/* * EDAC driver for Intel(R) Xeon(R) Skylake processors * Copyright (c) 2016, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "edac_core.h" #include #include #include "mem_drv.h" #define SKX_REVISION " Ver: 1.0 " /* * Debug macros */ #define skx_printk(level, fmt, arg...) \ edac_printk(level, "skx", fmt, ##arg) #define skx_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) /* * Get a bit field at register value , from bit to bit */ #define GET_BITFIELD(v, lo, hi) \ (((v) & GENMASK_ULL((hi), (lo))) >> (lo)) static LIST_HEAD(skx_edac_list); static u64 skx_tolm, skx_tohm; #define NUM_IMC 2 /* memory controllers per socket */ #define NUM_CHANNELS 3 /* channels per memory controller */ #define NUM_DIMMS 2 /* Max DIMMS per channel */ #define MASK26 0x3FFFFFF /* Mask for 2^26 */ #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ /* * Each cpu socket contains some pci devices that provide global * information, and also some that are local to each of the two * memory controllers on the die. */ struct skx_dev { struct list_head list; u8 bus[4]; struct pci_dev *sad_all; struct pci_dev *util_all; u32 mcroute; struct skx_imc { struct mem_ctl_info *mci; u8 mc; /* system wide mc# */ u8 lmc; /* socket relative mc# */ u8 src_id, node_id; struct pci_dev *m2mem; struct skx_channel { struct pci_dev *cdev, *lmdp_dev; struct skx_dimm { u8 close_pg; u8 bank_xor_enable; u8 fine_grain_bank; u8 rowbits; u8 colbits; } dimms[NUM_DIMMS]; } chan[NUM_CHANNELS]; } imc[NUM_IMC]; }; static int skx_num_sockets = 0; struct skx_pvt { struct skx_imc *imc; }; struct decoded_addr { struct skx_dev *dev; u64 addr; int socket; int imc; int channel; u64 chan_addr; int sktways; int chanways; int dimm; int rank; int channel_rank; u64 rank_address; int row; int column; int bank_address; int bank_group; }; static struct skx_dev *get_skx_dev(u8 bus, u8 idx) { struct skx_dev *d; list_for_each_entry(d, &skx_edac_list, list) { if (d->bus[idx] == bus) return d; } return NULL; } enum munittype { CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD, CHAN0_LMDP, CHAN1_LMDP, CHAN2_LMDP, M2MEM }; struct munit { u16 did; u16 devfn[NUM_IMC]; u8 busidx; u8 per_socket; enum munittype mtype; }; /* * List of PCI device ids that we need together with some device * number and function numbers to tell which memory controller the * device belongs to. */ static const struct munit skx_all_munits[] = { { 0x2054, { }, 1, 1, SAD_ALL }, { 0x2055, { }, 1, 1, UTIL_ALL }, { 0x2066, { PCI_DEVFN(8, 0), PCI_DEVFN(9, 0) }, 2, 2, M2MEM }, { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, CHAN0_LMDP }, { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, CHAN1_LMDP }, { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, { 0x204B, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, CHAN2_LMDP }, { 0x208e, { }, 1, 0, SAD }, { } }; /* * We use the per-socket device 0x2016 to count how many sockets are present, * and to detemine which PCI buses are associated with each socket. Allocate * and build the full list of all the skx_dev structures that we need here. */ static int get_all_bus_mappings(void) { struct pci_dev *pdev, *prev; struct skx_dev *d; u32 reg; int ndev = 0; prev = NULL; for (;;) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2016, prev); if (!pdev) break; ndev++; d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) { pci_dev_put(pdev); return -ENOMEM; } pci_read_config_dword(pdev, 0xCC, ®); d->bus[0] = GET_BITFIELD(reg, 0, 7); d->bus[1] = GET_BITFIELD(reg, 8, 15); d->bus[2] = GET_BITFIELD(reg, 16, 23); d->bus[3] = GET_BITFIELD(reg, 24, 31); edac_dbg(2, "busses: %x, %x, %x, %x\n", d->bus[0], d->bus[1], d->bus[2], d->bus[3]); list_add_tail(&d->list, &skx_edac_list); skx_num_sockets++; prev = pdev; } return ndev; } static int get_all_munits(const struct munit *m) { struct pci_dev *pdev, *prev; struct skx_dev *d; u32 reg; int i = 0, ndev = 0; prev = NULL; for (;;) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); if (!pdev) break; ndev++; if (m->per_socket == NUM_IMC) { for (i = 0; i < NUM_IMC; i++) if (m->devfn[i] == pdev->devfn) break; if (i == NUM_IMC) goto fail; } d = get_skx_dev(pdev->bus->number, m->busidx); if (!d) goto fail; /* Be sure that the device is enabled */ if (unlikely(pci_enable_device(pdev) < 0)) { skx_printk(KERN_ERR, "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, m->did); goto fail; } switch (m->mtype) { case CHAN0: case CHAN1: case CHAN2: pci_dev_get(pdev); d->imc[i].chan[m->mtype].cdev = pdev; break; case SAD_ALL: pci_dev_get(pdev); d->sad_all = pdev; break; case UTIL_ALL: pci_dev_get(pdev); d->util_all = pdev; break; case SAD: /* * one of these devices per core, including cores * that don't exist on this SKU. Ignore any that * read a route table of zero, make sure all the * non-zero values match. */ pci_read_config_dword(pdev, 0xB4, ®); if (reg != 0) { if (d->mcroute == 0) d->mcroute = reg; else if (d->mcroute != reg) { skx_printk(KERN_ERR, "mcroute mismatch\n"); goto fail; } } ndev--; break; case