/* * Copyright 2013 Google Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ /* * Author: ncardwell@google.com (Neal Cardwell) * * A module to execute a system call from a test script. */ #include "run_system_call.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "logging.h" #include "run.h" #include "script.h" static int to_live_fd(struct state *state, int script_fd, int *live_fd, char **error); /* Provide a wrapper for the Linux gettid() system call (glibc does not). */ static pid_t gettid(void) { #ifdef linux return syscall(__NR_gettid); #endif #if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) /* TODO(ncardwell): Implement me. XXX */ return 0; #endif /* defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__)*/ } /* Read a whole file into the given buffer of the given length. */ static void read_whole_file(const char *path, char *buffer, int max_bytes) { int fd = open(path, O_RDONLY); if (fd < 0) die_perror("open"); int bytes = read(fd, buffer, max_bytes); if (bytes < 0) die_perror("read"); else if (bytes == max_bytes) die("%s file too large to read\n", path); if (close(fd) < 0) die_perror("close"); } /* Return true iff the given thread is sleeping. */ static bool is_thread_sleeping(pid_t process_id, pid_t thread_id) { /* Read the entire thread state file, using the buffer size ps uses. */ char *proc_path = NULL; asprintf(&proc_path, "/proc/%d/task/%d/stat", process_id, thread_id); const int STATE_BUFFER_BYTES = 1023; char *state = calloc(STATE_BUFFER_BYTES, 1); read_whole_file(proc_path, state, STATE_BUFFER_BYTES - 1); state[STATE_BUFFER_BYTES - 1] = '\0'; /* Parse the thread state from the third space-delimited field. */ const int THREAD_STATE_INDEX = 3; const char *field = state; int i = 0; for (i = 0; i < THREAD_STATE_INDEX - 1; i++) { field = strchr(field, ' '); if (field == NULL) die("unable to parse %s\n", proc_path); ++field; } bool is_sleeping = (field[0] == 'S'); free(proc_path); free(state); return is_sleeping; } /* Returns number of expressions in the list. */ static int expression_list_length(struct expression_list *list) { int count = 0; while (list != NULL) { list = list->next; ++count; } return count; } static int get_arg_count(struct expression_list *args) { return expression_list_length(args); } /* Verify that the expression list has the expected number of * expressions. Returns STATUS_OK on success; on failure returns * STATUS_ERR and sets error message. */ static int check_arg_count(struct expression_list *args, int expected, char **error) { assert(expected >= 0); int actual = get_arg_count(args); if (actual != expected) { asprintf(error, "Expected %d args but got %d", expected, actual); return STATUS_ERR; } return STATUS_OK; } /* Returns the argument with the given index. Returns the argument on * success; on failure returns NULL and sets error message. */ static struct expression *get_arg(struct expression_list *args, int index, char **error) { assert(index >= 0); int current = 0; while ((args != NULL) && (current < index)) { args = args->next; ++current; } if ((args != NULL) && (current == index)) { return args->expression; } else { asprintf(error, "Argument list too short"); return NULL; } } /* Return STATUS_OK if the expression is of the expected * type. Otherwise fill in the error with a human-readable error * message about the mismatch and return STATUS_ERR. */ static int check_type(struct expression *expression, enum expression_t expected_type, char **error) { if (expression->type == expected_type) { return STATUS_OK; } else { asprintf(error, "Bad type; actual: %s expected: %s", expression_type_to_string(expression->type), expression_type_to_string(expected_type)); return STATUS_ERR; } } /* Sets the value from the expression argument, checking that it is a * valid s32 or u32, and matches the expected type. Returns STATUS_OK on * success; on failure returns STATUS_ERR and sets error message. */ static int get_s32(struct expression *expression, s32 *value, char **error) { if (check_type(expression, EXPR_INTEGER, error)) return STATUS_ERR; if ((expression->value.num > UINT_MAX) || (expression->value.num < INT_MIN)) { asprintf(error, "Value out of range for 32-bit integer: %lld", expression->value.num); return STATUS_ERR; } *value = expression->value.num; return STATUS_OK; } /* Return the value of the argument with the given index, and verify * that it has the expected type. */ static int s32_arg(struct expression_list *args, int index, s32 *value, char **error) { struct expression *expression = get_arg(args, index, error); if (expression == NULL) return STATUS_ERR; return get_s32(expression, value, error); } /* Return the value of the argument with the given index, and verify * that it has the expected type: a list with a single integer. */ static int s32_bracketed_arg(struct expression_list *args, int index, s32 *value, char **error) { struct expression_list *list; struct expression *expression; expression = get_arg(args, index, error); if (expression == NULL) return STATUS_ERR; if (check_type(expression, EXPR_LIST, error)) return STATUS_ERR; list = expression->value.list; if (expression_list_length(list) != 1) { asprintf(error, "Expected [] but got multiple elements"); return STATUS_ERR; } return get_s32(list->expression, value, error); } /* Return STATUS_OK iff the argument with the given index is an * ellipsis (...). */ static int ellipsis_arg(struct expression_list *args, int index, char **error) { struct expression *expression = get_arg(args, index, error); if (expression == NULL) return STATUS_ERR; if (check_type(expression, EXPR_ELLIPSIS, error)) return STATUS_ERR; return STATUS_OK; } /* Free all the space used by the given iovec. */ static void iovec_free(struct iovec *iov, size_t iov_len) { int i; if (iov == NULL) return; for (i = 0; i < iov_len; ++i) free(iov[i].iov_base); free(iov); } /* Allocate and fill in an iovec described by the given expression. * Return STATUS_OK if the expression is a valid iovec. Otherwise * fill in the error with a human-readable error message and return * STATUS_ERR. */ static int iovec_new(struct expression *expression, struct iovec **iov_ptr, size_t *iov_len_ptr, char **error) { int status = STATUS_ERR; int i; struct expression_list *list; /* input expression from script */ size_t iov_len = 0; struct iovec *iov = NULL; /* live output */ if (check_type(expression, EXPR_LIST, error)) goto error_out; list = expression->value.list; iov_len = expression_list_length(list); iov = calloc(iov_len, sizeof(struct iovec)); for (i = 0; i < iov_len; ++i, list = list->next) { size_t len; struct iovec_expr *iov_expr; if (check_type(list->expression, EXPR_IOVEC, error)) goto error_out; iov_expr = list->expression->value.iovec; assert(iov_expr->iov_base->type == EXPR_ELLIPSIS); assert(iov_expr->iov_len->type == EXPR_INTEGER); len = iov_expr->iov_len->value.num; iov[i].iov_len = len; iov[i].iov_base = calloc(len, 1); } status = STATUS_OK; error_out: *iov_ptr = iov; *iov_len_ptr = iov_len; return status; } /* Free all the space used by the given msghdr. */ static void msghdr_free(struct msghdr *msg, size_t iov_len) { if (msg == NULL) return; free(msg->msg_name); iovec_free(msg->msg_iov, iov_len); free(msg->msg_control); } /* Allocate and fill in a msghdr described by the given expression. */ static int msghdr_new(struct expression *expression, struct msghdr **msg_ptr, size_t *iov_len_ptr, char **error) { int status = STATUS_ERR; s32 s32_val = 0; struct msghdr_expr *msg_expr; /* input expression from script */ socklen_t name_len = sizeof(struct sockaddr_storage); struct msghdr *msg = NULL; /* live output */ if (check_type(expression, EXPR_MSGHDR, error)) goto error_out; msg_expr = expression->value.msghdr; msg = calloc(1, sizeof(struct msghdr)); if (msg_expr->msg_name != NULL) { assert(msg_expr->msg_name->type == EXPR_ELLIPSIS); msg->msg_name = calloc(1, name_len); } if (msg_expr->msg_namelen != NULL) { assert(msg_expr->msg_namelen->type == EXPR_ELLIPSIS); msg->msg_namelen = name_len; } if (msg_expr->msg_iov != NULL) { if (iovec_new(msg_expr->msg_iov, &msg->msg_iov, iov_len_ptr, error)) goto error_out; } if (msg_expr->msg_iovlen != NULL) { if (get_s32(msg_expr->msg_iovlen, &s32_val, error)) goto error_out; msg->msg_iovlen = s32_val; } if (msg->msg_iovlen != *iov_len_ptr) { asprintf(error, "msg_iovlen %d does not match %d-element iovec array", (int)msg->msg_iovlen, (int)*iov_len_ptr); goto error_out; } if (msg_expr->msg_flags != NULL) { if (get_s32(msg_expr->msg_flags, &s32_val, error)) goto error_out; msg->msg_flags = s32_val; } /* TODO(ncardwell): msg_control, msg_controllen */ status = STATUS_OK; error_out: *msg_ptr = msg; return status; } /* Allocate and fill in a pollfds array described by the given * fds_expression. Return STATUS_OK if the expression is a valid * pollfd struct array. Otherwise fill in the error with a * human-readable error message and return STATUS_ERR. */ static int pollfds_new(struct state *state, struct expression *fds_expression, struct pollfd **fds_ptr, size_t *fds_len_ptr, char **error) { int status = STATUS_ERR; int i; struct expression_list *list; /* input expression from script */ size_t fds_len = 0; struct pollfd *fds = NULL; /* live output */ if (check_type(fds_expression, EXPR_LIST, error)) goto error_out; list = fds_expression->value.list; fds_len = expression_list_length(list); fds = calloc(fds_len, sizeof(struct pollfd)); for (i = 0; i < fds_len; ++i, list = list->next) { struct pollfd_expr *fds_expr; if (check_type(list->expression, EXPR_POLLFD, error)) goto error_out; fds_expr = list->expression->value.pollfd; if (check_type(fds_expr->fd, EXPR_INTEGER, error)) goto error_out; if (check_type(fds_expr->events, EXPR_INTEGER, error)) goto error_out; if (check_type(fds_expr->revents, EXPR_INTEGER, error)) goto error_out; if (to_live_fd(state, fds_expr->fd->value.num, &fds[i].fd, error)) goto error_out; fds[i].events = fds_expr->events->value.num; fds[i].revents = fds_expr->revents->value.num; } status = STATUS_OK; error_out: *fds_ptr = fds; *fds_len_ptr = fds_len; return status; } /* Check the results of a poll() system call: check that the output * revents fields in the fds array match those in the script. Return * STATUS_OK if they match. Otherwise fill in the error with a * human-readable error message and return STATUS_ERR. */ static int pollfds_check(struct expression *fds_expression, const struct pollfd *fds, size_t fds_len, char **error) { struct expression_list *list; /* input expression from script */ int i; assert(fds_expression->type == EXPR_LIST); list = fds_expression->value.list; for (i = 0; i < fds_len; ++i, list = list->next) { struct pollfd_expr *fds_expr; int expected_revents, actual_revents; assert(list->expression->type == EXPR_POLLFD); fds_expr = list->expression->value.pollfd; assert(fds_expr->fd->type == EXPR_INTEGER); assert(fds_expr->events->type == EXPR_INTEGER); assert(fds_expr->revents->type == EXPR_INTEGER); expected_revents = fds_expr->revents->value.num; actual_revents = fds[i].revents; if (actual_revents != expected_revents) { char *expected_revents_string = flags_to_string(poll_flags, expected_revents); char *actual_revents_string = flags_to_string(poll_flags, actual_revents); asprintf(error, "Expected revents of %s but got %s " "for pollfd %d", expected_revents_string, actual_revents_string, i); free(expected_revents_string); free(actual_revents_string); return STATUS_ERR; } } return STATUS_OK; } /* For blocking system calls, give up the global lock and wake the * main thread so it can continue test execution. Callers should call * this function immediately before calling a system call in order to * release the global lock immediately before a system call that the * script expects to block. */ static void begin_syscall(struct state *state, struct syscall_spec *syscall) { if (is_blocking_syscall(syscall)) { assert(state->syscalls->state == SYSCALL_ENQUEUED); state->syscalls->state = SYSCALL_RUNNING; run_unlock(state); DEBUGP("syscall thread: begin_syscall signals dequeued\n"); if (pthread_cond_signal(&state->syscalls->dequeued) != 0) die_perror("pthread_cond_signal"); } } /* Verify that the system call returned the expected result code and * errno value. Returns STATUS_OK on success; on failure returns * STATUS_ERR