step_schedules, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__25)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 179, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_step_schedules, __pyx_t_4) < 0) __PYX_ERR(0, 179, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":184 * * @property * def learn_rate(self): # <<<<<<<<<<<<<< * return self.alpha * */ __pyx_t_4 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_11learn_rate, 0, __pyx_n_s_Optimizer_learn_rate, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__26)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); /* "thinc/neural/optimizers.pyx":183 * setattr(self, key, next(schedule)) * * @property # <<<<<<<<<<<<<< * def learn_rate(self): * return self.alpha */ __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_builtin_property, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 183, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_learn_rate, __pyx_t_1) < 0) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":187 * return self.alpha * * @learn_rate.setter # <<<<<<<<<<<<<< * def learn_rate(self, learn_rate): * self.alpha = learn_rate */ __pyx_t_4 = PyObject_GetItem(__pyx_t_3, __pyx_n_s_learn_rate); if (unlikely(!__pyx_t_4)) { PyErr_Clear(); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_learn_rate); } if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 187, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_setter); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 187, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "thinc/neural/optimizers.pyx":188 * * @learn_rate.setter * def learn_rate(self, learn_rate): # <<<<<<<<<<<<<< * self.alpha = learn_rate * */ __pyx_t_4 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_13learn_rate, 0, __pyx_n_s_Optimizer_learn_rate, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__27)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 188, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_4); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 187, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_learn_rate, __pyx_t_1) < 0) __PYX_ERR(0, 188, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":191 * self.alpha = learn_rate * * def lr(self, nr_upd): # <<<<<<<<<<<<<< * alpha = anneal(self.alpha, self.decay, self.decay_steps, nr_upd) * if self.b1 == 0. or self.b2 == 0.: */ __pyx_t_1 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_15lr, 0, __pyx_n_s_Optimizer_lr, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__28)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 191, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_lr, __pyx_t_1) < 0) __PYX_ERR(0, 191, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":199 * return alpha * numpy.sqrt(fix2) / fix1 * * def __call__(self, weights, gradient, lr_scale=1., key=None): # <<<<<<<<<<<<<< * assert len(gradient) >= 1 * xp = get_array_module(weights) */ __pyx_t_1 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_17__call__, 0, __pyx_n_s_Optimizer___call, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__29)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_CyFunction_SetDefaultsTuple(__pyx_t_1, __pyx_tuple__57); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_call, __pyx_t_1) < 0) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":242 * self.ops.update_averages(self.averages[key], weights, nr_upd) * * def _radam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ __pyx_t_1 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_19_radam, 0, __pyx_n_s_Optimizer__radam, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__31)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 242, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_radam, __pyx_t_1) < 0) __PYX_ERR(0, 242, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":294 * weights -= lr * update * * def _nesterov(self, xp, weights, gradient, lr_scale, key): # <<<<<<<<<<<<<< * # http://cs231n.github.io/neural-networks-3/ * # v_prev = v # back this up */ __pyx_t_1 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_21_nesterov, 0, __pyx_n_s_Optimizer__nesterov, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__32)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 294, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_nesterov_2, __pyx_t_1) < 0) __PYX_ERR(0, 294, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":313 * weights += (1+self.b1) * momentum * * def _adam(self, xp, weights, gradient, lr_scale, key, nr_upd): # <<<<<<<<<<<<<< * if key not in self.mom1: * self.mom1[key] = self.ops.allocate(weights.size) */ __pyx_t_1 = __Pyx_CyFunction_New(&__pyx_mdef_5thinc_6neural_10optimizers_9Optimizer_23_adam, 0, __pyx_n_s_Optimizer__adam, NULL, __pyx_n_s_thinc_neural_optimizers, __pyx_d, ((PyObject *)__pyx_codeobj__33)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 313, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (__Pyx_SetNameInClass(__pyx_t_3, __pyx_n_s_adam, __pyx_t_1) < 0) __PYX_ERR(0, 313, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "thinc/neural/optimizers.pyx":112 * * * class Optimizer(object): # <<<<<<<<<<<<<< * '''Do various flavours of stochastic gradient descent, with first and * second order momentum. */ __pyx_t_1 = __Pyx_Py3ClassCreate(__pyx_t_2, __pyx_n_s_Optimizer, __pyx_tuple__45, __pyx_t_3, NULL, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 112, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_Optimizer, __pyx_t_1) < 0) __PYX_ERR(0, 112, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":329 * * * def _make_ops(ops): # <<<<<<<<<<<<<< * if ops == "CupyOps": * return CupyOps() */ __pyx_t_2 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_7_make_ops, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 329, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_make_ops, __pyx_t_2) < 0) __PYX_ERR(0, 329, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":343 * # These are deprecated * * def Adam(*args, **kwargs): # <<<<<<<<<<<<<< * return Optimizer(*args, **kwargs) * */ __pyx_t_2 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_9Adam, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 343, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_Adam, __pyx_t_2) < 0) __PYX_ERR(0, 343, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":346 * return Optimizer(*args, **kwargs) * * def SGD(*args, **kwargs): # <<<<<<<<<<<<<< * kwargs.setdefault('beta1', 0.) * kwargs.setdefault('beta2', 0.) */ __pyx_t_2 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_11SGD, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 346, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_SGD, __pyx_t_2) < 0) __PYX_ERR(0, 346, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":352 * * * def linear_decay(rate, decay, nr_upd): # <<<<<<<<<<<<<< * return rate * 1./(1. + decay * nr_upd) * */ __pyx_t_2 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_13linear_decay, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 352, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_linear_decay, __pyx_t_2) < 0) __PYX_ERR(0, 352, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":356 * * * def anneal(rate, decay, decay_steps, nr_upd): # <<<<<<<<<<<<<< * if decay == 0.0: * return rate */ __pyx_t_2 = PyCFunction_NewEx(&__pyx_mdef_5thinc_6neural_10optimizers_15anneal, NULL, __pyx_n_s_thinc_neural_optimizers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 356, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_anneal, __pyx_t_2) < 0) __PYX_ERR(0, 356, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "thinc/neural/optimizers.pyx":1 * # cython: profile=True # <<<<<<<<<<<<<< * # cython: cdivision=True * # cython: infer_types=True */ __pyx_t_2 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_2) < 0) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_TraceReturn(Py_None, 0); /*--- Wrapped vars code ---*/ goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); if (__pyx_m) { if (__pyx_d) { __Pyx_AddTraceback("init thinc.neural.optimizers", __pyx_clineno, __pyx_lineno, __pyx_filename); } Py_CLEAR(__pyx_m); } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_ImportError, "init thinc.neural.optimizers"); } __pyx_L0:; __Pyx_RefNannyFinishContext(); #if CYTHON_PEP489_MULTI_PHASE_INIT return (__pyx_m != NULL) ? 0 : -1; #elif PY_MAJOR_VERSION >= 3 return __pyx_m; #else return; #endif } /* --- Runtime support code --- */ /* Refnanny */ #if CYTHON_REFNANNY static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { PyObject *m = NULL, *p = NULL; void *r = NULL; m = PyImport_ImportModule(modname); if (!m) goto end; p = PyObject_GetAttrString(m, "RefNannyAPI"); if (!p) goto end; r = PyLong_AsVoidPtr(p); end: Py_XDECREF(p); Py_XDECREF(m); return (__Pyx_RefNannyAPIStruct *)r; } #endif /* PyObjectGetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro)) return tp->tp_getattro(obj, attr_name); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_getattr)) return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); #endif return PyObject_GetAttr(obj, attr_name); } #endif /* GetBuiltinName */ static PyObject *__Pyx_GetBuiltinName(PyObject *name) { PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); if (unlikely(!result)) { PyErr_Format(PyExc_NameError, #if PY_MAJOR_VERSION >= 3 "name '%U' is not defined", name); #else "name '%.200s' is not defined", PyString_AS_STRING(name)); #endif } return result; } /* RaiseDoubleKeywords */ static void __Pyx_RaiseDoubleKeywordsError( const char* func_name, PyObject* kw_name) { PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION >= 3 "%s() got multiple values for keyword argument '%U'", func_name, kw_name); #else "%s() got multiple values for keyword argument '%s'", func_name, PyString_AsString(kw_name)); #endif } /* ParseKeywords */ static int __Pyx_ParseOptionalKeywords( PyObject *kwds, PyObject **argnames[], PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, const char* function_name) { PyObject *key = 0, *value = 0; Py_ssize_t pos = 0; PyObject*** name; PyObject*** first_kw_arg = argnames + num_pos_args; while (PyDict_Next(kwds, &pos, &key, &value)) { name = first_kw_arg; while (*name && (**name != key)) name++; if (*name) { values[name-argnames] = value; continue; } name = first_kw_arg; #if PY_MAJOR_VERSION < 3 if (likely(PyString_Check(key))) { while (*name) { if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) && _PyString_Eq(**name, key)) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { if ((**argname == key) || ( (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) && _PyString_Eq(**argname, key))) { goto arg_passed_twice; } argname++; } } } else #endif if (likely(PyUnicode_Check(key))) { while (*name) { int cmp = (**name == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**name) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**name, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { int cmp = (**argname == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**argname) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**argname, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) goto arg_passed_twice; argname++; } } } else goto invalid_keyword_type; if (kwds2) { if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; } else { goto invalid_keyword; } } return 0; arg_passed_twice: __Pyx_RaiseDoubleKeywordsError(function_name, key); goto bad; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); goto bad; invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif bad: return -1; } /* RaiseArgTupleInvalid */ static void __Pyx_RaiseArgtupleInvalid( const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found) { Py_ssize_t