CHAN0_LMDP: case CHAN1_LMDP: case CHAN2_LMDP: pci_dev_get(pdev); d->imc[i].chan[m->mtype - CHAN0_LMDP].lmdp_dev = pdev; break; case M2MEM: pci_dev_get(pdev); d->imc[i].m2mem = pdev; break; } prev = pdev; } return ndev; fail: pci_dev_put(pdev); return -ENODEV; } const struct x86_cpu_id skx_cpuids[] = { { X86_VENDOR_INTEL, 6, 0x55, 0, 0 }, /* Skylake */ { } }; MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); static u8 get_src_id(struct skx_dev *d) { u32 reg; pci_read_config_dword(d->util_all, 0xF0, ®); return GET_BITFIELD(reg, 12, 14); } static u8 skx_get_node_id(struct skx_dev *d) { u32 reg; pci_read_config_dword(d->util_all, 0xF4, ®); return GET_BITFIELD(reg, 0, 2); } static int get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, int maxval, char *name) { u32 val = GET_BITFIELD(reg, lobit, hibit); if (val < minval || val > maxval) { edac_dbg(2, "bad %s = %d (raw=%x)\n", name, val, reg); return -EINVAL; } return val + add; } #define IS_DIMM_PRESENT(mtr) GET_BITFIELD((mtr), 15, 15) #define numrank(reg) get_dimm_attr((reg), 12, 13, 0, 0, 2, "ranks") #define numrow(reg) get_dimm_attr((reg), 2, 4, 12, 1, 6, "rows") #define numcol(reg) get_dimm_attr((reg), 0, 1, 10, 0, 2, "cols") static int get_width(u32 mtr) { switch (GET_BITFIELD(mtr, 8, 9)) { case 0: return DEV_X4; case 1: return DEV_X8; case 2: return DEV_X16; } return DEV_UNKNOWN; } static int skx_get_hi_lo(void) { struct pci_dev *pdev; u32 reg; pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x2034, NULL); if (!pdev) { edac_dbg(0, "Can't get tolm/tohm\n"); return -ENODEV; } pci_read_config_dword(pdev, 0xD0, ®); skx_tolm = reg; pci_read_config_dword(pdev, 0xD4, ®); skx_tohm = reg; pci_read_config_dword(pdev, 0xD8, ®); skx_tohm |= (u64)reg << 32; pci_dev_put(pdev); edac_dbg(2, "tolm=%llx tohm=%llx\n", skx_tolm, skx_tohm); return 0; } static int get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, struct skx_imc *imc, int chan, int dimmno) { int banks = 16, ranks, rows, cols, npages; u64 size; if (!IS_DIMM_PRESENT(mtr)) return 0; ranks = numrank(mtr); rows = numrow(mtr); cols = numcol(mtr); /* * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) */ size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); npages = MiB_TO_PAGES(size); edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", imc->mc, chan, dimmno, size, npages, banks, ranks, rows, cols); imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); imc->chan[chan].dimms[dimmno].rowbits = rows; imc->chan[chan].dimms[dimmno].colbits = cols; dimm->nr_pages = npages; dimm->grain = 32; dimm->dtype = get_width(mtr); dimm->mtype = MEM_DDR4; dimm->edac_mode = EDAC_SECDED; /* likely better than this */ snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", imc->src_id, imc->lmc, chan, dimmno); return 1; } #define SKX_GET_MTMTR(dev, reg) \ pci_read_config_dword((dev), 0x87c, ®) static bool skx_check_ecc(struct pci_dev *pdev) { u32 mtmtr; SKX_GET_MTMTR(pdev, mtmtr); return !!GET_BITFIELD(mtmtr, 2, 2); } static int skx_get_dimm_config(struct mem_ctl_info *mci) { struct skx_pvt *pvt = mci->pvt_info; struct skx_imc *imc = pvt->imc; struct dimm_info *dimm; int i, j; u32 mtr, amap; int ndimms; for (i = 0; i < NUM_CHANNELS; i++) { ndimms = 0; pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); for (j = 0; j < NUM_DIMMS; j++) { dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); pci_read_config_dword(imc->chan[i].cdev, 0x80 + 4*j, &mtr); ndimms += get_dimm_info(mtr, amap, dimm, imc, i, j); } if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); return -ENODEV; } } return 0; } static void skx_unregister_mci(struct skx_imc *imc) { struct mem_ctl_info *mci = imc->mci; if (!mci) return; edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); /* Remove MC sysfs nodes */ edac_mc_del_mc(mci->pdev); edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); kfree(mci->ctl_name); edac_mc_free(mci); } static int skx_register_mci(struct skx_imc *imc) { struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct pci_dev *pdev = imc->chan[0].cdev; struct skx_pvt *pvt; int rc; /* allocate a new MC control structure */ layers[0].type = EDAC_MC_LAYER_CHANNEL; layers[0].size = NUM_CHANNELS; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_SLOT; layers[1].size = NUM_DIMMS; layers[1].is_virt_csrow = true; mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, sizeof(struct skx_pvt)); if (unlikely(!mci)) return -ENOMEM; edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); /* Associate skx_dev and mci for future usage */ imc->mci = mci; pvt = mci->pvt_info; pvt->imc = imc; mci->ctl_name = kasprintf(GFP_KERNEL, "Skylake Socket#%d IMC#%d", imc->node_id, imc->lmc); mci->mtype_cap = MEM_FLAG_DDR4; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = "skx_edac.c"; mci->dev_name = pci_name(imc->chan[0].cdev); mci->mod_ver = SKX_REVISION; mci->ctl_page_to_phys = NULL; rc = skx_get_dimm_config(mci); if (rc < 0) goto fail; /* record ptr to the generic device */ mci->pdev = &pdev->dev; /* add this new MC control structure to EDAC's list of MCs */ if (unlikely(edac_mc_add_mc(mci))) { edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); rc = -EINVAL; goto fail; } return 0; fail: kfree(mci->ctl_name); edac_mc_free(mci); imc->mci = NULL; return rc; } #define SKX_MAX_SAD 24 #define SKX_GET_SAD(d, i, reg) \ pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), ®) #define SKX_GET_ILV(d, i, reg) \ pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), ®) #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) #define SKX_ILV_TARGET(tgt) ((tgt) & 7) static bool skx_sad_decode(struct decoded_addr *res) { struct skx_dev *d = list_first_entry(&skx_edac_list, typeof(*d), list); u64 addr = res->addr; int i, idx, tgt, lchan, shift; u32 sad, ilv; u64 limit, prev_limit; int remote = 0; /* Simple sanity check for I/O space or out of range */ if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { edac_dbg(0, "Address %llx out of range\n", addr); return false; } restart: prev_limit = 0; for (i = 0; i < SKX_MAX_SAD; i++) { SKX_GET_SAD(d, i, sad); limit = SKX_SAD_LIMIT(sad); if (SKX_SAD_ENABLE(sad)) { if (addr >= prev_limit && addr <= limit) goto sad_found; } prev_limit = limit + 1; } edac_dbg(0, "No SAD entry for %llx\n", addr); return false; sad_found: SKX_GET_ILV(d, i, ilv); switch (SKX_SAD_INTERLEAVE(sad)) { case 0: idx = GET_BITFIELD(addr, 6, 8); break; case 1: idx = GET_BITFIELD(addr, 8, 10); break; case 2: idx = GET_BITFIELD(addr, 12, 14); break; case 3: idx = GET_BITFIELD(addr, 30, 32); break; } tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); /* If point to another node, find it and start over */ if (SKX_ILV_REMOTE(tgt)) { if (remote) { edac_dbg(0, "Double remote!\n"); return false; } remote = 1; list_for_each_entry(d, &skx_edac_list, list) { if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) goto restart; } edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); return false; } if (SKX_SAD_MOD3(sad) == 0) lchan = SKX_ILV_TARGET(tgt); else { switch (SKX_SAD_MOD3MODE(sad)) { case 0: shift = 6; break; case 1: shift = 8; break; case 2: shift = 12; break; default: edac_dbg(0, "illegal mod3mode\n"); return false; } switch (SKX_SAD_MOD3ASMOD2(sad)) { case 0: lchan = (addr >> shift) % 3; break; case 1: lchan = (addr >> shift) % 2; break; case 2: lchan = (addr >> shift) % 2; lchan = (lchan << 1) | ~lchan; break; case 3: lchan = ((addr >> shift) % 2) << 1; break; } lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); } res->dev = d; res->socket = d->imc[0].src_id; res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); edac_dbg(2, "%llx: socket=%d imc=%d channel=%d\n", res->addr, res->socket, res->imc, res->channel); return true; } #define SKX_MAX_TAD 8 #define SKX_GET_TADBASE(d, mc, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), ®) #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), ®) #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), ®) #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) /* which bit used for both socket and channel interleave */ static int skx_granularity[] = { 6, 8, 12, 30 }; static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) { addr >>= shift; addr /= ways; addr <<= shift; return addr | (lowbits & ((1ull << shift) - 1)); } static bool skx_tad_decode(struct decoded_addr *res) { int i; u32 base, wayness, chnilvoffset; int skt_interleave_bit, chn_interleave_bit; u64 channel_addr; for (i = 0; i < SKX_MAX_TAD; i++) { SKX_GET_TADBASE(res->dev, res->imc, i, base); SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) goto tad_found; } edac_dbg(0, "No TAD entry for %llx\n", res->addr); return false; tad_found: res->sktways = SKX_TAD_SKTWAYS(wayness); res->chanways = SKX_TAD_CHNWAYS(wayness); skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { /* Must handle channel first, then socket */ channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, res->chanways, channel_addr); channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, res->sktways, channel_addr); } else { /* Handle socket then channel. Preserve low bits from original address */ channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, res->sktways, res->addr); channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, res->chanways, res->addr); } res->chan_addr = channel_addr; edac_dbg(2, "%llx: chan_addr=%llx sktways=%d chanways=%d\n", res->addr, res->chan_addr, res->sktways, res->chanways); return true; } #define SKX_MAX_RIR 4 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ 0x108 + 4 * (i), ®) #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ 0x120 + 16 * idx + 4 * (i), ®) #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) static bool skx_rir_decode(struct decoded_addr *res) { int i, idx, chan_rank; int shift; u32 rirway, rirlv; u64 rank_addr, prev_limit = 0, limit; if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) shift = 6; else shift = 13; for (i = 0; i < SKX_MAX_RIR; i++) { SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); limit = SKX_RIR_LIMIT(rirway); if (SKX_RIR_VALID(rirway)) { if (prev_limit <= res->chan_addr && res->chan_addr <= limit) goto rir_found; } prev_limit = limit; } edac_dbg(0, "No RIR entry for %llx\n", res->addr); return false; rir_found: rank_addr = res->chan_addr >> shift; rank_addr /= SKX_RIR_WAYS(rirway); rank_addr <<= shift; rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); res->rank_address = rank_addr; idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); chan_rank = SKX_RIR_CHAN_RANK(rirlv); res->channel_rank = chan_rank; res->dimm = chan_rank / 4; res->rank = chan_rank % 4; edac_dbg(2, "%llx: dimm=%d rank=%d chan_rank=%d rank_addr=%llx\n", res->addr, res->dimm, res->rank, res->channel_rank, res->rank_address); return true; } static u8 skx_close_row[] = { 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 }; static u8 skx_close_column[] = { 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 }; static u8 skx_open_row[] = { 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 }; static u8 skx_open_column[] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; static u8 skx_open_fine_column[] = { 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 }; static int skx_bits(u64 addr, int nbits, u8 *bits) { int i, res = 0; for (i = 0; i < nbits; i++) res |= ((addr >> bits[i]) & 1) << i; return res; } static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) { int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); if (do_xor) ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); return ret; } static bool skx_mad_decode(struct decoded_addr *r) { struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; int bg0 = dimm->fine_grain_bank ? 6 : 13; if (dimm->close_pg) { r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); r->column |= 0x400; /* C10 is autoprecharge, always set */ r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); } else { r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); if (dimm->fine_grain_bank) r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); else r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); } r->row &= (1u << dimm->rowbits) - 1; edac_dbg(2, "%llx: row=%x col=%x bank_addr=%d bank_group=%d\n", r->addr, r->row, r->column, r->bank_address, r->bank_group); return true; } static bool skx_decode(struct decoded_addr *res) { return skx_sad_decode(res) && skx_tad_decode(res) && skx_rir_decode(res) && skx_mad_decode(res); } #ifdef CONFIG_EDAC_DEBUG /* * Debug feature. Make /sys/kernel/debug/skx_edac_test/addr. * Write an address to this file to exercise the address decode * logic in this driver. */ static struct dentry *skx_test; static u64 skx_fake_addr; static int debugfs_u64_set(void *data, u64 val) { struct decoded_addr res; res.addr = val; skx_decode(&res); return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); static struct dentry *mydebugfs_create(const char *name, umode_t mode, struct dentry *parent, u64 *value) { return debugfs_create_file(name, mode, parent, value, &fops_u64_wo); } static void setup_skx_debug(void) { skx_test = debugfs_create_dir("skx_edac_test", NULL); mydebugfs_create("addr", S_IWUSR, skx_test, &skx_fake_addr); } static void teardown_skx_debug(void) { debugfs_remove_recursive(skx_test); } #else static void setup_skx_debug(void) { } static void teardown_skx_debug(void) { } #endif /*CONFIG_EDAC_DEBUG*/ static DEFINE_SPINLOCK(g_mem_drv_lock); static u32 g_error_count = 0; static u32 g_error_entries = 0; static struct corr_err_info *g_corr_err_head = NULL; static void add_corr_err_info_to_list(struct corr_err_info **corr_err_entry) { struct corr_err_info *curr_entry; if (corr_err_entry == NULL) return; // Update total error count g_error_count += (*corr_err_entry)->error_count; if (g_corr_err_head == NULL) { // Error list is empty, this error entry is list head g_error_entries++; g_corr_err_head = *corr_err_entry; curr_entry = g_corr_err_head; } else { curr_entry = g_corr_err_head; while (curr_entry) { // If this error entry has existed, update its error count only if ((curr_entry->fail_addr == (*corr_err_entry)->fail_addr) && (curr_entry->rank_id == (*corr_err_entry)->rank_id) && (curr_entry->channel_id == (*corr_err_entry)->channel_id) && (curr_entry->mc_id == (*corr_err_entry)->mc_id) && (curr_entry->cpu_id == (*corr_err_entry)->cpu_id)) { curr_entry->error_count += (*corr_err_entry)->error_count; kfree(*corr_err_entry); (*corr_err_entry) = NULL; break; } if (curr_entry->next == NULL) { // Append this error entry to list because it is a new one g_error_entries++; curr_entry->next = *corr_err_entry; break; } curr_entry = curr_entry->next; } } skx_printk(KERN_DEBUG, "[mem_drv] Corrected error(cpu:%d.mc:%d.ch:%d.rank:%d.count:%d) has been record\n", curr_entry->cpu_id, curr_entry->mc_id, curr_entry->channel_id, curr_entry->rank_id, curr_entry->error_count); } static void clear_err_statistics(void) { unsigned long flags = 0; struct corr_err_info *curr_entry; struct corr_err_info *temp_entry; int i; unsigned int cpu_id; if (!g_error_entries) return; spin_lock_irqsave(&g_mem_drv_lock, flags); curr_entry = g_corr_err_head; while (curr_entry) { temp_entry = curr_entry->next; kfree(curr_entry); curr_entry = temp_entry; g_error_entries--; } g_error_count = 0; g_corr_err_head = NULL; for (i = 0; i < skx_num_sockets; i++) { cpu_id = (num_online_cpus() / skx_num_sockets) * i; wrmsr_safe_on_cpu(cpu_id, 0x41d, 0, 0); // bank 7 wrmsr_safe_on_cpu(cpu_id, 0x421, 0, 0); // bank 8 #if 0 // Do not know if we will get below error types wrmsr_safe_on_cpu(cpu_id, 0x425, 0, 0); // bank 9 wrmsr_safe_on_cpu(cpu_id, 0x429, 0, 0); // bank 10 wrmsr_safe_on_cpu(cpu_id, 0x42d, 0, 0); // bank 11 wrmsr_safe_on_cpu(cpu_id, 0x435, 0, 0); // bank 13 wrmsr_safe_on_cpu(cpu_id, 0x439, 0, 0); // bank 14 wrmsr_safe_on_cpu(cpu_id, 0x43d, 0, 0); // bank 15 wrmsr_safe_on_cpu(cpu_id, 0x441, 0, 0); // bank 16 wrmsr_safe_on_cpu(cpu_id, 0x445, 0, 0); // bank 17 wrmsr_safe_on_cpu(cpu_id, 0x449, 0, 0); // bank 18 #endif } spin_unlock_irqrestore(&g_mem_drv_lock, flags); } static void skx_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, struct decoded_addr *res) { enum hw_event_mc_err_type tp_event; char *type, *optype, msg[256]; bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); bool overflow = GET_BITFIELD(m->status, 62, 62); bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); bool recoverable; u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); u32 mscod = GET_BITFIELD(m->status, 16, 31); u32 errcode = GET_BITFIELD(m->status, 0, 15); u32 optypenum = GET_BITFIELD(m->status, 4, 6); unsigned long lock_flags = 0; struct corr_err_info *perr_info_entry = NULL; recoverable = GET_BITFIELD(m->status, 56, 56); if (uncorrected_error) { if (ripv) { type = "FATAL"; tp_event = HW_EVENT_ERR_FATAL; } else { type = "NON_FATAL"; tp_event = HW_EVENT_ERR_UNCORRECTED; } } else { type = "CORRECTED"; tp_event = HW_EVENT_ERR_CORRECTED; } /* * According with Table 15-9 of the Intel Architecture spec vol 3A, * memory errors should fit in this mask: * 000f 0000 1mmm cccc (binary) * where: * f = Correction Report Filtering Bit. If 1, subsequent errors * won't be shown * mmm = error type * cccc = channel * If the mask doesn't match, report an error to the parsing logic */ if (!((errcode & 0xef80) == 0x80)) { optype = "Can't parse: it is not a mem"; } else { switch (optypenum) { case 0: optype = "generic undef request error"; break; case 1: optype = "memory read error"; break; case 2: optype = "memory write error"; break; case 3: optype = "addr/cmd error"; break; case 4: optype = "memory scrubbing error"; break; default: optype = "reserved"; break; } } snprintf(msg, sizeof(msg), "%s%s err_code:%04x:%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:%x col:%x", overflow ? " OVERFLOW" : "", (uncorrected_error && recoverable) ? " recoverable" : "", mscod, errcode, res->socket, res->imc, res->rank, res->bank_group, res->bank_address, res->row, res->column); edac_dbg(0, "%s\n", msg); spin_lock_irqsave(&g_mem_drv_lock, lock_flags); perr_info_entry = kzalloc(sizeof(struct corr_err_info), GFP_KERNEL); if (perr_info_entry == NULL) { printk("[mem_drv] Corrected error records (cpu:%d.mc:%d.ch:%d.rank:%d.count:%d) are lost!", res->socket, res->imc, res->channel, res->channel_rank, core_err_cnt); } else { perr_info_entry->cpu_id = res->socket; perr_info_entry->mc_id = res->imc; perr_info_entry->channel_id = res->channel; perr_info_entry->rank_id = res->channel_rank; perr_info_entry->error_count = core_err_cnt; perr_info_entry->fail_addr = res->addr; perr_info_entry->next = NULL; // Update error info list add_corr_err_info_to_list(&perr_info_entry); } spin_unlock_irqrestore(&g_mem_drv_lock, lock_flags); /* Call the helper to output message */ edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, res->channel, res->dimm, -1, optype, msg); } static int skx_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) { struct mce *mce = (struct mce *)data; struct decoded_addr res; struct mem_ctl_info *mci; char *type; //if (get_edac_report_status() == EDAC_REPORTING_DISABLED) // return NOTIFY_DONE; /* ignore unless this is memory related with an address */ if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) return NOTIFY_DONE; res.addr = mce->addr; if (!skx_decode(&res)) return NOTIFY_DONE; mci = res.dev->imc[res.imc].mci; if (mce->mcgstatus & MCG_STATUS_MCIP) type = "Exception"; else type = "Event"; skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " "Bank %d: %016Lx\n", mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); skx_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); skx_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); skx_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " "%u APIC %x\n", mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); skx_mce_output_error(mci, mce, &res); return NOTIFY_DONE; } static struct notifier_block skx_mce_dec = { .notifier_call = skx_mce_check_error, }; static void skx_remove(void) { int i, j; struct skx_dev *d, *tmp; edac_dbg(0, "\n"); list_for_each_entry_safe(d, tmp, &skx_edac_list, list) { list_del(&d->list); for (i = 0; i < NUM_IMC; i++) { skx_unregister_mci(&d->imc[i]); for (j = 0; j < NUM_CHANNELS; j++) pci_dev_put(d->imc[i].chan[j].cdev); } pci_dev_put(d->util_all); pci_dev_put(d->sad_all); kfree(d); } } static int mem_drv_open(struct inode *inod, struct file *filp) { // Increment module usage count if (0 == try_module_get(THIS_MODULE)) { return MODULE_OPEN_FAIL; } return 0; } static int mem_drv_close(struct inode *inod, struct file *filp) { // Decrement module usage count module_put(THIS_MODULE); return 0; } static bool g_enable_demand_scrub = false; static bool g_save_demand_scrub = false; #define GET_MC_DEFETAURE0(d, mc, val) pci_read_config_dword(d->imc[mc].m2mem, 0xE4, &val) #define SET_MC_DEFETAURE0(d, mc, val) pci_write_config_dword(d->imc[mc].m2mem, 0xE4, val) static int set_demand_scrub(bool enable) { struct skx_dev *d; int i; u32 value; unsigned long flags = 0; #if 0 // System will hang if we set demand scrub and inject ecc error // Therefore, we comment out below codes temporarily if (enable == g_enable_demand_scrub) return 0; spin_lock_irqsave(&g_mem_drv_lock, flags); list_for_each_entry(d, &skx_edac_list, list) { for (i = 0; i < NUM_IMC; i++) { value = GET_MC_DEFETAURE0(d, i, value); if (enable) // Enable demand scrub value &= ~(1 << 20); else // Disable demand scrub value |= (1 << 20); SET_MC_DEFETAURE0(d, i, value); } } g_enable_demand_scrub = enable; spin_unlock_irqrestore(&g_mem_drv_lock, flags); #endif return 0; } #define GET_MC_STATUS_SHADOW_HI(d, mc, val) pci_read_config_dword(d->imc[mc].m2mem, 0x124, &val) #define GET_RSP_FUNC_ADDR_MATCH_HI(d, mc, ch, val) pci_read_config_dword(d->imc[mc].chan[ch].cdev, 0x1C4, &val) #define SET_CRC_ERR_INJ_EXTRA(d, mc, ch, val) pci_write_config_dword(d->imc[mc].chan[ch].lmdp_dev, 0x208, val) #define SET_CRC_ERR_INJ_DEV0_XOR_MSK(d, mc, ch, val) pci_write_config_dword(d->imc[mc].chan[ch].lmdp_dev, 0x200, val) #define SET_CRC_ERR_INJ_DEV1_XOR_MSK(d, mc, ch, val) pci_write_config_dword(d->imc[mc].chan[ch].lmdp_dev, 0x204, val) #define SET_RSP_FUNC_ADDR_MASK_LO(d, mc, ch, val) pci_write_config_dword(d->imc[mc].chan[ch].cdev, 0x1C8, val) #define SET_RSP_FUNC_ADDR_MASK_HI(d, mc, ch, val) pci_write_config_dword(d->imc[mc].chan[ch].cdev, 0x1CC, val) #define SET_RSP_FUNC_ADDR_MATCH_LO(d, mc, ch, val) pci_write_config_dword(d->imc[mc].chan[ch].cdev, 0x1C0, val) #define SET_RSP_FUNC_ADDR_MATCH_HI(d, mc, ch, val) pci_write_config_dword(d->imc[mc].chan[ch].cdev, 0x1C4, val) #define SET_MC_STATUS_SHADOW_HI(d, mc, val) pci_write_config_dword(d->imc[mc].m2mem, 0x124, val) #define BIT_OFFSET_RSP_FUNC_ADDR_MATCH_EN 11 bool g_ecc_enable = false; u64 g_save_mc7_msr[2], g_save_mc8_msr[2]; static int ecc_injection_init(void) { int ret = 0; unsigned int cpu_id; int i; struct skx_dev *d; for (i = 0; i < skx_num_sockets; i++) { cpu_id = (num_online_cpus() / skx_num_sockets) * i; // Save MC7 and MC8 control rdmsrl_safe_on_cpu(cpu_id, 0x287, &g_save_mc7_msr[i]); rdmsrl_safe_on_cpu(cpu_id, 0x288, &g_save_mc8_msr[i]); // Disable CMCI interrupt wrmsrl_safe_on_cpu(cpu_id, 0x287, g_save_mc7_msr[i] & 0xFFFFFFFFBFFFFFFFULL); wrmsrl_safe_on_cpu(cpu_id, 0x288, g_save_mc8_msr[i] & 0xFFFFFFFFBFFFFFFFULL); } list_for_each_entry(d, &skx_edac_list, list) { for (i = 0; i < NUM_IMC; i++) { SET_MC_STATUS_SHADOW_HI(d, i, 0); } } // Disable memory scrub g_save_demand_scrub = false; if (g_enable_demand_scrub) { g_save_demand_scrub = true; ret = set_demand_scrub(false); } return ret; } static int ecc_injection_restore(void) { int ret = 0; unsigned int cpu_id; int i; // Enable memory scrub ret = set_demand_scrub(g_save_demand_scrub); for (i = 0; i < skx_num_sockets; i++) { cpu_id = (num_online_cpus() / skx_num_sockets) * i; // Restore MC7 and MC8 control wrmsrl_safe_on_cpu(cpu_id, 0x287, g_save_mc7_msr[i]); wrmsrl_safe_on_cpu(cpu_id, 0x288, g_save_mc8_msr[i]); // Clear MC7 and MC8 wrmsrl_safe_on_cpu(cpu_id, 0x41D, 0); wrmsrl_safe_on_cpu(cpu_id, 0x421, 0); } return ret; } static int ecc_injection(struct ecc_inj_info inj_info) { int ret = 0; unsigned long flags = 0; unsigned long long curr_addr; unsigned long long end_addr; u8 *map_addr = NULL; u8 *curr_map_addr = NULL; u8 *temp_addr; struct decoded_addr inj_addr_decode; unsigned int orig_error_count = 0; unsigned int value; unsigned int temp_error_count; unsigned long long temp_value; // We can not test memory address which is lower than 4G if (inj_info.address < 0x100000000) return ADDR_CAN_NOT_BE_TESTED; // Should be 64B alignment because RSP_FUNC_ADDR_MASK are set with 0x0 if (inj_info.address & 0x3F) { if (inj_info.size < 0x40) return ADDR_CAN_NOT_BE_TESTED; inj_info.address &= ~(0x3F); inj_info.address += 0x40; } skx_printk(KERN_DEBUG, "[mem_drv] --- ecc_injection start ---\n"); ecc_injection_init(); spin_lock_irqsave(&g_mem_drv_lock, flags); map_addr = (unsigned char *)ioremap_nocache(inj_info.address, inj_info.size); if (map_addr == NULL) { ret = MEMORY_MAP_FAIL; goto fail; } inj_info.elem_size >>= 3; curr_map_addr = map_addr; curr_addr = inj_info.address; end_addr = inj_info.address + inj_info.size; switch (inj_info.elem_size) { case 1: inj_info.pattern &= 0xFFULL; break; case 2: inj_info.pattern &= 0xFFFFULL; break; case 4: inj_info.pattern &= 0xFFFFFFFFULL; break; case 8: default: break; } while (curr_addr < end_addr) { inj_addr_decode.addr = curr_addr; if (!skx_decode(&inj_addr_decode)) { ret = ADDR_TRANSLATION_FAIL; skx_printk(KERN_DEBUG, "[mem_drv] Address translation is failed\n"); goto fail; } temp_addr = curr_map_addr; SET_CRC_ERR_INJ_EXTRA(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, 0); SET_CRC_ERR_INJ_DEV0_XOR_MSK(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, 0xf); SET_CRC_ERR_INJ_DEV1_XOR_MSK(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, 0); GET_MC_STATUS_SHADOW_HI(inj_addr_decode.dev, inj_addr_decode.imc, value); orig_error_count = (value >> 6) & 0x7FFF; SET_RSP_FUNC_ADDR_MASK_HI(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, 0); SET_RSP_FUNC_ADDR_MASK_LO(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, 0); SET_RSP_FUNC_ADDR_MATCH_LO(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, (u32)(curr_addr >> 3)); SET_RSP_FUNC_ADDR_MATCH_HI(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, (u32)(curr_addr >> 35)); SET_RSP_FUNC_ADDR_MATCH_HI(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, ((u32)(curr_addr >> 35) | (0x1 << BIT_OFFSET_RSP_FUNC_ADDR_MATCH_EN))); GET_RSP_FUNC_ADDR_MATCH_HI(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, value); if (!(value >> BIT_OFFSET_RSP_FUNC_ADDR_MATCH_EN) & 0x1) { skx_printk(KERN_DEBUG, "[mem_drv] error inject was not armed!\n"); ret = ENABLE_ECC_INJECT_FAIL; goto fail; } switch (inj_info.elem_size) { case 1: *curr_map_addr = (u8)inj_info.pattern; break; case 2: *((u16 *)curr_map_addr) = (u16)inj_info.pattern; break; case 4: *((u32 *)curr_map_addr) = (u32)inj_info.pattern; break; case 8: default: *((u64 *)curr_map_addr) = inj_info.pattern; break; } asm volatile ("wbinvd"); GET_RSP_FUNC_ADDR_MATCH_HI(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, value); if (!((value >> BIT_OFFSET_RSP_FUNC_ADDR_MATCH_EN) & 0x1)) { switch (inj_info.elem_size) { case 1: temp_value = (unsigned long long)(*curr_map_addr); break; case 2: temp_value = (unsigned long long)(*((u16 *)curr_map_addr)); break; case 4: temp_value = (unsigned long long)(*((u32 *)curr_map_addr)); break; case 8: default: temp_value = (unsigned long long)(*((u64 *)curr_map_addr)); break; } if (temp_value != inj_info.pattern) { skx_printk(KERN_DEBUG, "[mem_drv] Data comparison is failed: expected 0x%016llx current 0x%016llx!\n", inj_info.pattern, temp_value); ret = COMPARE_DATA_FAIL; } if (ret == 0) { // Need delay time before checking error count mdelay(1); GET_MC_STATUS_SHADOW_HI(inj_addr_decode.dev, inj_addr_decode.imc, value); temp_error_count = (value >> 6) & 0x7FFF; temp_error_count -= orig_error_count; if (temp_error_count != 1) { if (temp_error_count == 0) ret = ECC_INJECT_FAIL; else ret = INCORRECT_ECC_COUNT; } } switch (inj_info.elem_size) { case 1: *curr_map_addr = (u8)0; break; case 2: *((u16 *)curr_map_addr) = (u16)0; break; case 4: *((u32 *)curr_map_addr) = (u32)0; break; case 8: default: *((u64 *)curr_map_addr) = 0ULL; break; } asm volatile ("wbinvd"); SET_MC_STATUS_SHADOW_HI(inj_addr_decode.dev, inj_addr_decode.imc, 0); if (ret != 0) { goto fail; } } else { SET_RSP_FUNC_ADDR_MATCH_HI(inj_addr_decode.dev, inj_addr_decode.imc, inj_addr_decode.channel, 0); ret = ECC_INJECT_FAIL; skx_printk(KERN_DEBUG, "[mem_drv] error inject is failed!\n"); goto fail; } //curr_addr += inj_info.elem_size; //curr_map_addr += inj_info.elem_size; // Should be 64B alignment curr_addr += 0x40; curr_map_addr += 0x40; } fail: skx_printk(KERN_DEBUG, "[mem_drv] --- ecc_injection end ---\n"); if (map_addr) { iounmap(map_addr); map_addr = NULL; } spin_unlock_irqrestore(&g_mem_drv_lock, flags); ecc_injection_restore(); return ret; } static long mem_drv_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int ret = 0; struct get_err_info get_info; int i = 0; struct corr_err_info *perr_info = NULL; struct mem_access_info access_info; void *map_addr = NULL; struct ecc_inj_info ecc_inj_info; if ((_IOC_TYPE(cmd) & MC_DRV_MAGIC_NUMBER) != MC_DRV_MAGIC_NUMBER) { ret = INCORRECT_MAGIC_NUM; goto out; } switch (_IOC_NR(cmd)) { case MC_DRV_IOCTL_ENABLE_SCRUB: ret = set_demand_scrub(true); break; case MC_DRV_IOCTL_DISABLE_SCRUB: ret = set_demand_scrub(false); break; case MC_DRV_IOCTL_GET_SCRUB_STATUS: i = g_enable_demand_scrub? 