and sets error message. Callers should call this function * immediately after returning from a system call in order to immediately * re-grab the global lock if this is a blocking call. */ enum result_check_t { CHECK_EXACT, /* check that result matches exactly */ CHECK_NON_NEGATIVE, /* check that result is non-negative */ }; static int end_syscall(struct state *state, struct syscall_spec *syscall, enum result_check_t mode, int actual, char **error) { int actual_errno = errno; /* in case we clobber this later */ s32 expected = 0; /* For blocking calls, advance state and reacquire the global lock. */ if (is_blocking_syscall(syscall)) { s64 live_end_usecs = now_usecs(); DEBUGP("syscall thread: end_syscall grabs lock\n"); run_lock(state); state->syscalls->live_end_usecs = live_end_usecs; assert(state->syscalls->state == SYSCALL_RUNNING); state->syscalls->state = SYSCALL_DONE; } /* Compare actual vs expected return value */ if (get_s32(syscall->result, &expected, error)) return STATUS_ERR; if (mode == CHECK_NON_NEGATIVE) { if (actual < 0) { asprintf(error, "Expected non-negative result but got %d " "with errno %d (%s)", actual, actual_errno, strerror(actual_errno)); return STATUS_ERR; } } else if (mode == CHECK_EXACT) { if (actual != expected) { asprintf(error, "Expected result %d but got %d " "with errno %d (%s)", expected, actual, actual_errno, strerror(actual_errno)); return STATUS_ERR; } } else { assert(!"bad mode"); } /* Compare actual vs expected errno */ if (syscall->error != NULL) { s64 expected_errno = 0; if (symbol_to_int(syscall->error->errno_macro, &expected_errno, error)) return STATUS_ERR; if (actual_errno != expected_errno) { asprintf(error, "Expected errno %d (%s) but got %d (%s)", (int)expected_errno, strerror(expected_errno), actual_errno, strerror(actual_errno)); return STATUS_ERR; } } return STATUS_OK; } /* Return a pointer to the socket with the given script fd, or NULL. */ static struct socket *find_socket_by_script_fd( struct state *state, int script_fd) { struct socket *socket = NULL; for (socket = state->sockets; socket != NULL; socket = socket->next) if (!socket->is_closed && (socket->script.fd == script_fd)) { assert(socket->live.fd >= 0); assert(socket->script.fd >= 0); return socket; } return NULL; } /* Return a pointer to the socket with the given live fd, or NULL. */ static struct socket *find_socket_by_live_fd( struct state *state, int live_fd) { struct socket *socket = NULL; for (socket = state->sockets; socket != NULL; socket = socket->next) if (!socket->is_closed & (socket->live.fd == live_fd)) { assert(socket->live.fd >= 0); assert(socket->script.fd >= 0); return socket; } return NULL; } /* Find the live fd corresponding to the fd in a script. Returns * STATUS_OK on success; on failure returns STATUS_ERR and sets * error message. */ static int to_live_fd(struct state *state, int script_fd, int *live_fd, char **error) { struct socket *socket = find_socket_by_script_fd(state, script_fd); if (socket != NULL) { *live_fd = socket->live.fd; return STATUS_OK; } else { *live_fd = -1; asprintf(error, "unable to find socket with script fd %d", script_fd); return STATUS_ERR; } } /**************************************************************************** * Here we have the "backend" post-processing and pre-processing that * we perform after and/or before each of the system calls that * we support... */ /* The app called socket() in the script and we did a live reenactment * socket() call. Create a struct socket to track the new socket. * Returns STATUS_OK on success; on failure returns STATUS_ERR and * sets error message. */ static int run_syscall_socket(struct state *state, int address_family, int protocol, int script_fd, int live_fd, char **error) { /* Validate fd values. */ if (script_fd < 0) { asprintf(error, "invalid socket fd %d in script", script_fd); return STATUS_ERR; } if (live_fd < 0) { asprintf(error, "invalid live socket fd %d", live_fd); return STATUS_ERR; } /* Look for sockets with conflicting fds. Should not happen if the script is valid and this program is bug-free. */ if (find_socket_by_script_fd(state, script_fd)) { asprintf(error, "duplicate socket fd %d in script", script_fd); return STATUS_ERR; } if (find_socket_by_live_fd(state, live_fd)) { asprintf(error, "duplicate live socket fd %d", live_fd); return STATUS_ERR; } /* These fd values are kosher, so store them. */ struct socket *socket = socket_new(state); socket->state = SOCKET_NEW; socket->address_family = address_family; socket->protocol = protocol; socket->script.fd = script_fd; socket->live.fd = live_fd; /* Any later packets in the test script will now be mapped here. */ state->socket_under_test = socket; DEBUGP("socket() creating new socket: script_fd: %d live_fd: %d\n", socket->script.fd, socket->live.fd); return STATUS_OK; } /* Handle a close() call for the given socket. * Returns STATUS_OK on success; on failure returns STATUS_ERR and * sets error message. */ static int run_syscall_close(struct state *state, int script_fd, int live_fd, char **error) { struct socket *socket = find_socket_by_script_fd(state, script_fd); if ((socket == NULL) || (socket->live.fd != live_fd)) goto error_out; socket->is_closed = true; return STATUS_OK; error_out: asprintf(error, "unable to find socket with script fd %d and live fd %d", script_fd, live_fd); return STATUS_ERR; } /* Fill in the live_addr and live_addrlen for a bind() call. * Returns STATUS_OK on success; on failure returns STATUS_ERR and * sets error message. */ static int run_syscall_bind(struct state *state, struct sockaddr *live_addr, socklen_t *live_addrlen, char **error) { DEBUGP("run_syscall_bind\n"); /* Fill in the live address we want to bind to */ ip_to_sockaddr(&state->config->live_bind_ip, state->config->live_bind_port, live_addr, live_addrlen); return STATUS_OK; } /* Handle a listen() call for the given socket. * Returns STATUS_OK on success; on failure returns STATUS_ERR and * sets error message. */ static int run_syscall_listen(struct state *state, int script_fd, int live_fd, char **error) { struct socket *socket = NULL; socket = find_socket_by_script_fd(state, script_fd); if (socket != NULL) { assert(socket->script.fd == script_fd); assert(socket->live.fd == live_fd); if (socket->state != SOCKET_NEW) { asprintf(error, "bad listen(); script fd %d in state %d", script_fd, socket->state); return STATUS_ERR; } socket->state = SOCKET_PASSIVE_LISTENING; return STATUS_OK; } else { asprintf(error, "unable to find socket with script fd %d", script_fd); return STATUS_ERR; } } /* Handle an accept() call creating a new socket with the given file * descriptors. * Returns STATUS_OK on success; on failure returns STATUS_ERR and * sets error message. */ static int run_syscall_accept(struct state *state, int script_accepted_fd, int live_accepted_fd, struct sockaddr *live_addr, int live_addrlen, char **error) { struct socket *socket = NULL; struct ip_address ip; u16 port = 0; DEBUGP("run_syscall_accept\n"); /* Parse the sockaddr into a nice multi-protocol ip_address struct. */ ip_from_sockaddr(live_addr, live_addrlen, &ip, &port); /* For ipv4-mapped-ipv6: if ip is IPv4-mapped IPv6, map it to IPv4. */ if (ip.address_family == AF_INET6) { struct ip_address ipv4; if (ipv6_map_to_ipv4(ip, &ipv4) == STATUS_OK) ip = ipv4; } for (socket = state->sockets; socket != NULL; socket = socket->next) { if (DEBUG_LOGGING) { char remote_string[ADDR_STR_LEN]; DEBUGP("socket state=%d script addr: %s:%d\n", socket->state, ip_to_string(&socket->script.remote.ip, remote_string), socket->script.remote.port); } if ((socket->state == SOCKET_PASSIVE_SYNACK_SENT) || /* TFO */ (socket->state == SOCKET_PASSIVE_SYNACK_ACKED)) { assert(is_equal_ip(&socket->live.remote.ip, &ip)); assert(is_equal_port(socket->live.remote.port, htons(port))); socket->script.fd = script_accepted_fd; socket->live.fd = live_accepted_fd; return STATUS_OK; } } if (!state->config->is_wire_client) { asprintf(error, "unable to find socket matching accept() call"); return STATUS_ERR; } /* If this is a wire client, then this process just * sees the system call action for this socket. Create a child * passive socket for this accept call, and fill in what we * know about the socket. Any further packets in the test * script will be directed to this child socket. */ socket = socket_new(state); state->socket_under_test = socket; assert(socket->state == SOCKET_INIT); socket->address_family = ip.address_family; socket->live.remote.ip = ip; socket->live.remote.port = port; socket->live.local.ip = state->config->live_local_ip; socket->live.local.port = htons(state->config->live_bind_port); socket->live.fd = live_accepted_fd; socket->script.fd = script_accepted_fd; if (DEBUG_LOGGING) { char local_string[ADDR_STR_LEN]; char remote_string[ADDR_STR_LEN]; DEBUGP("live: local: %s.%d\n", ip_to_string(&socket->live.local.ip, local_string), ntohs(socket->live.local.port)); DEBUGP("live: remote: %s.%d\n", ip_to_string(&socket->live.remote.ip, remote_string), ntohs(socket->live.remote.port)); } return STATUS_OK; } /* Handle an connect() or sendto() call initiating a connect to a * remote address. Fill in the live_addr and live_addrlen for the live * connect(). Returns STATUS_OK on success; on failure returns * STATUS_ERR and sets error message. */ static int run_syscall_connect(struct state *state, int script_fd, bool must_be_new_socket, struct sockaddr *live_addr, socklen_t *live_addrlen, char **error) { struct socket *socket = NULL; DEBUGP("run_syscall_connect\n"); /* Fill in the live address we want to connect to */ ip_to_sockaddr(&state->config->live_connect_ip, state->config->live_connect_port, live_addr, live_addrlen); socket = find_socket_by_script_fd(state, script_fd); assert(socket != NULL); if (socket->state != SOCKET_NEW) { if (must_be_new_socket) { asprintf(error, "socket is not new"); return STATUS_ERR; } else { return STATUS_OK; } } socket->state = SOCKET_ACTIVE_CONNECTING; ip_reset(&socket->script.remote.ip); ip_reset(&socket->script.local.ip); socket->script.remote.port = 0; socket->script.local.port = 0; socket->live.remote.ip = state->config->live_remote_ip; socket->live.remote.port = htons(state->config->live_connect_port); DEBUGP("success: setting socket to state %d\n", socket->state); return STATUS_OK; } /**************************************************************************** * Here we have the parsing and invocation of the system calls that * we support... */ static int syscall_socket(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int domain, type, protocol, live_fd, script_fd, result; if (check_arg_count(args, 3, error)) return STATUS_ERR; if (ellipsis_arg(args, 0, error)) return STATUS_ERR; if (s32_arg(args, 1, &type, error)) return STATUS_ERR; if (s32_arg(args, 2, &protocol, error)) return STATUS_ERR; domain = state->config->socket_domain; begin_syscall(state, syscall); result = socket(domain, type, protocol); if (end_syscall(state, syscall, CHECK_NON_NEGATIVE, result, error)) return STATUS_ERR; if (result >= 0) { live_fd = result; if (get_s32(syscall->result, &script_fd, error)) return STATUS_ERR; if (run_syscall_socket(state, domain, protocol, script_fd, live_fd, error)) return STATUS_ERR; } return STATUS_OK; } static int syscall_bind(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, result; struct sockaddr_storage live_addr; socklen_t live_addrlen; if (check_arg_count(args, 3, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (ellipsis_arg(args, 2, error)) return STATUS_ERR; if (run_syscall_bind( state, (struct sockaddr *)&live_addr, &live_addrlen, error)) return STATUS_ERR; begin_syscall(state, syscall); result = bind(live_fd, (struct sockaddr *)&live_addr, live_addrlen); return end_syscall(state, syscall, CHECK_EXACT, result, error); } static int syscall_listen(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, backlog, result; if (check_arg_count(args, 2, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (s32_arg(args, 1, &backlog, error)) return STATUS_ERR; begin_syscall(state, syscall); result = listen(live_fd, backlog); if (end_syscall(state, syscall, CHECK_EXACT, result, error)) return STATUS_ERR; if (run_syscall_listen(state, script_fd, live_fd, error)) return STATUS_ERR; return STATUS_OK; } static int