num_expected; const char *more_or_less; if (num_found < num_min) { num_expected = num_min; more_or_less = "at least"; } else { num_expected = num_max; more_or_less = "at most"; } if (exact) { more_or_less = "exactly"; } PyErr_Format(PyExc_TypeError, "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", func_name, more_or_less, num_expected, (num_expected == 1) ? "" : "s", num_found); } /* PyErrFetchRestore */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->curexc_type; tmp_value = tstate->curexc_value; tmp_tb = tstate->curexc_traceback; tstate->curexc_type = type; tstate->curexc_value = value; tstate->curexc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { *type = tstate->curexc_type; *value = tstate->curexc_value; *tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; } #endif /* Profile */ #if CYTHON_PROFILE static int __Pyx_TraceSetupAndCall(PyCodeObject** code, PyFrameObject** frame, PyThreadState* tstate, const char *funcname, const char *srcfile, int firstlineno) { PyObject *type, *value, *traceback; int retval; if (*frame == NULL || !CYTHON_PROFILE_REUSE_FRAME) { if (*code == NULL) { *code = __Pyx_createFrameCodeObject(funcname, srcfile, firstlineno); if (*code == NULL) return 0; } *frame = PyFrame_New( tstate, /*PyThreadState *tstate*/ *code, /*PyCodeObject *code*/ __pyx_d, /*PyObject *globals*/ 0 /*PyObject *locals*/ ); if (*frame == NULL) return 0; if (CYTHON_TRACE && (*frame)->f_trace == NULL) { Py_INCREF(Py_None); (*frame)->f_trace = Py_None; } #if PY_VERSION_HEX < 0x030400B1 } else { (*frame)->f_tstate = tstate; #endif } __Pyx_PyFrame_SetLineNumber(*frame, firstlineno); retval = 1; tstate->tracing++; tstate->use_tracing = 0; __Pyx_ErrFetchInState(tstate, &type, &value, &traceback); #if CYTHON_TRACE if (tstate->c_tracefunc) retval = tstate->c_tracefunc(tstate->c_traceobj, *frame, PyTrace_CALL, NULL) == 0; if (retval && tstate->c_profilefunc) #endif retval = tstate->c_profilefunc(tstate->c_profileobj, *frame, PyTrace_CALL, NULL) == 0; tstate->use_tracing = (tstate->c_profilefunc || (CYTHON_TRACE && tstate->c_tracefunc)); tstate->tracing--; if (retval) { __Pyx_ErrRestoreInState(tstate, type, value, traceback); return tstate->use_tracing && retval; } else { Py_XDECREF(type); Py_XDECREF(value); Py_XDECREF(traceback); return -1; } } static PyCodeObject *__Pyx_createFrameCodeObject(const char *funcname, const char *srcfile, int firstlineno) { PyCodeObject *py_code = 0; #if PY_MAJOR_VERSION >= 3 py_code = PyCode_NewEmpty(srcfile, funcname, firstlineno); if (likely(py_code)) { py_code->co_flags |= CO_OPTIMIZED | CO_NEWLOCALS; } #else PyObject *py_srcfile = 0; PyObject *py_funcname = 0; py_funcname = PyString_FromString(funcname); if (unlikely(!py_funcname)) goto bad; py_srcfile = PyString_FromString(srcfile); if (unlikely(!py_srcfile)) goto bad; py_code = PyCode_New( 0, 0, 0, CO_OPTIMIZED | CO_NEWLOCALS, __pyx_empty_bytes, /*PyObject *code,*/ __pyx_empty_tuple, /*PyObject *consts,*/ __pyx_empty_tuple, /*PyObject *names,*/ __pyx_empty_tuple, /*PyObject *varnames,*/ __pyx_empty_tuple, /*PyObject *freevars,*/ __pyx_empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ firstlineno, __pyx_empty_bytes /*PyObject *lnotab*/ ); bad: Py_XDECREF(py_srcfile); Py_XDECREF(py_funcname); #endif return py_code; } #endif /* PyDictVersioning */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { PyObject *dict = Py_TYPE(obj)->tp_dict; return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; } static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { PyObject **dictptr = NULL; Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; if (offset) { #if CYTHON_COMPILING_IN_CPYTHON dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); #else dictptr = _PyObject_GetDictPtr(obj); #endif } return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; } static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { PyObject *dict = Py_TYPE(obj)->tp_dict; if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) return 0; return obj_dict_version == __Pyx_get_object_dict_version(obj); } #endif /* GetModuleGlobalName */ #if CYTHON_USE_DICT_VERSIONS static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value) #else static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name) #endif { PyObject *result; #if !CYTHON_AVOID_BORROWED_REFS #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } else if (unlikely(PyErr_Occurred())) { return NULL; } #else result = PyDict_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } #endif #else result = PyObject_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } PyErr_Clear(); #endif return __Pyx_GetBuiltinName(name); } /* PyCFunctionFastCall */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { PyCFunctionObject *func = (PyCFunctionObject*)func_obj; PyCFunction meth = PyCFunction_GET_FUNCTION(func); PyObject *self = PyCFunction_GET_SELF(func); int flags = PyCFunction_GET_FLAGS(func); assert(PyCFunction_Check(func)); assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); assert(nargs >= 0); assert(nargs == 0 || args != NULL); /* _PyCFunction_FastCallDict() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller loses its exception */ assert(!PyErr_Occurred()); if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); } else { return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); } } #endif /* PyFunctionFastCall */ #if CYTHON_FAST_PYCALL static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, PyObject *globals) { PyFrameObject *f; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject **fastlocals; Py_ssize_t i; PyObject *result; assert(globals != NULL); /* XXX Perhaps we should create a specialized PyFrame_New() that doesn't take locals, but does take builtins without sanity checking them. */ assert(tstate != NULL); f = PyFrame_New(tstate, co, globals, NULL); if (f == NULL) { return NULL; } fastlocals = __Pyx_PyFrame_GetLocalsplus(f); for (i = 0; i < na; i++) { Py_INCREF(*args); fastlocals[i] = *args++; } result = PyEval_EvalFrameEx(f,0); ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; return result; } #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); PyObject *globals = PyFunction_GET_GLOBALS(func); PyObject *argdefs = PyFunction_GET_DEFAULTS(func); PyObject *closure; #if PY_MAJOR_VERSION >= 3 PyObject *kwdefs; #endif PyObject *kwtuple, **k; PyObject **d; Py_ssize_t nd; Py_ssize_t nk; PyObject *result; assert(kwargs == NULL || PyDict_Check(kwargs)); nk = kwargs ? PyDict_Size(kwargs) : 0; if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { return NULL; } if ( #if PY_MAJOR_VERSION >= 3 co->co_kwonlyargcount == 0 && #endif likely(kwargs == NULL || nk == 0) && co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { if (argdefs == NULL && co->co_argcount == nargs) { result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); goto done; } else if (nargs == 0 && argdefs != NULL && co->co_argcount == Py_SIZE(argdefs)) { /* function called with no arguments, but all parameters have a default value: use default values as arguments .*/ args = &PyTuple_GET_ITEM(argdefs, 0); result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); goto done; } } if (kwargs != NULL) { Py_ssize_t pos, i; kwtuple = PyTuple_New(2 * nk); if (kwtuple == NULL) { result = NULL; goto done; } k = &PyTuple_GET_ITEM(kwtuple, 0); pos = i = 0; while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { Py_INCREF(k[i]); Py_INCREF(k[i+1]); i += 2; } nk = i / 2; } else { kwtuple = NULL; k = NULL; } closure = PyFunction_GET_CLOSURE(func); #if PY_MAJOR_VERSION >= 3 kwdefs = PyFunction_GET_KW_DEFAULTS(func); #endif if (argdefs != NULL) { d = &PyTuple_GET_ITEM(argdefs, 0); nd = Py_SIZE(argdefs); } else { d = NULL; nd = 0; } #if PY_MAJOR_VERSION >= 3 result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, kwdefs, closure); #else result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, closure); #endif Py_XDECREF(kwtuple); done: Py_LeaveRecursiveCall(); return result; } #endif #endif /* PyObjectCall */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; ternaryfunc call = func->ob_type->tp_call; if (unlikely(!call)) return PyObject_Call(func, arg, kw); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = (*call)(func, arg, kw); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCall2Args */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) { PyObject *args, *result = NULL; #if CYTHON_FAST_PYCALL if (PyFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyFunction_FastCall(function, args, 2); } #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyCFunction_FastCall(function, args, 2); } #endif args = PyTuple_New(2); if (unlikely(!args)) goto done; Py_INCREF(arg1); PyTuple_SET_ITEM(args, 0, arg1); Py_INCREF(arg2); PyTuple_SET_ITEM(args, 1, arg2); Py_INCREF(function); result = __Pyx_PyObject_Call(function, args, NULL); Py_DECREF(args); Py_DECREF(function); done: return result; } /* PyObjectCallMethO */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { PyObject *self, *result; PyCFunction cfunc; cfunc = PyCFunction_GET_FUNCTION(func); self = PyCFunction_GET_SELF(func); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = cfunc(self, arg); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCallOneArg */ #if CYTHON_COMPILING_IN_CPYTHON static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_New(1); if (unlikely(!args)) return NULL; Py_INCREF(arg); PyTuple_SET_ITEM(args, 0, arg); result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, &arg, 1); } #endif if (likely(PyCFunction_Check(func))) { if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { return __Pyx_PyObject_CallMethO(func, arg); #if CYTHON_FAST_PYCCALL } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { return __Pyx_PyCFunction_FastCall(func, &arg, 1); #endif } } return __Pyx__PyObject_CallOneArg(func, arg); } #else static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_Pack(1, arg); if (unlikely(!args)) return NULL; result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } #endif /* PyObjectSetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_setattro)) return tp->tp_setattro(obj, attr_name, value); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_setattr)) return tp->tp_setattr(obj, PyString_AS_STRING(attr_name), value); #endif return PyObject_SetAttr(obj, attr_name, value); } #endif /* PyObjectCallNoArg */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, NULL, 0); } #endif #ifdef __Pyx_CyFunction_USED if (likely(PyCFunction_Check(func) || __Pyx_CyFunction_Check(func))) #else if (likely(PyCFunction_Check(func))) #endif { if (likely(PyCFunction_GET_FLAGS(func) & METH_NOARGS)) { return __Pyx_PyObject_CallMethO(func, NULL); } } return __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL); } #endif /* RaiseTooManyValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); } /* RaiseNeedMoreValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { PyErr_Format(PyExc_ValueError, "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", index, (index == 1) ? "" : "s"); } /* IterFinish */ static CYTHON_INLINE int __Pyx_IterFinish(void) { #if CYTHON_FAST_THREAD_STATE PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* exc_type = tstate->curexc_type; if (unlikely(exc_type)) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) { PyObject *exc_value, *exc_tb; exc_value = tstate->curexc_value; exc_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; Py_DECREF(exc_type); Py_XDECREF(exc_value); Py_XDECREF(exc_tb); return 0; } else { return -1; } } return 0; #else if (unlikely(PyErr_Occurred())) { if (likely(PyErr_ExceptionMatches(PyExc_StopIteration))) { PyErr_Clear(); return 0; } else { return -1; } } return 0; #endif } /* UnpackItemEndCheck */ static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) { if (unlikely(retval)) { Py_DECREF(retval); __Pyx_RaiseTooManyValuesError(expected); return -1; } else { return __Pyx_IterFinish(); } return 0; } /* GetAttr */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { #if CYTHON_USE_TYPE_SLOTS #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) #else if (likely(PyString_Check(n))) #endif return __Pyx_PyObject_GetAttrStr(o, n); #endif return PyObject_GetAttr(o, n); } /* HasAttr */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) { PyObject *r; if (unlikely(!