1 : 0; ret = copy_to_user((int *)arg, &i, sizeof(int)); break; case MC_DRV_IOCTL_CLEAR_ERROR: clear_err_statistics(); break; case MC_DRV_IOCTL_GET_ERROR_NUM: ret = copy_to_user((u32 *)arg, &g_error_count, sizeof(g_error_count)); break; case MC_DRV_IOCTL_GET_ERROR_ENTRY_NUM: ret = copy_to_user((u32 *)arg, &g_error_entries, sizeof(g_error_entries)); break; case MC_DRV_IOCTL_GET_ERROR_INFO: ret = copy_from_user(&get_info, (struct get_err_info *)arg, sizeof(get_info)); if (ret == 0) { perr_info = g_corr_err_head; while (perr_info) { if (i++ == get_info.index) break; perr_info = perr_info->next; } if (perr_info) { get_info.info = *perr_info; ret = copy_to_user((struct get_err_info *)arg, &get_info, sizeof(get_info)); } else ret = ERROR_ENTRY_NOT_FOUND; } break; case MC_DRV_IOCTL_READ_MEMORY: ret = copy_from_user(&access_info, (struct mem_access_info *)arg, sizeof(access_info)); if (ret == 0) { map_addr = (void *)ioremap_nocache(access_info.addr, access_info.size); if (map_addr == NULL) { ret = MEMORY_MAP_FAIL; return ret; } access_info.data = 0ULL; switch (access_info.size) { case 1: access_info.data = *((unsigned char *)map_addr); break; case 2: access_info.data = *((unsigned short *)map_addr); break; case 4: access_info.data = *((unsigned int *)map_addr); break; case 8: access_info.data = *((unsigned long long *)map_addr); break; default: break; } iounmap(map_addr); ret = copy_to_user((struct mem_access_info *)arg, &access_info, sizeof(access_info)); } break; case MC_DRV_IOCTL_CMD_ECC_INJECT: if (g_ecc_enable) { ret = copy_from_user(&ecc_inj_info, (struct ecc_inj_info *)arg, sizeof(ecc_inj_info)); if (ret == 0) { ret = ecc_injection(ecc_inj_info); ecc_inj_info.error_code = ret; ret = copy_to_user((struct ecc_inj_info *)arg, &ecc_inj_info, sizeof(ecc_inj_info)); } } else { ecc_inj_info.error_code = ECC_INJECT_NOT_SUPPORT; ret = copy_to_user((struct ecc_inj_info *)arg, &ecc_inj_info, sizeof(ecc_inj_info)); } break; default: ret = UNKNOWN_IOCTL_CMD; break; } out: return ret; } /**************************************************** 1. Clear ECC statistics 2. initialize cumulative CECC error counter to 0. *****************************************************/ static int diag_ecc_init(void) { struct file *fp ; mm_segment_t old_fs; loff_t pos; /* The size of the error count counter in IA32_MCi_STATUS register is 15 * bit */ unsigned char buf[5]; clear_err_statistics(); fp = filp_open( DIAG_ECC_COUNT_FILE, O_CREAT|O_RDWR, 0644); if(IS_ERR(fp)){ printk("Error while opening file %s, exiting... \n", DIAG_ECC_COUNT_FILE); return 0; } memset(buf, 0, sizeof(buf)); old_fs = get_fs(); set_fs(KERNEL_DS); pos = fp->f_pos; vfs_write(fp, buf, sizeof(buf), &fp->f_pos); fp->f_pos = pos; vfs_write(fp, "0", 1, &fp->f_pos); set_fs(old_fs); filp_close(fp,NULL); return 0; } static int g_major_num; static struct class *g_pmem_drv_class; static struct file_operations g_mem_dev_file_ops = { .owner = THIS_MODULE, .unlocked_ioctl = mem_drv_ioctl, .open = mem_drv_open, .release = mem_drv_close }; /* * skx_init: * make sure we are running on the correct cpu model * search for all the devices we need * check which DIMMs are present. */ int __init skx_init(void) { const struct x86_cpu_id *id; const struct munit *m; int rc = 0, i; u8 mc = 0, src_id, node_id; struct skx_dev *d; unsigned int msr_low, msr_high; edac_dbg(2, "\n"); id = x86_match_cpu(skx_cpuids); if (!id) return -ENODEV; rc = skx_get_hi_lo(); if (rc) return rc; rc = get_all_bus_mappings(); if (rc < 0) goto fail; if (rc == 0) { edac_dbg(2, "No memory controllers found\n"); return -ENODEV; } for (m = skx_all_munits; m->did; m++) { rc = get_all_munits(m); if (rc < 0) goto fail; if (rc != m->per_socket * skx_num_sockets) { edac_dbg(2, "Expected %d, got %d of %x\n", m->per_socket * skx_num_sockets, rc, m->did); rc = -ENODEV; goto fail; } } list_for_each_entry(d, &skx_edac_list, list) { src_id = get_src_id(d); node_id = skx_get_node_id(d); edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); for (i = 0; i < NUM_IMC; i++) { d->imc[i].mc = mc++; d->imc[i].lmc = i; d->imc[i].src_id = src_id; d->imc[i].node_id = node_id; rc = skx_register_mci(&d->imc[i]); if (rc < 0) goto fail; } } // Create char device if ((g_major_num = register_chrdev(0, MC_DEV_NAME, &g_mem_dev_file_ops)) < 0) { printk("[mem_drv] Register char device fail!\n"); return REGISTER_CHAR_DEV_FAIL; } if (NULL == (g_pmem_drv_class = class_create(THIS_MODULE, MC_DEV_NAME))) return CREATE_CHAR_DEV_FAIL; device_create(g_pmem_drv_class, NULL, MKDEV(g_major_num, 0), NULL, "%s", MC_DEV_NAME); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); setup_skx_debug(); mce_register_decode_chain(&skx_mce_dec); rdmsr_safe(0x790, &msr_low, &msr_high); if (!msr_low) g_ecc_enable = true; diag_ecc_init(); return 0; fail: skx_remove(); return rc; } static void __exit skx_exit(void) { edac_dbg(2, "\n"); mce_unregister_decode_chain(&skx_mce_dec); device_destroy(g_pmem_drv_class, MKDEV(g_major_num, 0)); class_destroy(g_pmem_drv_class); unregister_chrdev(g_major_num, MC_DEV_NAME); skx_remove(); teardown_skx_debug(); } module_init(skx_init); module_exit(skx_exit); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Tony Luck"); MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");