syscall_accept(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, live_accepted_fd, script_accepted_fd, result; struct sockaddr_storage live_addr; socklen_t live_addrlen = sizeof(live_addr); if (check_arg_count(args, 3, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (ellipsis_arg(args, 2, error)) return STATUS_ERR; begin_syscall(state, syscall); result = accept(live_fd, (struct sockaddr *)&live_addr, &live_addrlen); if (end_syscall(state, syscall, CHECK_NON_NEGATIVE, result, error)) return STATUS_ERR; if (result >= 0) { live_accepted_fd = result; if (get_s32(syscall->result, &script_accepted_fd, error)) return STATUS_ERR; if (run_syscall_accept( state, script_accepted_fd, live_accepted_fd, (struct sockaddr *)&live_addr, live_addrlen, error)) return STATUS_ERR; } return STATUS_OK; } static int syscall_connect(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, result; struct sockaddr_storage live_addr; socklen_t live_addrlen = sizeof(live_addr); if (check_arg_count(args, 3, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (ellipsis_arg(args, 2, error)) return STATUS_ERR; if (run_syscall_connect( state, script_fd, true, (struct sockaddr *)&live_addr, &live_addrlen, error)) return STATUS_ERR; begin_syscall(state, syscall); result = connect(live_fd, (struct sockaddr *)&live_addr, live_addrlen); return end_syscall(state, syscall, CHECK_EXACT, result, error); } static int syscall_read(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, count, result; char *buf = NULL; if (check_arg_count(args, 3, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (s32_arg(args, 2, &count, error)) return STATUS_ERR; buf = malloc(count); assert(buf != NULL); begin_syscall(state, syscall); result = read(live_fd, buf, count); int status = end_syscall(state, syscall, CHECK_EXACT, result, error); free(buf); return status; } static int syscall_readv(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, iov_count, result; struct expression *iov_expression = NULL; struct iovec *iov = NULL; size_t iov_len = 0; int status = STATUS_ERR; if (check_arg_count(args, 3, error)) goto error_out; if (s32_arg(args, 0, &script_fd, error)) goto error_out; if (to_live_fd(state, script_fd, &live_fd, error)) goto error_out; iov_expression = get_arg(args, 1, error); if (iov_expression == NULL) goto error_out; if (iovec_new(iov_expression, &iov, &iov_len, error)) goto error_out; if (s32_arg(args, 2, &iov_count, error)) goto error_out; if (iov_count != iov_len) { asprintf(error, "iov_count %d does not match %d-element iovec array", iov_count, (int)iov_len); goto error_out; } begin_syscall(state, syscall); result = readv(live_fd, iov, iov_count); status = end_syscall(state, syscall, CHECK_EXACT, result, error); error_out: iovec_free(iov, iov_len); return status; } static int syscall_recv(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, count, flags, result; char *buf = NULL; if (check_arg_count(args, 4, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (s32_arg(args, 2, &count, error)) return STATUS_ERR; if (s32_arg(args, 3, &flags, error)) return STATUS_ERR; buf = malloc(count); assert(buf != NULL); begin_syscall(state, syscall); result = recv(live_fd, buf, count, flags); int status = end_syscall(state, syscall, CHECK_EXACT, result, error); free(buf); return status; } static int syscall_recvfrom(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, count, flags, result; struct sockaddr_storage live_addr; socklen_t live_addrlen = sizeof(live_addr); char *buf = NULL; if (check_arg_count(args, 6, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (s32_arg(args, 2, &count, error)) return STATUS_ERR; if (s32_arg(args, 3, &flags, error)) return STATUS_ERR; if (ellipsis_arg(args, 4, error)) return STATUS_ERR; if (ellipsis_arg(args, 5, error)) return STATUS_ERR; buf = malloc(count); assert(buf != NULL); begin_syscall(state, syscall); result = recvfrom(live_fd, buf, count, flags, (struct sockaddr *)&live_addr, &live_addrlen); int status = end_syscall(state, syscall, CHECK_EXACT, result, error); free(buf); return status; } static int syscall_recvmsg(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, flags, result; struct expression *msg_expression = NULL; struct msghdr *msg = NULL; size_t iov_len = 0; int expected_msg_flags = 0; int status = STATUS_ERR; if (check_arg_count(args, 3, error)) goto error_out; if (s32_arg(args, 0, &script_fd, error)) goto error_out; if (to_live_fd(state, script_fd, &live_fd, error)) goto error_out; msg_expression = get_arg(args, 1, error); if (msg_expression == NULL) goto error_out; if (msghdr_new(msg_expression, &msg, &iov_len, error)) goto error_out; if (s32_arg(args, 2, &flags, error)) goto error_out; expected_msg_flags = msg->msg_flags; begin_syscall(state, syscall); result = recvmsg(live_fd, msg, flags); if (end_syscall(state, syscall, CHECK_EXACT, result, error)) goto error_out; if (msg->msg_flags != expected_msg_flags) { asprintf(error, "Expected msg_flags 0x%08X but got 0x%08X", expected_msg_flags, msg->msg_flags); goto error_out; } status = STATUS_OK; error_out: msghdr_free(msg, iov_len); return status; } static int syscall_write(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, count, result; char *buf = NULL; if (check_arg_count(args, 3, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (s32_arg(args, 2, &count, error)) return STATUS_ERR; buf = calloc(count, 1); assert(buf != NULL); begin_syscall(state, syscall); result = write(live_fd, buf, count); int status = end_syscall(state, syscall, CHECK_EXACT, result, error); free(buf); return status; } static int syscall_writev(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, iov_count, result; struct expression *iov_expression = NULL; struct iovec *iov = NULL; size_t iov_len = 0; int status = STATUS_ERR; if (check_arg_count(args, 3, error)) goto error_out; if (s32_arg(args, 0, &script_fd, error)) goto error_out; if (to_live_fd(state, script_fd, &live_fd, error)) goto error_out; iov_expression = get_arg(args, 1, error); if (iov_expression == NULL) goto error_out; if (iovec_new(iov_expression, &iov, &iov_len, error)) goto error_out; if (s32_arg(args, 2, &iov_count, error)) goto