__Pyx_PyBaseString_Check(n))) { PyErr_SetString(PyExc_TypeError, "hasattr(): attribute name must be string"); return -1; } r = __Pyx_GetAttr(o, n); if (unlikely(!r)) { PyErr_Clear(); return 0; } else { Py_DECREF(r); return 1; } } /* IterNext */ static PyObject *__Pyx_PyIter_Next2Default(PyObject* defval) { PyObject* exc_type; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign exc_type = __Pyx_PyErr_Occurred(); if (unlikely(exc_type)) { if (!defval || unlikely(!__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) return NULL; __Pyx_PyErr_Clear(); Py_INCREF(defval); return defval; } if (defval) { Py_INCREF(defval); return defval; } __Pyx_PyErr_SetNone(PyExc_StopIteration); return NULL; } static void __Pyx_PyIter_Next_ErrorNoIterator(PyObject *iterator) { PyErr_Format(PyExc_TypeError, "%.200s object is not an iterator", Py_TYPE(iterator)->tp_name); } static CYTHON_INLINE PyObject *__Pyx_PyIter_Next2(PyObject* iterator, PyObject* defval) { PyObject* next; iternextfunc iternext = Py_TYPE(iterator)->tp_iternext; if (likely(iternext)) { #if CYTHON_USE_TYPE_SLOTS next = iternext(iterator); if (likely(next)) return next; #if PY_VERSION_HEX >= 0x02070000 if (unlikely(iternext == &_PyObject_NextNotImplemented)) return NULL; #endif #else next = PyIter_Next(iterator); if (likely(next)) return next; #endif } else if (CYTHON_USE_TYPE_SLOTS || unlikely(!PyIter_Check(iterator))) { __Pyx_PyIter_Next_ErrorNoIterator(iterator); return NULL; } #if !CYTHON_USE_TYPE_SLOTS else { next = PyIter_Next(iterator); if (likely(next)) return next; } #endif return __Pyx_PyIter_Next2Default(defval); } /* PyFloatBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyFloat_EqObjC(PyObject *op1, PyObject *op2, double floatval, int inplace, int zerodivision_check) { const double b = floatval; double a; (void)inplace; (void)zerodivision_check; if (op1 == op2) { Py_RETURN_TRUE; } if (likely(PyFloat_CheckExact(op1))) { a = PyFloat_AS_DOUBLE(op1); } else #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { a = (double) PyInt_AS_LONG(op1); } else #endif if (likely(PyLong_CheckExact(op1))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); switch (size) { case 0: a = 0.0; break; case -1: a = -(double) digits[0]; break; case 1: a = (double) digits[0]; break; case -2: case 2: if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (1 * PyLong_SHIFT < 53))) { a = (double) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (2 * PyLong_SHIFT < 53) || (a < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -2) a = -a; break; } } CYTHON_FALLTHROUGH; case -3: case 3: if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (2 * PyLong_SHIFT < 53))) { a = (double) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (3 * PyLong_SHIFT < 53) || (a < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -3) a = -a; break; } } CYTHON_FALLTHROUGH; case -4: case 4: if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (3 * PyLong_SHIFT < 53))) { a = (double) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (4 * PyLong_SHIFT < 53) || (a < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -4) a = -a; break; } } CYTHON_FALLTHROUGH; default: #else { #endif return ( PyFloat_Type.tp_richcompare(op2, op1, Py_EQ)); } } else { return ( PyObject_RichCompare(op1, op2, Py_EQ)); } if (a == b) { Py_RETURN_TRUE; } else { Py_RETURN_FALSE; } } #endif /* PyFloatBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyFloat_SubtractCObj(PyObject *op1, PyObject *op2, double floatval, int inplace, int zerodivision_check) { const double a = floatval; double b, result; (void)inplace; (void)zerodivision_check; if (likely(PyFloat_CheckExact(op2))) { b = PyFloat_AS_DOUBLE(op2); } else #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op2))) { b = (double) PyInt_AS_LONG(op2); } else #endif if (likely(PyLong_CheckExact(op2))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)op2)->ob_digit; const Py_ssize_t size = Py_SIZE(op2); switch (size) { case 0: b = 0.0; break; case -1: b = -(double) digits[0]; break; case 1: b = (double) digits[0]; break; case -2: case 2: if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (1 * PyLong_SHIFT < 53))) { b = (double) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (2 * PyLong_SHIFT < 53) || (b < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -2) b = -b; break; } } CYTHON_FALLTHROUGH; case -3: case 3: if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (2 * PyLong_SHIFT < 53))) { b = (double) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (3 * PyLong_SHIFT < 53) || (b < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -3) b = -b; break; } } CYTHON_FALLTHROUGH; case -4: case 4: if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (3 * PyLong_SHIFT < 53))) { b = (double) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (4 * PyLong_SHIFT < 53) || (b < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -4) b = -b; break; } } CYTHON_FALLTHROUGH; default: #else { #endif b = PyLong_AsDouble(op2); if (unlikely(b == -1.0 && PyErr_Occurred())) return NULL; } } else { return (inplace ? PyNumber_InPlaceSubtract : PyNumber_Subtract)(op1, op2); } PyFPE_START_PROTECT("subtract", return NULL) result = a - b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } #endif /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long x; long a = PyInt_AS_LONG(op1); x = (long)((unsigned long)a + b); if (likely((x^a) >= 0 || (x^b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_add(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { const long b = intval; long a, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG llb = intval; PY_LONG_LONG lla, llx; #endif const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); if (likely(__Pyx_sst_abs(size) <= 1)) { a = likely(size) ? digits[0] : 0; if (size == -1) a = -a; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_add(op1, op2); } } x = a + b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla + llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); double result; PyFPE_START_PROTECT("add", return NULL) result = ((double)a) + (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); } #endif /* GetItemInt */ static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); Py_DECREF(j); return r; } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyList_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) { PyObject *r = PyList_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyTuple_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) { PyObject *r = PyList_GET_ITEM(o, n); Py_INCREF(r); return r; } } else if (PyTuple_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, n); Py_INCREF(r); return r; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return NULL; PyErr_Clear(); } } return m->sq_item(o, i); } } #else if (is_list || PySequence_Check(o)) { return PySequence_GetItem(o, i); } #endif return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); } /* ObjectGetItem */ #if CYTHON_USE_TYPE_SLOTS static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { PyObject *runerr; Py_ssize_t key_value; PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; if (unlikely(!(m && m->sq_item))) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); return NULL; } key_value = __Pyx_PyIndex_AsSsize_t(index); if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); } if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { PyErr_Clear(); PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); } return NULL; } static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; if (likely(m && m->mp_subscript)) { return m->mp_subscript(obj, key); } return __Pyx_PyObject_GetIndex(obj, key); } #endif /* PyIntCompare */ static CYTHON_INLINE PyObject* __Pyx_PyInt_NeObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED long inplace) { if (op1 == op2) { Py_RETURN_FALSE; } #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long a = PyInt_AS_LONG(op1); if (a != b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { int unequal; unsigned long uintval; Py_ssize_t size = Py_SIZE(op1); const digit* digits = ((PyLongObject*)op1)->ob_digit; if (intval == 0) { if (size != 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } else if (intval < 0) { if (size >= 0) Py_RETURN_TRUE; intval = -intval; size = -size; } else { if (size <= 0) Py_RETURN_TRUE; } uintval = (unsigned long) intval; #if PyLong_SHIFT * 4 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 4)) { unequal = (size != 5) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[4] != ((uintval >> (4 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 3 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 3)) { unequal = (size != 4) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 2 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 2)) { unequal = (size != 3) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 1 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 1)) { unequal = (size != 2) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif unequal = (size != 1) || (((unsigned long) digits[0]) != (uintval & (unsigned long) PyLong_MASK)); if (unequal != 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); if ((double)a != (double)b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } return ( PyObject_RichCompare(op1, op2, Py_NE)); } /* RaiseException */ #if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { __Pyx_PyThreadState_declare Py_XINCREF(type); if (!value || value == Py_None) value = NULL; else Py_INCREF(value); if (!tb || tb == Py_None) tb = NULL; else { Py_INCREF(tb); if (!PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } } if (PyType_Check(type)) { #if CYTHON_COMPILING_IN_PYPY if (!value) { Py_INCREF(Py_None); value = Py_None; } #endif PyErr_NormalizeException(&type, &value, &tb); } else { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } value = type; type = (PyObject*) Py_TYPE(type); Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } } __Pyx_PyThreadState_assign __Pyx_ErrRestore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } #else static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { PyObject* owned_instance = NULL; if (tb == Py_None) { tb = 0; } else if (tb && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto bad; } if (value == Py_None) value = 0; if (PyExceptionInstance_Check(type)) { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto bad; } value = type; type = (PyObject*) Py_TYPE(value); } else if (PyExceptionClass_Check(type)) { PyObject *instance_class = NULL; if (value && PyExceptionInstance_Check(value)) { instance_class = (PyObject*) Py_TYPE(value); if (instance_class != type) { int is_subclass = PyObject_IsSubclass(instance_class, type); if (!is_subclass) { instance_class = NULL; } else if (unlikely(is_subclass == -1)) { goto bad; } else { type = instance_class; } } } if (!instance_class) { PyObject *args; if (!value) args = PyTuple_New(0); else if (PyTuple_Check(value)) { Py_INCREF(value); args = value; } else args = PyTuple_Pack(1, value); if (!args) goto bad; owned_instance = PyObject_Call(type, args, NULL); Py_DECREF(args); if (!owned_instance) goto bad; value = owned_instance; if (!PyExceptionInstance_Check(value)) { PyErr_Format(PyExc_TypeError, "calling %R should have returned an instance of " "BaseException, not %R", type, Py_TYPE(value)); goto bad; } } } else { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto bad; } if (cause) { PyObject *fixed_cause; if (cause == Py_None) { fixed_cause = NULL; } else if (PyExceptionClass_Check(cause)) { fixed_cause = PyObject_CallObject(cause, NULL); if (fixed_cause == NULL) goto bad; } else if (PyExceptionInstance_Check(cause)) { fixed_cause = cause; Py_INCREF(fixed_cause); } else { PyErr_SetString(PyExc_TypeError, "exception causes must derive from " "BaseException"); goto bad; } PyException_SetCause(value, fixed_cause); } PyErr_SetObject(type, value); if (tb) { #if CYTHON_COMPILING_IN_PYPY PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); Py_INCREF(tb); PyErr_Restore(tmp_type, tmp_value, tb); Py_XDECREF(tmp_tb); #else PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* tmp_tb = tstate->curexc_traceback; if (tb != tmp_tb) { Py_INCREF(tb); tstate->curexc_traceback = tb; Py_XDECREF(tmp_tb); } #endif } bad: Py_XDECREF(owned_instance); return; } #endif /* PyIntCompare */ static CYTHON_INLINE PyObject* __Pyx_PyInt_EqObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED long inplace) { if (op1 == op2) { Py_RETURN_TRUE; } #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long a = PyInt_AS_LONG(op1); if (a == b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { int unequal; unsigned long uintval; Py_ssize_t size = Py_SIZE(op1); const digit* digits = ((PyLongObject*)op1)->ob_digit; if (intval == 0) { if (size == 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } else if (intval < 0) { if (size >= 0) Py_RETURN_FALSE; intval = -intval; size = -size; } else { if (size <= 0) Py_RETURN_FALSE; } uintval = (unsigned long) intval; #if PyLong_SHIFT * 4 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 4)) { unequal = (size != 5) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[4] != ((uintval >> (4 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 3 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 3)) { unequal = (size != 4) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 2 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 2)) { unequal = (size != 3) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 1 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 1)) { unequal = (size != 2) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif unequal = (size != 1) || (((unsigned long) digits[0]) != (uintval & (unsigned long) PyLong_MASK)); if (unequal == 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); if ((double)a == (double)b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } return ( PyObject_RichCompare(op1, op2, Py_EQ)); } /* SliceObject */ static CYTHON_INLINE int __Pyx_PyObject_SetSlice(PyObject* obj, PyObject* value, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** _py_start, PyObject** _py_stop, PyObject** _py_slice, int has_cstart, int has_cstop, CYTHON_UNUSED int wraparound) { #if CYTHON_USE_TYPE_SLOTS PyMappingMethods* mp; #if PY_MAJOR_VERSION < 3 PySequenceMethods* ms = Py_TYPE(obj)->tp_as_sequence; if (likely(ms && ms->sq_ass_slice)) { if (!has_cstart) { if (_py_start && (*_py_start != Py_None)) { cstart = __Pyx_PyIndex_AsSsize_t(*_py_start); if ((cstart == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstart = 0; } if (!has_cstop) { if (_py_stop && (*_py_stop != Py_None)) { cstop = __Pyx_PyIndex_AsSsize_t(*_py_stop); if ((cstop == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstop = PY_SSIZE_T_MAX; } if (wraparound && unlikely((cstart < 0) | (cstop < 0)) && likely(ms->sq_length)) { Py_ssize_t l = ms->sq_length(obj); if (likely(l >= 0)) { if (cstop < 0) { cstop += l; if (cstop < 0) cstop = 0; } if (cstart < 0) { cstart += l; if (cstart < 0) cstart = 0; } } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) goto bad; PyErr_Clear(); } } return ms->sq_ass_slice(obj, cstart, cstop, value); } #endif mp = Py_TYPE(obj)->tp_as_mapping; if (likely(mp && mp->mp_ass_subscript)) #endif { int result; PyObject *py_slice, *py_start, *py_stop; if (_py_slice) { py_slice = *_py_slice; } else { PyObject* owned_start = NULL; PyObject* owned_stop = NULL; if (_py_start) { py_start = *_py_start; } else { if (has_cstart) { owned_start = py_start = PyInt_FromSsize_t(cstart); if (unlikely(!py_start)) goto bad; } else py_start = Py_None; } if (_py_stop) { py_stop = *_py_stop; } else { if (has_cstop) { owned_stop = py_stop = PyInt_FromSsize_t(cstop); if (unlikely(!py_stop)) { Py_XDECREF(owned_start); goto bad; } } else py_stop = Py_None; } py_slice = PySlice_New(py_start, py_stop, Py_None); Py_XDECREF(owned_start); Py_XDECREF(owned_stop); if (unlikely(!py_slice)) goto bad; } #if CYTHON_USE_TYPE_SLOTS result = mp->mp_ass_subscript(obj, py_slice, value); #else result = value ? PyObject_SetItem(obj, py_slice, value) : PyObject_DelItem(obj, py_slice); #endif if (!_py_slice) { Py_DECREF(py_slice); } return result; } PyErr_Format(PyExc_TypeError, "'%.200s' object does not support slice %.10s", Py_TYPE(obj)->tp_name, value ? "assignment" : "deletion"); bad: return -1; } /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_SubtractObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long x; long a = PyInt_AS_LONG(op1); x = (long)((unsigned long)a - b); if (likely((x^a) >= 0 || (x^~b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_subtract(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { const long b = intval; long a, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG llb = intval; PY_LONG_LONG lla, llx; #endif const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); if (likely(__Pyx_sst_abs(size) <= 1)) { a = likely(size) ? digits[0] : 0; if (size == -1) a = -a; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_subtract(op1, op2); } } x = a - b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla - llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); double result; PyFPE_START_PROTECT("subtract", return NULL) result = ((double)a) - (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceSubtract : PyNumber_Subtract)(op1, op2); } #endif /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_SubtractCObj(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op2))) { const long a = intval; long x; long b = PyInt_AS_LONG(op2); x = (long)((unsigned long)a - b); if (likely((x^a) >= 0 || (x^~b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_subtract(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op2))) { const long a = intval; long b, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG lla = intval; PY_LONG_LONG llb, llx; #endif const digit* digits = ((PyLongObject*)op2)->ob_digit; const Py_ssize_t size = Py_SIZE(op2); if (likely(__Pyx_sst_abs(size) <= 1)) { b = likely(size) ? digits[0] : 0; if (size == -1) b = -b; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { b = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { llb = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { b = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { llb = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { b = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { llb = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { b = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { llb = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { b = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { llb = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { b = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { llb = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_subtract(op1, op2); } } x = a - b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla - llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op2)) { const long a = intval; double b = PyFloat_AS_DOUBLE(op2); double result; PyFPE_START_PROTECT("subtract", return NULL) result = ((double)a) - (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceSubtract : PyNumber_Subtract)(op1, op2); } #endif /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddCObj(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op2))) { const long a = intval; long x; long b = PyInt_AS_LONG(op2); x = (long)((unsigned long)a + b); if (likely((x^a) >= 0 || (x^b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_add(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op2))) { const long a = intval; long b, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG lla = intval; PY_LONG_LONG llb, llx; #endif const digit* digits = ((PyLongObject*)op2)->ob_digit; const Py_ssize_t size = Py_SIZE(op2); if (likely(__Pyx_sst_abs(size) <= 1)) { b = likely(size) ? digits[0] : 0; if (size == -1) b = -b; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { b = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { llb = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { b = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { llb = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { b = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { llb = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { b = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { llb = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { b = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { llb = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { b = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { llb = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_add(op1, op2); } } x = a + b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla + llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op2)) { const long a = intval; double b = PyFloat_AS_DOUBLE(op2); double result; PyFPE_START_PROTECT("add", return NULL) result = ((double)a) + (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); } #endif /* BytesEquals */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else if (s1 == s2) { return (equals == Py_EQ); } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { const char *ps1, *ps2; Py_ssize_t length = PyBytes_GET_SIZE(s1); if (length != PyBytes_GET_SIZE(s2)) return (equals == Py_NE); ps1 = PyBytes_AS_STRING(s1); ps2 = PyBytes_AS_STRING(s2); if (ps1[0] != ps2[0]) { return (equals == Py_NE); } else if (length == 1) { return (equals == Py_EQ); } else { int result; #if CYTHON_USE_UNICODE_INTERNALS Py_hash_t hash1, hash2; hash1 = ((PyBytesObject*)s1)->ob_shash; hash2 = ((PyBytesObject*)s2)->ob_shash; if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { return (equals == Py_NE); } #endif result = memcmp(ps1, ps2, (size_t)length); return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { return (equals == Py_NE); } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { return (equals == Py_NE); } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } #endif } /* UnicodeEquals */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else #if PY_MAJOR_VERSION < 3 PyObject* owned_ref = NULL; #endif int s1_is_unicode, s2_is_unicode; if (s1 == s2) { goto return_eq; } s1_is_unicode = PyUnicode_CheckExact(s1); s2_is_unicode = PyUnicode_CheckExact(s2); #if PY_MAJOR_VERSION < 3 if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { owned_ref = PyUnicode_FromObject(s2); if (unlikely(!owned_ref)) return -1; s2 = owned_ref; s2_is_unicode = 1; } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { owned_ref = PyUnicode_FromObject(s1); if (unlikely(!owned_ref)) return -1; s1 = owned_ref; s1_is_unicode = 1; } else if (((!s2_is_unicode) & (!s1_is_unicode))) { return __Pyx_PyBytes_Equals(s1, s2, equals); } #endif if (s1_is_unicode & s2_is_unicode) { Py_ssize_t length; int kind; void *data1, *data2; if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0)) return -1; length = __Pyx_PyUnicode_GET_LENGTH(s1); if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { goto return_ne; } #if CYTHON_USE_UNICODE_INTERNALS { Py_hash_t hash1, hash2; #if CYTHON_PEP393_ENABLED hash1 = ((PyASCIIObject*)s1)->hash; hash2 = ((PyASCIIObject*)s2)->hash; #else hash1 = ((PyUnicodeObject*)s1)->hash; hash2 = ((PyUnicodeObject*)s2)->hash; #endif if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { goto return_ne; } } #endif kind = __Pyx_PyUnicode_KIND(s1); if (kind != __Pyx_PyUnicode_KIND(s2)) { goto return_ne; } data1 = __Pyx_PyUnicode_DATA(s1); data2 = __Pyx_PyUnicode_DATA(s2); if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { goto return_ne; } else if (length == 1) { goto return_eq; } else { int result = memcmp(data1, data2, (size_t)(length * kind)); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & s2_is_unicode) { goto return_ne; } else if ((s2 == Py_None) & s1_is_unicode) { goto return_ne; } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } return_eq: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ); return_ne: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_NE); #endif } /* Import */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; PyObject *empty_dict = 0; PyObject *list; #if PY_MAJOR_VERSION < 3 PyObject *py_import; py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); if (!py_import) goto bad; #endif if (from_list) list = from_list; else { empty_list = PyList_New(0); if (!empty_list) goto bad; list = empty_list; } global_dict = PyModule_GetDict(__pyx_m); if (!global_dict) goto bad; empty_dict = PyDict_New(); if (!empty_dict) goto bad; { #if PY_MAJOR_VERSION >= 3 if (level == -1) { if ((1) && (strchr(__Pyx_MODULE_NAME, '.'))) { module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, 1); if (!module) { if (!PyErr_ExceptionMatches(PyExc_ImportError)) goto bad; PyErr_Clear(); } } level = 0; } #endif if (!module) { #if PY_MAJOR_VERSION < 3 PyObject *py_level = PyInt_FromLong(level); if (!py_level) goto bad; module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); Py_DECREF(py_level); #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, level); #endif } } bad: #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_import); #endif Py_XDECREF(empty_list); Py_XDECREF(empty_dict); return module; } /* ImportFrom */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_ImportError, #if PY_MAJOR_VERSION < 3 "cannot import name %.230s", PyString_AS_STRING(name)); #else "cannot import name %S", name); #endif } return value; } /* KeywordStringCheck */ static int __Pyx_CheckKeywordStrings( PyObject *kwdict, const char* function_name, int kw_allowed) { PyObject* key = 0; Py_ssize_t pos = 0; #if CYTHON_COMPILING_IN_PYPY if (!kw_allowed && PyDict_Next(kwdict, &pos, &key, 0)) goto invalid_keyword; return 1; #else while (PyDict_Next(kwdict, &pos, &key, 0)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyString_Check(key))) #endif if (unlikely(!PyUnicode_Check(key))) goto invalid_keyword_type; } if ((!kw_allowed) && unlikely(key)) goto invalid_keyword; return 1; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); return 0; #endif invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif return 0; } /* UnpackUnboundCMethod */ static int __Pyx_TryUnpackUnboundCMethod(__Pyx_CachedCFunction* target) { PyObject *method; method = __Pyx_PyObject_GetAttrStr(target->type, *target->method_name); if (unlikely(!method)) return -1; target->method = method; #if CYTHON_COMPILING_IN_CPYTHON #if PY_MAJOR_VERSION >= 3 if (likely(__Pyx_TypeCheck(method, &PyMethodDescr_Type))) #endif { PyMethodDescrObject *descr = (PyMethodDescrObject*) method; target->func = descr->d_method->ml_meth; target->flag = descr->d_method->ml_flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_STACKLESS); } #endif return 0; } /* CallUnboundCMethod2 */ #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030600B1 static CYTHON_INLINE PyObject *__Pyx_CallUnboundCMethod2(__Pyx_CachedCFunction *cfunc, PyObject *self, PyObject *arg1, PyObject *arg2) { if (likely(cfunc->func)) { PyObject *args[2] = {arg1, arg2}; if (cfunc->flag == METH_FASTCALL) { #if PY_VERSION_HEX >= 0x030700A0 return (*(__Pyx_PyCFunctionFast)(void*)(PyCFunction)cfunc->func)(self, args, 2); #else return (*(__Pyx_PyCFunctionFastWithKeywords)(void*)(PyCFunction)cfunc->func)(self, args, 2, NULL); #endif } #if PY_VERSION_HEX >= 0x030700A0 if (cfunc->flag == (METH_FASTCALL | METH_KEYWORDS)) return (*(__Pyx_PyCFunctionFastWithKeywords)(void*)(PyCFunction)cfunc->func)(self, args, 2, NULL); #endif } return __Pyx__CallUnboundCMethod2(cfunc, self, arg1, arg2); } #endif static PyObject* __Pyx__CallUnboundCMethod2(__Pyx_CachedCFunction* cfunc, PyObject* self, PyObject* arg1, PyObject* arg2){ PyObject *args, *result = NULL; if (unlikely(!cfunc->func && !cfunc->method) && unlikely(__Pyx_TryUnpackUnboundCMethod(cfunc) < 0)) return NULL; #if CYTHON_COMPILING_IN_CPYTHON if (cfunc->func && (cfunc->flag & METH_VARARGS)) { args = PyTuple_New(2); if (unlikely(!args)) goto bad; Py_INCREF(arg1); PyTuple_SET_ITEM(args, 0, arg1); Py_INCREF(arg2); PyTuple_SET_ITEM(args, 1, arg2); if (cfunc->flag & METH_KEYWORDS) result = (*(PyCFunctionWithKeywords)(void*)(PyCFunction)cfunc->func)(self, args, NULL); else result = (*cfunc->func)(self, args); } else { args = PyTuple_New(3); if (unlikely(!args)) goto bad; Py_INCREF(self); PyTuple_SET_ITEM(args, 0, self); Py_INCREF(arg1); PyTuple_SET_ITEM(args, 1, arg1); Py_INCREF(arg2); PyTuple_SET_ITEM(args, 2, arg2); result = __Pyx_PyObject_Call(cfunc->method, args, NULL); } #else args = PyTuple_Pack(3, self, arg1, arg2); if (unlikely(!args)) goto bad; result = __Pyx_PyObject_Call(cfunc->method, args, NULL); #endif bad: Py_XDECREF(args); return result; } /* dict_setdefault */ static CYTHON_INLINE PyObject *__Pyx_PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *default_value, CYTHON_UNUSED int is_safe_type) { PyObject* value; #if PY_VERSION_HEX >= 0x030400A0 if ((1)) { value = PyDict_SetDefault(d, key, default_value); if (unlikely(!value)) return NULL; Py_INCREF(value); #else if (is_safe_type == 1 || (is_safe_type == -1 && #if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY (PyUnicode_CheckExact(key) || PyString_CheckExact(key) || PyLong_CheckExact(key)))) { value = PyDict_GetItemWithError(d, key); if (unlikely(!value)) { if (unlikely(PyErr_Occurred())) return NULL; if (unlikely(PyDict_SetItem(d, key, default_value) == -1)) return NULL; value = default_value; } Py_INCREF(value); #else (PyString_CheckExact(key) || PyUnicode_CheckExact(key) || PyInt_CheckExact(key) || PyLong_CheckExact(key)))) { value = PyDict_GetItem(d, key); if (unlikely(!value)) { if (unlikely(PyDict_SetItem(d, key, default_value) == -1)) return NULL; value = default_value; } Py_INCREF(value); #endif #endif } else { value = __Pyx_CallUnboundCMethod2(&__pyx_umethod_PyDict_Type_setdefault, d, key, default_value); } return value; } /* PyFloatBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyFloat_AddCObj(PyObject *op1, PyObject *op2, double floatval, int inplace, int zerodivision_check) { const double a = floatval; double b, result; (void)inplace; (void)zerodivision_check; if (likely(PyFloat_CheckExact(op2))) { b = PyFloat_AS_DOUBLE(op2); } else #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op2))) { b = (double) PyInt_AS_LONG(op2); } else #endif if (likely(PyLong_CheckExact(op2))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)op2)->ob_digit; const Py_ssize_t size = Py_SIZE(op2); switch (size) { case 0: b = 0.0; break; case -1: b = -(double) digits[0]; break; case 1: b = (double) digits[0]; break; case -2: case 2: if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (1 * PyLong_SHIFT < 53))) { b = (double) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (2 * PyLong_SHIFT < 53) || (b < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -2) b = -b; break; } } CYTHON_FALLTHROUGH; case -3: case 3: if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (2 * PyLong_SHIFT < 53))) { b = (double) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (3 * PyLong_SHIFT < 53) || (b < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -3) b = -b; break; } } CYTHON_FALLTHROUGH; case -4: case 4: if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT && ((8 * sizeof(unsigned long) < 53) || (3 * PyLong_SHIFT < 53))) { b = (double) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); if ((8 * sizeof(unsigned long) < 53) || (4 * PyLong_SHIFT < 53) || (b < (double) ((PY_LONG_LONG)1 << 53))) { if (size == -4) b = -b; break; } } CYTHON_FALLTHROUGH; default: #else { #endif b = PyLong_AsDouble(op2); if (unlikely(b == -1.0 && PyErr_Occurred())) return NULL; } } else { return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); } PyFPE_START_PROTECT("add", return NULL) result = a + b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } #endif /* DictGetItem */ #if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key) { PyObject *value; value = PyDict_GetItemWithError(d, key); if (unlikely(!value)) { if (!PyErr_Occurred()) { if (unlikely(PyTuple_Check(key))) { PyObject* args = PyTuple_Pack(1, key); if (likely(args)) { PyErr_SetObject(PyExc_KeyError, args); Py_DECREF(args); } } else { PyErr_SetObject(PyExc_KeyError, key); } } return NULL; } Py_INCREF(value); return value; } #endif /* CalculateMetaclass */ static PyObject *__Pyx_CalculateMetaclass(PyTypeObject *metaclass, PyObject *bases) { Py_ssize_t i, nbases = PyTuple_GET_SIZE(bases); for (i=0; i < nbases; i++) { PyTypeObject *tmptype; PyObject *tmp = PyTuple_GET_ITEM(bases, i); tmptype = Py_TYPE(tmp); #if PY_MAJOR_VERSION < 3 if (tmptype == &PyClass_Type) continue; #endif if (!metaclass) { metaclass = tmptype; continue; } if (PyType_IsSubtype(metaclass, tmptype)) continue; if (PyType_IsSubtype(tmptype, metaclass)) { metaclass = tmptype; continue; } PyErr_SetString(PyExc_TypeError, "metaclass conflict: " "the metaclass of a derived class " "must be a (non-strict) subclass " "of the metaclasses of all its bases"); return NULL; } if (!metaclass) { #if PY_MAJOR_VERSION < 3 metaclass = &PyClass_Type; #else metaclass = &PyType_Type; #endif } Py_INCREF((PyObject*) metaclass); return (PyObject*) metaclass; } /* ClassMethod */ static PyObject* __Pyx_Method_ClassMethod(PyObject *method) { #if CYTHON_COMPILING_IN_PYPY && PYPY_VERSION_NUM <= 0x05080000 if (PyObject_TypeCheck(method, &PyWrapperDescr_Type)) { return PyClassMethod_New(method); } #else #if CYTHON_COMPILING_IN_PYSTON || CYTHON_COMPILING_IN_PYPY if (PyMethodDescr_Check(method)) #else static PyTypeObject *methoddescr_type = NULL; if (methoddescr_type == NULL) { PyObject *meth = PyObject_GetAttrString((PyObject*)&PyList_Type, "append"); if (!meth) return NULL; methoddescr_type = Py_TYPE(meth); Py_DECREF(meth); } if (__Pyx_TypeCheck(method, methoddescr_type)) #endif { PyMethodDescrObject *descr = (PyMethodDescrObject *)method; #if PY_VERSION_HEX < 0x03020000 PyTypeObject *d_type = descr->d_type; #else PyTypeObject *d_type = descr->d_common.d_type; #endif return PyDescr_NewClassMethod(d_type, descr->d_method); } #endif else if (PyMethod_Check(method)) { return PyClassMethod_New(PyMethod_GET_FUNCTION(method)); } else if (PyCFunction_Check(method)) { return PyClassMethod_New(method); } #ifdef __Pyx_CyFunction_USED else if (__Pyx_CyFunction_Check(method)) { return PyClassMethod_New(method); } #endif PyErr_SetString(PyExc_TypeError, "Class-level classmethod() can only be called on " "a