error_out; if (iov_count != iov_len) { asprintf(error, "iov_count %d does not match %d-element iovec array", iov_count, (int)iov_len); goto error_out; } begin_syscall(state, syscall); result = writev(live_fd, iov, iov_count); status = end_syscall(state, syscall, CHECK_EXACT, result, error); error_out: iovec_free(iov, iov_len); return status; } static int syscall_send(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, count, flags, result; char *buf = NULL; if (check_arg_count(args, 4, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (s32_arg(args, 2, &count, error)) return STATUS_ERR; if (s32_arg(args, 3, &flags, error)) return STATUS_ERR; buf = calloc(count, 1); assert(buf != NULL); begin_syscall(state, syscall); result = send(live_fd, buf, count, flags); int status = end_syscall(state, syscall, CHECK_EXACT, result, error); free(buf); return status; } static int syscall_sendto(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, count, flags, result; struct sockaddr_storage live_addr; socklen_t live_addrlen = sizeof(live_addr); char *buf = NULL; if (check_arg_count(args, 6, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (ellipsis_arg(args, 1, error)) return STATUS_ERR; if (s32_arg(args, 2, &count, error)) return STATUS_ERR; if (s32_arg(args, 3, &flags, error)) return STATUS_ERR; if (ellipsis_arg(args, 4, error)) return STATUS_ERR; if (ellipsis_arg(args, 5, error)) return STATUS_ERR; if (run_syscall_connect( state, script_fd, false, (struct sockaddr *)&live_addr, &live_addrlen, error)) return STATUS_ERR; buf = calloc(count, 1); assert(buf != NULL); begin_syscall(state, syscall); result = sendto(live_fd, buf, count, flags, (struct sockaddr *)&live_addr, live_addrlen); int status = end_syscall(state, syscall, CHECK_EXACT, result, error); free(buf); return status; } static int syscall_sendmsg(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, flags, result; struct expression *msg_expression = NULL; struct msghdr *msg = NULL; size_t iov_len = 0; int status = STATUS_ERR; if (check_arg_count(args, 3, error)) goto error_out; if (s32_arg(args, 0, &script_fd, error)) goto error_out; if (to_live_fd(state, script_fd, &live_fd, error)) goto error_out; msg_expression = get_arg(args, 1, error); if (msg_expression == NULL) goto error_out; if (msghdr_new(msg_expression, &msg, &iov_len, error)) goto error_out; if (s32_arg(args, 2, &flags, error)) goto error_out; if ((msg->msg_name != NULL) && run_syscall_connect(state, script_fd, false, msg->msg_name, &msg->msg_namelen, error)) goto error_out; if (msg->msg_flags != 0) { asprintf(error, "sendmsg ignores msg_flags field in msghdr"); goto error_out; } begin_syscall(state, syscall); result = sendmsg(live_fd, msg, flags); status = end_syscall(state, syscall, CHECK_EXACT, result, error); error_out: msghdr_free(msg, iov_len); return status; } static int syscall_fcntl(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, command, result; /* fcntl is an odd system call - it can take either 2 or 3 args. */ int actual_arg_count = get_arg_count(args); if ((actual_arg_count != 2) && (actual_arg_count != 3)) { asprintf(error, "fcntl expected 2-3 args but got %d", actual_arg_count); return STATUS_ERR; } if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (s32_arg(args, 1, &command, error)) return STATUS_ERR; if (actual_arg_count == 2) { begin_syscall(state, syscall); result = fcntl(live_fd, command); } else if (actual_arg_count == 3) { s32 arg; if (s32_arg(args, 2, &arg, error)) return STATUS_ERR; begin_syscall(state, syscall); result = fcntl(live_fd, command, arg); } else { assert(0); /* not reached */ } return end_syscall(state, syscall, CHECK_EXACT, result, error); } static int syscall_ioctl(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, command, result; /* ioctl is an odd system call - it can take either 2 or 3 args. */ int actual_arg_count = get_arg_count(args); if ((actual_arg_count != 2) && (actual_arg_count != 3)) { asprintf(error, "ioctl expected 2-3 args but got %d", actual_arg_count); return STATUS_ERR; } if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (s32_arg(args, 1, &command, error)) return STATUS_ERR; if (actual_arg_count == 2) { begin_syscall(state, syscall); result = ioctl(live_fd, command); return end_syscall(state, syscall, CHECK_EXACT, result, error); } else if (actual_arg_count == 3) { s32 script_optval, live_optval; if (s32_bracketed_arg(args, 2, &script_optval, error)) return STATUS_ERR; begin_syscall(state, syscall); result = ioctl(live_fd, command, &live_optval); if (end_syscall(state, syscall, CHECK_EXACT, result, error)) return STATUS_ERR; if (live_optval != script_optval) { asprintf(error, "Bad ioctl optval: expected: %d actual: %d", (int)script_optval, (int)live_optval); return STATUS_ERR; } return STATUS_OK; } else { assert(0); /* not reached */ } return STATUS_ERR; } static int syscall_close(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, result; if (check_arg_count(args, 1, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; begin_syscall(state, syscall); result = close(live_fd); if (end_syscall(state, syscall, CHECK_EXACT, result, error)) return STATUS_ERR; if (run_syscall_close(state, script_fd, live_fd, error)) return STATUS_ERR; return STATUS_OK; } static int syscall_shutdown(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int live_fd, script_fd, how, result; if (check_arg_count(args, 2, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (s32_arg(args, 1, &how, error)) return STATUS_ERR; begin_syscall(state, syscall); result = shutdown(live_fd, how); if (end_syscall(state, syscall, CHECK_EXACT, result, error)) return STATUS_ERR; return STATUS_OK; } static int syscall_getsockopt(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int script_fd, live_fd, level, optname, result; s32 script_optval, live_optval, script_optlen; socklen_t live_optlen = sizeof(live_optval); if (check_arg_count(args, 5, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (s32_arg(args, 1, &level, error)) return STATUS_ERR; if (s32_arg(args, 2, &optname, error)) return STATUS_ERR; if (s32_bracketed_arg(args, 3, &script_optval, error)) return STATUS_ERR; if (s32_bracketed_arg(args, 4, &script_optlen, error)) return STATUS_ERR; if (script_optlen != 4) { asprintf(error, "Unsupported getsockopt optlen: %d", (int)script_optlen); return STATUS_ERR; } begin_syscall(state, syscall); result = getsockopt(live_fd, level, optname, &live_optval, &live_optlen); if (end_syscall(state, syscall, CHECK_EXACT, result, error)) return STATUS_ERR; if ((int)live_optlen != script_optlen) { asprintf(error, "Bad getsockopt optlen: expected: %d actual: %d", (int)script_optlen, (int)live_optlen); return STATUS_ERR; } if (live_optval != script_optval) { asprintf(error, "Bad getsockopt optval: expected: %d actual: %d", (int)script_optval, (int)live_optval); return STATUS_ERR; } return STATUS_OK; } static int syscall_setsockopt(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { int script_fd, live_fd, level, optname, optval_s32, optlen, result; void *optval = NULL; struct expression *val_expression; if (check_arg_count(args, 5, error)) return STATUS_ERR; if (s32_arg(args, 0, &script_fd, error)) return STATUS_ERR; if (to_live_fd(state, script_fd, &live_fd, error)) return STATUS_ERR; if (s32_arg(args, 1, &level, error)) return STATUS_ERR; if (s32_arg(args, 2, &optname, error)) return STATUS_ERR; if (s32_arg(args, 4, &optlen, error)) return STATUS_ERR; val_expression = get_arg(args, 3, error); if (val_expression == NULL) return STATUS_ERR; if (val_expression->type == EXPR_LINGER) { optval = &val_expression->value.linger; } else if (val_expression->type == EXPR_STRING) { optval = val_expression->value.string; } else if (val_expression->type == EXPR_LIST) { if (s32_bracketed_arg(args, 3, &optval_s32, error)) return STATUS_ERR; optval = &optval_s32; } else { asprintf(error, "unsupported setsockopt value type: %s", expression_type_to_string( val_expression->type)); return STATUS_ERR; } begin_syscall(state, syscall); result = setsockopt(live_fd, level, optname, optval, optlen); return end_syscall(state, syscall, CHECK_EXACT, result, error); } static int syscall_poll(struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error) { struct expression *fds_expression = NULL; struct pollfd *fds = NULL; size_t fds_len; int nfds, timeout, result; int status = STATUS_ERR; if (check_arg_count(args, 3, error)) goto error_out; fds_expression = get_arg(args, 0, error); if (fds_expression == NULL) goto error_out; if (pollfds_new(state, fds_expression, &fds, &fds_len, error)) goto error_out; if (s32_arg(args, 1, &nfds, error)) goto error_out; if (s32_arg(args, 2, &timeout, error)) goto error_out; if (nfds != fds_len) { asprintf(error, "nfds %d does not match %d-element pollfd array", nfds, (int)fds_len); goto error_out; } begin_syscall(state, syscall); result = poll(fds, nfds, timeout); if (end_syscall(state, syscall, CHECK_EXACT, result, error)) goto error_out; if (pollfds_check(fds_expression, fds, fds_len, error)) goto error_out; status = STATUS_OK; error_out: free(fds); return status; } /* A dispatch table with all the system calls that we support... */ struct system_call_entry { const char *name; int (*function) (struct state *state, struct syscall_spec *syscall, struct expression_list *args, char **error); }; struct system_call_entry system_call_table[] = { {"socket", syscall_socket}, {"bind", syscall_bind}, {"listen", syscall_listen}, {"accept", syscall_accept}, {"connect", syscall_connect}, {"read", syscall_read}, {"readv", syscall_readv}, {"recv", syscall_recv}, {"recvfrom", syscall_recvfrom}, {"recvmsg", syscall_recvmsg}, {"write", syscall_write}, {"writev", syscall_writev}, {"send", syscall_send}, {"sendto", syscall_sendto}, {"sendmsg", syscall_sendmsg}, {"fcntl", syscall_fcntl}, {"ioctl", syscall_ioctl}, {"close", syscall_close}, {"shutdown", syscall_shutdown}, {"getsockopt", syscall_getsockopt}, {"setsockopt", syscall_setsockopt}, {"poll", syscall_poll}, }; /* Evaluate the system call arguments and invoke the system call. */ static void invoke_system_call( struct state *state, struct event *event, struct syscall_spec *syscall) { DEBUGP("%d: invoke call: %s\n", event->line_number, syscall->name); char *error = NULL; const char *name = syscall->name; struct expression_list *args = NULL; int i = 0; int result = 0; /* Wait for the right time before firing off this event. */ wait_for_event(state); /* Find and invoke the handler for this system call. */ for (i = 0; i < ARRAY_SIZE(system_call_table); ++i) if (strcmp(name, system_call_table[i].name) == 0) break; if (i == ARRAY_SIZE(system_call_table)) { asprintf(&error, "Unknown system call: '%s'", name); goto error_out; } /* Evaluate script symbolic expressions to get live numeric args for * system calls. */ if (evaluate_expression_list(syscall->arguments, &args, &error)) goto error_out; /* Run the system call. */ result = system_call_table[i].function(state, syscall, args, &error); free_expression_list(args); if (result == STATUS_ERR) goto error_out; return; error_out: die("%s:%d: runtime error in %s call: %s\n", state->config->script_path, event->line_number, syscall->name, error); free(error); } /* Wait for the system call thread to go idle. To avoid mystifying * hangs when scripts specify overlapping time ranges for blocking * system calls, we limit the duration of our waiting to 1 second. */ static int await_idle_thread(struct state *state) { struct timespec end_time = { .tv_sec = 0, .tv_nsec = 0 }; const int MAX_WAIT_SECS = 1; while (state->syscalls->state != SYSCALL_IDLE) { /* On the first time through the loop, calculate end time. */ if (end_time.tv_sec == 0) { if (clock_gettime(CLOCK_REALTIME, &end_time) != 0) die_perror("clock_gettime"); end_time.tv_sec += MAX_WAIT_SECS; } /* Wait for a signal or our timeout end_time to arrive. */ DEBUGP("main thread: awaiting idle syscall thread\n"); int status = pthread_cond_timedwait(&state->syscalls->idle, &state->mutex, &end_time); if (status == ETIMEDOUT) return STATUS_ERR; else if (status != 0) die_perror("pthread_cond_timedwait"); } return STATUS_OK; } static int yield(void) { #if defined(linux) return pthread_yield(); #elif defined(__FreeBSD__) || defined(__OpenBSD__) pthread_yield(); return 0; #elif