method_descriptor or instance method."); return NULL; } /* FetchCommonType */ static PyTypeObject* __Pyx_FetchCommonType(PyTypeObject* type) { PyObject* fake_module; PyTypeObject* cached_type = NULL; fake_module = PyImport_AddModule((char*) "_cython_" CYTHON_ABI); if (!fake_module) return NULL; Py_INCREF(fake_module); cached_type = (PyTypeObject*) PyObject_GetAttrString(fake_module, type->tp_name); if (cached_type) { if (!PyType_Check((PyObject*)cached_type)) { PyErr_Format(PyExc_TypeError, "Shared Cython type %.200s is not a type object", type->tp_name); goto bad; } if (cached_type->tp_basicsize != type->tp_basicsize) { PyErr_Format(PyExc_TypeError, "Shared Cython type %.200s has the wrong size, try recompiling", type->tp_name); goto bad; } } else { if (!PyErr_ExceptionMatches(PyExc_AttributeError)) goto bad; PyErr_Clear(); if (PyType_Ready(type) < 0) goto bad; if (PyObject_SetAttrString(fake_module, type->tp_name, (PyObject*) type) < 0) goto bad; Py_INCREF(type); cached_type = type; } done: Py_DECREF(fake_module); return cached_type; bad: Py_XDECREF(cached_type); cached_type = NULL; goto done; } /* CythonFunctionShared */ #include <structmember.h> static PyObject * __Pyx_CyFunction_get_doc(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *closure) { if (unlikely(op->func_doc == NULL)) { if (op->func.m_ml->ml_doc) { #if PY_MAJOR_VERSION >= 3 op->func_doc = PyUnicode_FromString(op->func.m_ml->ml_doc); #else op->func_doc = PyString_FromString(op->func.m_ml->ml_doc); #endif if (unlikely(op->func_doc == NULL)) return NULL; } else { Py_INCREF(Py_None); return Py_None; } } Py_INCREF(op->func_doc); return op->func_doc; } static int __Pyx_CyFunction_set_doc(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp = op->func_doc; if (value == NULL) { value = Py_None; } Py_INCREF(value); op->func_doc = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_name(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { if (unlikely(op->func_name == NULL)) { #if PY_MAJOR_VERSION >= 3 op->func_name = PyUnicode_InternFromString(op->func.m_ml->ml_name); #else op->func_name = PyString_InternFromString(op->func.m_ml->ml_name); #endif if (unlikely(op->func_name == NULL)) return NULL; } Py_INCREF(op->func_name); return op->func_name; } static int __Pyx_CyFunction_set_name(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp; #if PY_MAJOR_VERSION >= 3 if (unlikely(value == NULL || !PyUnicode_Check(value))) #else if (unlikely(value == NULL || !PyString_Check(value))) #endif { PyErr_SetString(PyExc_TypeError, "__name__ must be set to a string object"); return -1; } tmp = op->func_name; Py_INCREF(value); op->func_name = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_qualname(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { Py_INCREF(op->func_qualname); return op->func_qualname; } static int __Pyx_CyFunction_set_qualname(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp; #if PY_MAJOR_VERSION >= 3 if (unlikely(value == NULL || !PyUnicode_Check(value))) #else if (unlikely(value == NULL || !PyString_Check(value))) #endif { PyErr_SetString(PyExc_TypeError, "__qualname__ must be set to a string object"); return -1; } tmp = op->func_qualname; Py_INCREF(value); op->func_qualname = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_self(__pyx_CyFunctionObject *m, CYTHON_UNUSED void *closure) { PyObject *self; self = m->func_closure; if (self == NULL) self = Py_None; Py_INCREF(self); return self; } static PyObject * __Pyx_CyFunction_get_dict(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { if (unlikely(op->func_dict == NULL)) { op->func_dict = PyDict_New(); if (unlikely(op->func_dict == NULL)) return NULL; } Py_INCREF(op->func_dict); return op->func_dict; } static int __Pyx_CyFunction_set_dict(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp; if (unlikely(value == NULL)) { PyErr_SetString(PyExc_TypeError, "function's dictionary may not be deleted"); return -1; } if (unlikely(!PyDict_Check(value))) { PyErr_SetString(PyExc_TypeError, "setting function's dictionary to a non-dict"); return -1; } tmp = op->func_dict; Py_INCREF(value); op->func_dict = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_globals(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { Py_INCREF(op->func_globals); return op->func_globals; } static PyObject * __Pyx_CyFunction_get_closure(CYTHON_UNUSED __pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { Py_INCREF(Py_None); return Py_None; } static PyObject * __Pyx_CyFunction_get_code(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = (op->func_code) ? op->func_code : Py_None; Py_INCREF(result); return result; } static int __Pyx_CyFunction_init_defaults(__pyx_CyFunctionObject *op) { int result = 0; PyObject *res = op->defaults_getter((PyObject *) op); if (unlikely(!res)) return -1; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS op->defaults_tuple = PyTuple_GET_ITEM(res, 0); Py_INCREF(op->defaults_tuple); op->defaults_kwdict = PyTuple_GET_ITEM(res, 1); Py_INCREF(op->defaults_kwdict); #else op->defaults_tuple = PySequence_ITEM(res, 0); if (unlikely(!op->defaults_tuple)) result = -1; else { op->defaults_kwdict = PySequence_ITEM(res, 1); if (unlikely(!op->defaults_kwdict)) result = -1; } #endif Py_DECREF(res); return result; } static int __Pyx_CyFunction_set_defaults(__pyx_CyFunctionObject *op, PyObject* value, CYTHON_UNUSED void *context) { PyObject* tmp; if (!value) { value = Py_None; } else if (value != Py_None && !PyTuple_Check(value)) { PyErr_SetString(PyExc_TypeError, "__defaults__ must be set to a tuple object"); return -1; } Py_INCREF(value); tmp = op->defaults_tuple; op->defaults_tuple = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_defaults(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = op->defaults_tuple; if (unlikely(!result)) { if (op->defaults_getter) { if (__Pyx_CyFunction_init_defaults(op) < 0) return NULL; result = op->defaults_tuple; } else { result = Py_None; } } Py_INCREF(result); return result; } static int __Pyx_CyFunction_set_kwdefaults(__pyx_CyFunctionObject *op, PyObject* value, CYTHON_UNUSED void *context) { PyObject* tmp; if (!value) { value = Py_None; } else if (value != Py_None && !PyDict_Check(value)) { PyErr_SetString(PyExc_TypeError, "__kwdefaults__ must be set to a dict object"); return -1; } Py_INCREF(value); tmp = op->defaults_kwdict; op->defaults_kwdict = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_kwdefaults(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = op->defaults_kwdict; if (unlikely(!result)) { if (op->defaults_getter) { if (__Pyx_CyFunction_init_defaults(op) < 0) return NULL; result = op->defaults_kwdict; } else { result = Py_None; } } Py_INCREF(result); return result; } static int __Pyx_CyFunction_set_annotations(__pyx_CyFunctionObject *op, PyObject* value, CYTHON_UNUSED void *context) { PyObject* tmp; if (!value || value == Py_None) { value = NULL; } else if (!PyDict_Check(value)) { PyErr_SetString(PyExc_TypeError, "__annotations__ must be set to a dict object"); return -1; } Py_XINCREF(value); tmp = op->func_annotations; op->func_annotations = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_annotations(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = op->func_annotations; if (unlikely(!result)) { result = PyDict_New(); if (unlikely(!result)) return NULL; op->func_annotations = result; } Py_INCREF(result); return result; } static PyGetSetDef __pyx_CyFunction_getsets[] = { {(char *) "func_doc", (getter)__Pyx_CyFunction_get_doc, (setter)__Pyx_CyFunction_set_doc, 0, 0}, {(char *) "__doc__", (getter)__Pyx_CyFunction_get_doc, (setter)__Pyx_CyFunction_set_doc, 0, 0}, {(char *) "func_name", (getter)__Pyx_CyFunction_get_name, (setter)__Pyx_CyFunction_set_name, 0, 0}, {(char *) "__name__", (getter)__Pyx_CyFunction_get_name, (setter)__Pyx_CyFunction_set_name, 0, 0}, {(char *) "__qualname__", (getter)__Pyx_CyFunction_get_qualname, (setter)__Pyx_CyFunction_set_qualname, 0, 0}, {(char *) "__self__", (getter)__Pyx_CyFunction_get_self, 0, 0, 0}, {(char *) "func_dict", (getter)__Pyx_CyFunction_get_dict, (setter)__Pyx_CyFunction_set_dict, 0, 0}, {(char *) "__dict__", (getter)__Pyx_CyFunction_get_dict, (setter)__Pyx_CyFunction_set_dict, 0, 0}, {(char *) "func_globals", (getter)__Pyx_CyFunction_get_globals, 0, 0, 0}, {(char *) "__globals__", (getter)__Pyx_CyFunction_get_globals, 0, 0, 0}, {(char *) "func_closure", (getter)__Pyx_CyFunction_get_closure, 0, 0, 0}, {(char *) "__closure__", (getter)__Pyx_CyFunction_get_closure, 0, 0, 0}, {(char *) "func_code", (getter)__Pyx_CyFunction_get_code, 0, 0, 0}, {(char *) "__code__", (getter)__Pyx_CyFunction_get_code, 0, 0, 0}, {(char *) "func_defaults", (getter)__Pyx_CyFunction_get_defaults, (setter)__Pyx_CyFunction_set_defaults, 0, 0}, {(char *) "__defaults__", (getter)__Pyx_CyFunction_get_defaults, (setter)__Pyx_CyFunction_set_defaults, 0, 0}, {(char *) "__kwdefaults__", (getter)__Pyx_CyFunction_get_kwdefaults, (setter)__Pyx_CyFunction_set_kwdefaults, 0, 0}, {(char *) "__annotations__", (getter)__Pyx_CyFunction_get_annotations, (setter)__Pyx_CyFunction_set_annotations, 0, 0}, {0, 0, 0, 0, 0} }; static PyMemberDef __pyx_CyFunction_members[] = { {(char *) "__module__", T_OBJECT, offsetof(PyCFunctionObject, m_module), PY_WRITE_RESTRICTED, 0}, {0, 0, 0, 0, 0} }; static PyObject * __Pyx_CyFunction_reduce(__pyx_CyFunctionObject *m, CYTHON_UNUSED PyObject *args) { #if PY_MAJOR_VERSION >= 3 return PyUnicode_FromString(m->func.m_ml->ml_name); #else return PyString_FromString(m->func.m_ml->ml_name); #endif } static PyMethodDef __pyx_CyFunction_methods[] = { {"__reduce__", (PyCFunction)__Pyx_CyFunction_reduce, METH_VARARGS, 0}, {0, 0, 0, 0} }; #if PY_VERSION_HEX < 0x030500A0 #define __Pyx_CyFunction_weakreflist(cyfunc) ((cyfunc)->func_weakreflist) #else #define __Pyx_CyFunction_weakreflist(cyfunc) ((cyfunc)->func.m_weakreflist) #endif static PyObject *__Pyx_CyFunction_Init(__pyx_CyFunctionObject *op, PyMethodDef *ml, int flags, PyObject* qualname, PyObject *closure, PyObject *module, PyObject* globals, PyObject* code) { if (unlikely(op == NULL)) return NULL; op->flags = flags; __Pyx_CyFunction_weakreflist(op) = NULL; op->func.m_ml = ml; op->func.m_self = (PyObject *) op; Py_XINCREF(closure); op->func_closure = closure; Py_XINCREF(module); op->func.m_module = module; op->func_dict = NULL; op->func_name = NULL; Py_INCREF(qualname); op->func_qualname = qualname; op->func_doc = NULL; op->func_classobj = NULL; op->func_globals = globals; Py_INCREF(op->func_globals); Py_XINCREF(code); op->func_code = code; op->defaults_pyobjects = 0; op->defaults_size = 0; op->defaults = NULL; op->defaults_tuple = NULL; op->defaults_kwdict = NULL; op->defaults_getter = NULL; op->func_annotations = NULL; return (PyObject *) op; } static int __Pyx_CyFunction_clear(__pyx_CyFunctionObject *m) { Py_CLEAR(m->func_closure); Py_CLEAR(m->func.m_module); Py_CLEAR(m->func_dict); Py_CLEAR(m->func_name); Py_CLEAR(m->func_qualname); Py_CLEAR(m->func_doc); Py_CLEAR(m->func_globals); Py_CLEAR(m->func_code); Py_CLEAR(m->func_classobj); Py_CLEAR(m->defaults_tuple); Py_CLEAR(m->defaults_kwdict); Py_CLEAR(m->func_annotations); if (m->defaults) { PyObject **pydefaults = __Pyx_CyFunction_Defaults(PyObject *, m); int i; for (i = 0; i < m->defaults_pyobjects; i++) Py_XDECREF(pydefaults[i]); PyObject_Free(m->defaults); m->defaults = NULL; } return 0; } static void __Pyx__CyFunction_dealloc(__pyx_CyFunctionObject *m) { if (__Pyx_CyFunction_weakreflist(m) != NULL) PyObject_ClearWeakRefs((PyObject *) m); __Pyx_CyFunction_clear(m); PyObject_GC_Del(m); } static void __Pyx_CyFunction_dealloc(__pyx_CyFunctionObject *m) { PyObject_GC_UnTrack(m); __Pyx__CyFunction_dealloc(m); } static