defined(__NetBSD__) return sched_yield(); #endif /* defined(__NetBSD__) */ } /* Enqueue the system call for the syscall thread and wake up the thread. */ static void enqueue_system_call( struct state *state, struct event *event, struct syscall_spec *syscall) { char *error = NULL; bool done = false; /* Wait if there are back-to-back blocking system calls. */ if (await_idle_thread(state)) { asprintf(&error, "blocking system call while another blocking " "system call is already in progress"); goto error_out; } /* Enqueue the system call info and wake up the syscall thread. */ DEBUGP("main thread: signal enqueued\n"); state->syscalls->state = SYSCALL_ENQUEUED; if (pthread_cond_signal(&state->syscalls->enqueued) != 0) die_perror("pthread_cond_signal"); /* Wait for the syscall thread to dequeue and start the system call. */ while (state->syscalls->state == SYSCALL_ENQUEUED) { DEBUGP("main thread: waiting for dequeued signal; " "state: %d\n", state->syscalls->state); if (pthread_cond_wait(&state->syscalls->dequeued, &state->mutex) != 0) { die_perror("pthread_cond_wait"); } } /* Wait for the syscall thread to block or finish the call. */ while (!done) { /* Unlock and yield so the system call thread can make * the system call in a timely fashion. */ DEBUGP("main thread: unlocking and yielding\n"); pid_t thread_id = state->syscalls->thread_id; run_unlock(state); if (yield() != 0) die_perror("yield"); DEBUGP("main thread: checking syscall thread state\n"); if (is_thread_sleeping(getpid(), thread_id)) done = true; /* Grab the lock again and see if the thread is idle. */ DEBUGP("main thread: locking and reading state\n"); run_lock(state); if (state->syscalls->state == SYSCALL_IDLE) done = true; } DEBUGP("main thread: continuing after syscall\n"); return; error_out: die("%s:%d: runtime error in %s call: %s\n", state->config->script_path, event->line_number, syscall->name, error); free(error); } void run_system_call_event( struct state *state, struct event *event, struct syscall_spec *syscall) { DEBUGP("%d: system call: %s\n", event->line_number, syscall->name); if (is_blocking_syscall(syscall)) enqueue_system_call(state, event, syscall); else invoke_system_call(state, event, syscall); } /* The code executed by our system call thread, which executes * blocking system calls. */ static void *system_call_thread(void *arg) { struct state *state = (struct state *)arg; char *error = NULL; struct event *event = NULL; struct syscall_spec *syscall = NULL; bool done = false; DEBUGP("syscall thread: starting and locking\n"); run_lock(state); state->syscalls->thread_id = gettid(); if (state->syscalls->thread_id < 0) die_perror("gettid"); while (!done) { DEBUGP("syscall thread: in state %d\n", state->syscalls->state); switch (state->syscalls->state) { case SYSCALL_IDLE: DEBUGP("syscall thread: waiting\n"); if (pthread_cond_wait(&state->syscalls->enqueued, &state->mutex)) { die_perror("pthread_cond_wait"); } break; case SYSCALL_RUNNING: case SYSCALL_DONE: assert(0); /* should not be reached */ break; case SYSCALL_ENQUEUED: DEBUGP("syscall thread: invoking syscall\n"); /* Remember the syscall event, since below we * release the global lock and the main thread * will move on to other, later events. */ event = state->event; syscall = event->event.syscall; assert(event->type == SYSCALL_EVENT); state->syscalls->event = event; state->syscalls->live_end_usecs = -1; /* Make the system call. Note that our callees * here will release the global lock before * making the actual system call and then * re-acquire it after the system call returns * and before returning to us. */ invoke_system_call(state, event, syscall); /* Check end time for the blocking system call. */ assert(state->syscalls->live_end_usecs >= 0); if (verify_time(state, event->time_type, syscall->end_usecs, 0, state->syscalls->live_end_usecs, "system call return", &error)) { die("%s:%d: %s\n", state->config->script_path, event->line_number, error); } /* Mark our thread idle and wake the main * thread if it's waiting for this call to * finish. */ assert(state->syscalls->state == SYSCALL_DONE); state->syscalls->state = SYSCALL_IDLE; state->syscalls->event = NULL; state->syscalls->live_end_usecs = -1; DEBUGP("syscall thread: now idle\n"); if (pthread_cond_signal(&state->syscalls->idle) != 0) die_perror("pthread_cond_signal"); break; case SYSCALL_EXITING: done = true; break; /* omitting default so compiler will catch missing cases */ } } DEBUGP("syscall thread: unlocking and exiting\n"); run_unlock(state); return NULL; } struct syscalls *syscalls_new(struct state *state) { struct syscalls *syscalls = calloc(1, sizeof(struct syscalls)); syscalls->state = SYSCALL_IDLE; if (pthread_create(&syscalls->thread, NULL, system_call_thread, state) != 0) { die_perror("pthread_create"); } if ((pthread_cond_init(&syscalls->idle, NULL) != 0) || (pthread_cond_init(&syscalls->enqueued, NULL) != 0) || (pthread_cond_init(&syscalls->dequeued, NULL) != 0)) { die_perror("pthread_cond_init"); } return syscalls; } void syscalls_free(struct state *state, struct syscalls *syscalls) { /* Wait a bit for the thread to go idle. */ if (await_idle_thread(state)) { die("%s:%d: runtime error: exiting while " "a blocking system call is in progress\n", state->config->script_path, syscalls->event->line_number); } /* Send a request to terminate the thread. */ DEBUGP("main thread: signaling syscall thread to exit\n"); syscalls->state = SYSCALL_EXITING; if (pthread_cond_signal(&syscalls->enqueued) != 0) die_perror("pthread_cond_signal"); /* Release the lock briefly and wait for syscall thread to finish. */ run_unlock(state); DEBUGP("main thread: unlocking, waiting for syscall thread exit\n"); void *thread_result = NULL; if (pthread_join(syscalls->thread, &thread_result) != 0) die_perror("pthread_cancel"); DEBUGP("main thread: joined syscall thread; relocking\n"); run_lock(state); if ((pthread_cond_destroy(&syscalls->idle) != 0) || (pthread_cond_destroy(&syscalls->enqueued) != 0) || (pthread_cond_destroy(&syscalls->dequeued) != 0)) { die_perror("pthread_cond_destroy"); } memset(syscalls, 0, sizeof(*syscalls)); /* to help catch bugs */ free(syscalls); }