int __Pyx_CyFunction_traverse(__pyx_CyFunctionObject *m, visitproc visit, void *arg) { Py_VISIT(m->func_closure); Py_VISIT(m->func.m_module); Py_VISIT(m->func_dict); Py_VISIT(m->func_name); Py_VISIT(m->func_qualname); Py_VISIT(m->func_doc); Py_VISIT(m->func_globals); Py_VISIT(m->func_code); Py_VISIT(m->func_classobj); Py_VISIT(m->defaults_tuple); Py_VISIT(m->defaults_kwdict); if (m->defaults) { PyObject **pydefaults = __Pyx_CyFunction_Defaults(PyObject *, m); int i; for (i = 0; i < m->defaults_pyobjects; i++) Py_VISIT(pydefaults[i]); } return 0; } static PyObject *__Pyx_CyFunction_descr_get(PyObject *func, PyObject *obj, PyObject *type) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; if (m->flags & __Pyx_CYFUNCTION_STATICMETHOD) { Py_INCREF(func); return func; } if (m->flags & __Pyx_CYFUNCTION_CLASSMETHOD) { if (type == NULL) type = (PyObject *)(Py_TYPE(obj)); return __Pyx_PyMethod_New(func, type, (PyObject *)(Py_TYPE(type))); } if (obj == Py_None) obj = NULL; return __Pyx_PyMethod_New(func, obj, type); } static PyObject* __Pyx_CyFunction_repr(__pyx_CyFunctionObject *op) { #if PY_MAJOR_VERSION >= 3 return PyUnicode_FromFormat("<cyfunction %U at %p>", op->func_qualname, (void *)op); #else return PyString_FromFormat("<cyfunction %s at %p>", PyString_AsString(op->func_qualname), (void *)op); #endif } static PyObject * __Pyx_CyFunction_CallMethod(PyObject *func, PyObject *self, PyObject *arg, PyObject *kw) { PyCFunctionObject* f = (PyCFunctionObject*)func; PyCFunction meth = f->m_ml->ml_meth; Py_ssize_t size; switch (f->m_ml->ml_flags & (METH_VARARGS | METH_KEYWORDS | METH_NOARGS | METH_O)) { case METH_VARARGS: if (likely(kw == NULL || PyDict_Size(kw) == 0)) return (*meth)(self, arg); break; case METH_VARARGS | METH_KEYWORDS: return (*(PyCFunctionWithKeywords)(void*)meth)(self, arg, kw); case METH_NOARGS: if (likely(kw == NULL || PyDict_Size(kw) == 0)) { size = PyTuple_GET_SIZE(arg); if (likely(size == 0)) return (*meth)(self, NULL); PyErr_Format(PyExc_TypeError, "%.200s() takes no arguments (%" CYTHON_FORMAT_SSIZE_T "d given)", f->m_ml->ml_name, size); return NULL; } break; case METH_O: if (likely(kw == NULL || PyDict_Size(kw) == 0)) { size = PyTuple_GET_SIZE(arg); if (likely(size == 1)) { PyObject *result, *arg0; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS arg0 = PyTuple_GET_ITEM(arg, 0); #else arg0 = PySequence_ITEM(arg, 0); if (unlikely(!arg0)) return NULL; #endif result = (*meth)(self, arg0); #if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS) Py_DECREF(arg0); #endif return result; } PyErr_Format(PyExc_TypeError, "%.200s() takes exactly one argument (%" CYTHON_FORMAT_SSIZE_T "d given)", f->m_ml->ml_name, size); return NULL; } break; default: PyErr_SetString(PyExc_SystemError, "Bad call flags in " "__Pyx_CyFunction_Call. METH_OLDARGS is no " "longer supported!"); return NULL; } PyErr_Format(PyExc_TypeError, "%.200s() takes no keyword arguments", f->m_ml->ml_name); return NULL; } static CYTHON_INLINE PyObject *__Pyx_CyFunction_Call(PyObject *func, PyObject *arg, PyObject *kw) { return __Pyx_CyFunction_CallMethod(func, ((PyCFunctionObject*)func)->m_self, arg, kw); } static PyObject *__Pyx_CyFunction_CallAsMethod(PyObject *func, PyObject *args, PyObject *kw) { PyObject *result; __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *) func; if ((cyfunc->flags & __Pyx_CYFUNCTION_CCLASS) && !(cyfunc->flags & __Pyx_CYFUNCTION_STATICMETHOD)) { Py_ssize_t argc; PyObject *new_args; PyObject *self; argc = PyTuple_GET_SIZE(args); new_args = PyTuple_GetSlice(args, 1, argc); if (unlikely(!new_args)) return NULL; self = PyTuple_GetItem(args, 0); if (unlikely(!self)) { Py_DECREF(new_args); return NULL; } result = __Pyx_CyFunction_CallMethod(func, self, new_args, kw); Py_DECREF(new_args); } else { result = __Pyx_CyFunction_Call(func, args, kw); } return result; } static PyTypeObject __pyx_CyFunctionType_type = { PyVarObject_HEAD_INIT(0, 0) "cython_function_or_method", sizeof(__pyx_CyFunctionObject), 0, (destructor) __Pyx_CyFunction_dealloc, 0, 0, 0, #if PY_MAJOR_VERSION < 3 0, #else 0, #endif (reprfunc) __Pyx_CyFunction_repr, 0, 0, 0, 0, __Pyx_CyFunction_CallAsMethod, 0, 0, 0, 0, Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, 0, (traverseproc) __Pyx_CyFunction_traverse, (inquiry) __Pyx_CyFunction_clear, 0, #if PY_VERSION_HEX < 0x030500A0 offsetof(__pyx_CyFunctionObject, func_weakreflist), #else offsetof(PyCFunctionObject, m_weakreflist), #endif 0, 0, __pyx_CyFunction_methods, __pyx_CyFunction_members, __pyx_CyFunction_getsets, 0, 0, __Pyx_CyFunction_descr_get, 0, offsetof(__pyx_CyFunctionObject, func_dict), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, #if PY_VERSION_HEX >= 0x030400a1 0, #endif #if PY_VERSION_HEX >= 0x030800b1 0, #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, #endif }; static int __pyx_CyFunction_init(void) { __pyx_CyFunctionType = __Pyx_FetchCommonType(&__pyx_CyFunctionType_type); if (unlikely(__pyx_CyFunctionType == NULL)) { return -1; } return 0; } static CYTHON_INLINE void *__Pyx_CyFunction_InitDefaults(PyObject *func, size_t size, int pyobjects) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->defaults = PyObject_Malloc(size); if (unlikely(!m->defaults)) return PyErr_NoMemory(); memset(m->defaults, 0, size); m->defaults_pyobjects = pyobjects; m->defaults_size = size; return m->defaults; } static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsTuple(PyObject *func, PyObject *tuple) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->defaults_tuple = tuple; Py_INCREF(tuple); } static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsKwDict(PyObject *func, PyObject *dict) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->defaults_kwdict = dict; Py_INCREF(dict); } static CYTHON_INLINE void __Pyx_CyFunction_SetAnnotationsDict(PyObject *func, PyObject *dict) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->func_annotations = dict; Py_INCREF(dict); } /* CythonFunction */ static PyObject *__Pyx_CyFunction_New(PyMethodDef *ml, int flags, PyObject* qualname, PyObject *closure, PyObject *module, PyObject* globals, PyObject* code) { PyObject *op = __Pyx_CyFunction_Init( PyObject_GC_New(__pyx_CyFunctionObject, __pyx_CyFunctionType), ml, flags, qualname, closure, module, globals, code ); if (likely(op)) { PyObject_GC_Track(op); } return op; } /* Py3ClassCreate */ static PyObject *__Pyx_Py3MetaclassPrepare(PyObject *metaclass, PyObject *bases, PyObject *name, PyObject *qualname, PyObject *mkw, PyObject *modname, PyObject *doc) { PyObject *ns; if (metaclass) { PyObject *prep = __Pyx_PyObject_GetAttrStr(metaclass, __pyx_n_s_prepare); if (prep) { PyObject *pargs = PyTuple_Pack(2, name, bases); if (unlikely(!pargs)) { Py_DECREF(prep); return NULL; } ns = PyObject_Call(prep, pargs, mkw); Py_DECREF(prep); Py_DECREF(pargs); } else { if (unlikely(!PyErr_ExceptionMatches(PyExc_AttributeError))) return NULL; PyErr_Clear(); ns = PyDict_New(); } } else { ns = PyDict_New(); } if (unlikely(!ns)) return NULL; if (unlikely(PyObject_SetItem(ns, __pyx_n_s_module, modname) < 0)) goto bad; if (unlikely(PyObject_SetItem(ns, __pyx_n_s_qualname, qualname) < 0)) goto bad; if (unlikely(doc && PyObject_SetItem(ns, __pyx_n_s_doc, doc) < 0)) goto bad; return ns; bad: Py_DECREF(ns); return NULL; } static PyObject *__Pyx_Py3ClassCreate(PyObject *metaclass, PyObject *name, PyObject *bases, PyObject *dict, PyObject *mkw, int calculate_metaclass, int allow_py2_metaclass) { PyObject *result, *margs; PyObject *owned_metaclass = NULL; if (allow_py2_metaclass) { owned_metaclass = PyObject_GetItem(dict, __pyx_n_s_metaclass); if (owned_metaclass) { metaclass = owned_metaclass; } else if (likely(PyErr_ExceptionMatches(PyExc_KeyError))) { PyErr_Clear(); } else { return NULL; } } if (calculate_metaclass && (!metaclass || PyType_Check(metaclass))) { metaclass = __Pyx_CalculateMetaclass((PyTypeObject*) metaclass, bases); Py_XDECREF(owned_metaclass); if (unlikely(!metaclass)) return NULL; owned_metaclass = metaclass; } margs = PyTuple_Pack(3, name, bases, dict); if (unlikely(!margs)) { result = NULL; } else { result = PyObject_Call(metaclass, margs, mkw); Py_DECREF(margs); } Py_XDECREF(owned_metaclass); return result; } /* CLineInTraceback */ #ifndef CYTHON_CLINE_IN_TRACEBACK static int __Pyx_CLineForTraceback(CYTHON_NCP_UNUSED PyThreadState *tstate, int c_line) { PyObject *use_cline; PyObject *ptype, *pvalue, *ptraceback; #if CYTHON_COMPILING_IN_CPYTHON PyObject **cython_runtime_dict; #endif if (unlikely(!__pyx_cython_runtime)) { return c_line; } __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); #if CYTHON_COMPILING_IN_CPYTHON cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); if (likely(cython_runtime_dict)) { __PYX_PY_DICT_LOOKUP_IF_MODIFIED( use_cline, *cython_runtime_dict, __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) } else #endif { PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); if (use_cline_obj) { use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; Py_DECREF(use_cline_obj); } else { PyErr_Clear(); use_cline = NULL; } } if (!use_cline) { c_line = 0; PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); } else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { c_line = 0; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); return c_line; } #endif /* CodeObjectCache */ static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; } while (start < end) { mid = start + (end - start) / 2; if (code_line < entries[mid].code_line) { end = mid; } else if (code_line > entries[mid].code_line) { start = mid + 1; } else { return mid; } } if (code_line <= entries[mid].code_line) { return mid; } else { return mid + 1; } } static PyCodeObject *__pyx_find_code_object(int code_line) { PyCodeObject* code_object; int pos; if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { return NULL; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { return NULL; } code_object = __pyx_code_cache.entries[pos].code_object; Py_INCREF(code_object); return code_object; } static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { int pos, i; __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; if (unlikely(!code_line)) { return; } if (unlikely(!entries)) { entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); if (likely(entries)) { __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = 64; __pyx_code_cache.count = 1; entries[0].code_line = code_line; entries[0].code_object = code_object; Py_INCREF(code_object); } return; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { PyCodeObject* tmp = entries[pos].code_object; entries[pos].code_object = code_object; Py_DECREF(tmp); return; } if (__pyx_code_cache.count == __pyx_code_cache.max_count) { int new_max = __pyx_code_cache.max_count + 64; entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( __pyx_code_cache.entries, ((size_t)new_max) * sizeof(__Pyx_CodeObjectCacheEntry)); if (unlikely(!entries)) { return; } __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = new_max; } for (i=__pyx_code_cache.count; i>pos; i--) { entries[i] = entries[i-1]; } entries[pos].code_line = code_line; entries[pos].code_object = code_object; __pyx_code_cache.count++; Py_INCREF(code_object); } /* AddTraceback */ #include "compile.h" #include "frameobject.h" #include "traceback.h" static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyObject *py_srcfile = 0; PyObject *py_funcname = 0; #if PY_MAJOR_VERSION < 3 py_srcfile = PyString_FromString(filename); #else py_srcfile = PyUnicode_FromString(filename); #endif if (!py_srcfile) goto bad; if (c_line) { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); #else py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); #endif } else { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromString(funcname); #else py_funcname = PyUnicode_FromString(funcname); #endif } if (!py_funcname) goto bad; py_code = __Pyx_PyCode_New( 0, 0, 0, 0, 0, __pyx_empty_bytes, /*PyObject *code,*/ __pyx_empty_tuple, /*PyObject *consts,*/ __pyx_empty_tuple, /*PyObject *names,*/ __pyx_empty_tuple, /*PyObject *varnames,*/ __pyx_empty_tuple, /*PyObject *freevars,*/ __pyx_empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ py_line, __pyx_empty_bytes /*PyObject *lnotab*/ ); Py_DECREF(py_srcfile); Py_DECREF(py_funcname); return py_code; bad: Py_XDECREF(py_srcfile); Py_XDECREF(py_funcname); return NULL; } static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; PyThreadState *tstate = __Pyx_PyThreadState_Current; if (c_line) { c_line = __Pyx_CLineForTraceback(tstate, c_line); } py_code = __pyx_find_code_object(c_line ? -c_line : py_line); if (!py_code) { py_code = __Pyx_CreateCodeObjectForTraceback( funcname, c_line, py_line, filename); if (!py_code) goto bad; __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); } py_frame = PyFrame_New( tstate, /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ __pyx_d, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; __Pyx_PyFrame_SetLineNumber(py_frame, py_line); PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_code); Py_XDECREF(py_frame); } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(long) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(long) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(long) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(long), little, !is_unsigned); } } /* CIntFromPyVerify */ #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) #define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) #define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ {\ func_type value = func_value;\ if (sizeof(target_type) < sizeof(func_type)) {\ if (unlikely(value != (func_type) (target_type) value)) {\ func_type zero = 0;\ if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ return (target_type) -1;\ if (is_unsigned && unlikely(value < zero))\ goto raise_neg_overflow;\ else\ goto raise_overflow;\ }\ }\ return (target_type) value;\ } /* CIntFromPy */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (long) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) case -2: if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -3: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -4: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; } #endif if (sizeof(long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else long val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (long) -1; } } else { long val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (long) -1; val = __Pyx_PyInt_As_long(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to long"); return (long) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to long"); return (long) -1; } /* CIntFromPy */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(int) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (int) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (int) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(int) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) case -2: if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -3: if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -4: if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; } #endif if (sizeof(int) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else int val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (int) -1; } } else { int val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (int) -1; val = __Pyx_PyInt_As_int(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to int"); return (int) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int"); return (int) -1; } /* FastTypeChecks */ #if CYTHON_COMPILING_IN_CPYTHON static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { while (a) { a = a->tp_base; if (a == b) return 1; } return b == &PyBaseObject_Type; } static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { PyObject *mro; if (a == b) return 1; mro = a->tp_mro; if (likely(mro)) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) return 1; } return 0; } return __Pyx_InBases(a, b); } #if PY_MAJOR_VERSION == 2 static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { PyObject *exception, *value, *tb; int res; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&exception, &value, &tb); res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } if (!res) { res = PyObject_IsSubclass(err, exc_type2); if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } } __Pyx_ErrRestore(exception, value, tb); return res; } #else static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; if (!res) { res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); } return res; } #endif static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; assert(PyExceptionClass_Check(exc_type)); n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; i<n; i++) { if (exc_type == PyTuple_GET_ITEM(tuple, i)) return 1; } #endif for (i=0; i<n; i++) { PyObject *t = PyTuple_GET_ITEM(tuple, i); #if PY_MAJOR_VERSION < 3 if (likely(exc_type == t)) return 1; #endif if (likely(PyExceptionClass_Check(t))) { if (__Pyx_inner_PyErr_GivenExceptionMatches2(exc_type, NULL, t)) return 1; } else { } } return 0; } static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject* exc_type) { if (likely(err == exc_type)) return 1; if (likely(PyExceptionClass_Check(err))) { if (likely(PyExceptionClass_Check(exc_type))) { return __Pyx_inner_PyErr_GivenExceptionMatches2(err, NULL, exc_type); } else if (likely(PyTuple_Check(exc_type))) { return __Pyx_PyErr_GivenExceptionMatchesTuple(err, exc_type); } else { } } return PyErr_GivenExceptionMatches(err, exc_type); } static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *exc_type1, PyObject *exc_type2) { assert(PyExceptionClass_Check(exc_type1)); assert(PyExceptionClass_Check(exc_type2)); if (likely(err == exc_type1 || err == exc_type2)) return 1; if (likely(PyExceptionClass_Check(err))) { return __Pyx_inner_PyErr_GivenExceptionMatches2(err, exc_type1, exc_type2); } return (PyErr_GivenExceptionMatches(err, exc_type1) || PyErr_GivenExceptionMatches(err, exc_type2)); } #endif /* CheckBinaryVersion */ static int __Pyx_check_binary_version(void) { char ctversion[4], rtversion[4]; PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion()); if (ctversion[0] != rtversion[0] || ctversion[2] != rtversion[2]) { char message[200]; PyOS_snprintf(message, sizeof(message), "compiletime version %s of module '%.100s' " "does not match runtime version %s", ctversion, __Pyx_MODULE_NAME, rtversion); return PyErr_WarnEx(NULL, message, 1); } return 0; } /* InitStrings */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); } else if (t->intern) { *t->p = PyString_InternFromString(t->s); } else { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); } #else if (t->is_unicode | t->is_str) { if (t->intern) { *t->p = PyUnicode_InternFromString(t->s); } else if (t->encoding) { *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); } else { *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); } } else { *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); } #endif if (!*t->p) return -1; if (PyObject_Hash(*t->p) == -1) return -1; ++t; } return 0; } static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); } static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { Py_ssize_t ignore; return __Pyx_PyObject_AsStringAndSize(o, &ignore); } #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT #if !CYTHON_PEP393_ENABLED static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { char* defenc_c; PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); if (!defenc) return NULL; defenc_c = PyBytes_AS_STRING(defenc); #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII { char* end = defenc_c + PyBytes_GET_SIZE(defenc); char* c; for (c = defenc_c; c < end; c++) { if ((unsigned char) (*c) >= 128) { PyUnicode_AsASCIIString(o); return NULL; } } } #endif *length = PyBytes_GET_SIZE(defenc); return defenc_c; } #else static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII if (likely(PyUnicode_IS_ASCII(o))) { *length = PyUnicode_GET_LENGTH(o); return PyUnicode_AsUTF8(o); } else { PyUnicode_AsASCIIString(o); return NULL; } #else return PyUnicode_AsUTF8AndSize(o, length); #endif } #endif #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT if ( #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII __Pyx_sys_getdefaultencoding_not_ascii && #endif PyUnicode_Check(o)) { return __Pyx_PyUnicode_AsStringAndSize(o, length); } else #endif #if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) if (PyByteArray_Check(o)) { *length = PyByteArray_GET_SIZE(o); return PyByteArray_AS_STRING(o); } else #endif { char* result; int r = PyBytes_AsStringAndSize(o, &result, length); if (unlikely(r < 0)) { return NULL; } else { return result; } } } static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { int is_true = x == Py_True; if (is_true | (x == Py_False) | (x == Py_None)) return is_true; else return PyObject_IsTrue(x); } static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { int retval; if (unlikely(!x)) return -1; retval = __Pyx_PyObject_IsTrue(x); Py_DECREF(x); return retval; } static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { #if PY_MAJOR_VERSION >= 3 if (PyLong_Check(result)) { if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__int__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(result)->tp_name)) { Py_DECREF(result); return NULL; } return result; } #endif PyErr_Format(PyExc_TypeError, "__%.4s__ returned non-%.4s (type %.200s)", type_name, type_name, Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { #if CYTHON_USE_TYPE_SLOTS PyNumberMethods *m; #endif const char *name = NULL; PyObject *res = NULL; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x) || PyLong_Check(x))) #else if (likely(PyLong_Check(x))) #endif return __Pyx_NewRef(x); #if CYTHON_USE_TYPE_SLOTS m = Py_TYPE(x)->tp_as_number; #if PY_MAJOR_VERSION < 3 if (m && m->nb_int) { name = "int"; res = m->nb_int(x); } else if (m && m->nb_long) { name = "long"; res = m->nb_long(x); } #else if (likely(m && m->nb_int)) { name = "int"; res = m->nb_int(x); } #endif #else if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { res = PyNumber_Int(x); } #endif if (likely(res)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { #else if (unlikely(!PyLong_CheckExact(res))) { #endif return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); } } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "an integer is required"); } return res; } static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { Py_ssize_t ival; PyObject *x; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(b))) { if (sizeof(Py_ssize_t) >= sizeof(long)) return PyInt_AS_LONG(b); else return PyInt_AsSsize_t(b); } #endif if (likely(PyLong_CheckExact(b))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)b)->ob_digit; const Py_ssize_t size = Py_SIZE(b); if (likely(__Pyx_sst_abs(size) <= 1)) { ival = likely(size) ? digits[0] : 0; if (size == -1) ival = -ival; return ival; } else { switch (size) { case 2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; } } #endif return PyLong_AsSsize_t(b); } x = PyNumber_Index(b); if (!x) return -1; ival = PyInt_AsSsize_t(x); Py_DECREF(x); return ival; } static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); } static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { return PyInt_FromSize_t(ival); } #endif /* Py_PYTHON_H */