// ---------------------------------------------------------------------------- // - Open3D: www.open3d.org - // ---------------------------------------------------------------------------- // The MIT License (MIT) // // Copyright (c) 2018 www.open3d.org // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS // IN THE SOFTWARE. // ---------------------------------------------------------------------------- #include #include #include #include "Open3D/Open3D.h" class KDTreeFlannFeature { public: KDTreeFlannFeature() {} ~KDTreeFlannFeature() {} public: bool LoadFromFile(const std::string &filename) { FILE *fid = open3d::utility::filesystem::FOpen(filename, "rb"); fread(&dataset_size_, sizeof(int), 1, fid); fread(&dimension_, sizeof(int), 1, fid); data_.resize(dataset_size_ * dimension_); for (int i = 0; i < dataset_size_; i++) { Eigen::Vector3f pts; fread(&pts(0), sizeof(float), 3, fid); fread(((float *)data_.data()) + i * dimension_, sizeof(float), dimension_, fid); } flann_dataset_.reset(new flann::Matrix( (float *)data_.data(), dataset_size_, dimension_)); flann_index_.reset(new flann::Index>( *flann_dataset_, flann::KDTreeSingleIndexParams(15))); flann_index_->buildIndex(); fclose(fid); return true; } int SearchKNN(std::vector &data, int i, int knn, std::vector &indices, std::vector &distance2) { flann::Matrix query_flann( ((float *)data.data()) + i * dimension_, 1, dimension_); indices.resize(knn); distance2.resize(knn); flann::Matrix indices_flann(indices.data(), query_flann.rows, knn); flann::Matrix dists_flann(distance2.data(), query_flann.rows, knn); return flann_index_->knnSearch(query_flann, indices_flann, dists_flann, knn, flann::SearchParams(-1, 0.0)); } public: std::vector data_; std::unique_ptr> flann_dataset_; std::unique_ptr>> flann_index_; int dimension_ = 0; int dataset_size_ = 0; }; void PrintHelp() { using namespace open3d; PrintOpen3DVersion(); // clang-format off utility::LogInfo("Usage:"); utility::LogInfo(" > EvaluateFeatureMatch [options]"); utility::LogInfo(" Evaluate feature matching quality of point clouds."); utility::LogInfo(""); utility::LogInfo("Basic options:"); utility::LogInfo(" --help, -h : Print help information."); utility::LogInfo(" --log file : A log file of the pairwise matching results. Must have."); utility::LogInfo(" --dir directory : The directory storing all data files. By default it is the parent directory of the log file + pcd/."); utility::LogInfo(" --threshold t : Threshold to determine if a match is good or not. Default: 0.075."); utility::LogInfo(" --verbose n : Set verbose level (0-4). Default: 2."); // clang-format on } bool ReadLogFile(const std::string &filename, std::vector> &pair_ids, std::vector &transformations) { using namespace open3d; pair_ids.clear(); transformations.clear(); FILE *f = open3d::utility::filesystem::FOpen(filename, "r"); if (f == NULL) { utility::LogWarning("Read LOG failed: unable to open file."); return false; } char line_buffer[DEFAULT_IO_BUFFER_SIZE]; int i, j, k; Eigen::Matrix4d trans; while (fgets(line_buffer, DEFAULT_IO_BUFFER_SIZE, f)) { if (strlen(line_buffer) > 0 && line_buffer[0] != '#') { if (sscanf(line_buffer, "%d %d %d", &i, &j, &k) != 3) { utility::LogWarning("Read LOG failed: unrecognized format."); return false; } if (fgets(line_buffer, DEFAULT_IO_BUFFER_SIZE, f) == 0) { utility::LogWarning("Read LOG failed: unrecognized format."); return false; } else { sscanf(line_buffer, "%lf %lf %lf %lf", &trans(0, 0), &trans(0, 1), &trans(0, 2), &trans(0, 3)); } if (fgets(line_buffer, DEFAULT_IO_BUFFER_SIZE, f) == 0) { utility::LogWarning("Read LOG failed: unrecognized format."); return false; } else { sscanf(line_buffer, "%lf %lf %lf %lf", &trans(1, 0), &trans(1, 1), &trans(1, 2), &trans(1, 3)); } if (fgets(line_buffer, DEFAULT_IO_BUFFER_SIZE, f) == 0) { utility::LogWarning("Read LOG failed: unrecognized format."); return false; } else { sscanf(line_buffer, "%lf %lf %lf %lf", &trans(2, 0), &trans(2, 1), &trans(2, 2), &trans(2, 3)); } if (fgets(line_buffer, DEFAULT_IO_BUFFER_SIZE, f) == 0) { utility::LogWarning("Read LOG failed: unrecognized format."); return false; } else { sscanf(line_buffer, "%lf %lf %lf %lf", &trans(3, 0), &trans(3, 1), &trans(3, 2), &trans(3, 3)); } pair_ids.push_back(std::make_pair(i, j)); transformations.push_back(trans); } } fclose(f); return true; } void WriteBinaryResult(const std::string &filename, std::vector &data) { FILE *f = open3d::utility::filesystem::FOpen(filename, "wb"); fwrite(data.data(), sizeof(double), data.size(), f); fclose(f); } int main(int argc, char *argv[]) { using namespace open3d; if (argc <= 1 || utility::ProgramOptionExists(argc, argv, "--help") || utility::ProgramOptionExists(argc, argv, "-h")) { PrintHelp(); return 1; } int verbose = utility::GetProgramOptionAsInt(argc, argv, "--verbose", 5); utility::SetVerbosityLevel((utility::VerbosityLevel)verbose); std::string log_filename = utility::GetProgramOptionAsString(argc, argv, "--log"); std::string pcd_dirname = utility::GetProgramOptionAsString(argc, argv, "--dir"); if (pcd_dirname.empty()) { pcd_dirname = utility::filesystem::GetFileParentDirectory(log_filename) + "pcds/"; } double threshold = utility::GetProgramOptionAsDouble(argc, argv, "--threshold", 0.075); double threshold2 = threshold * threshold; // std::vector features = {"fpfh", "pfh", "shot", "spin", // "usc", "d32_norelu"}; std::vector features = {"r17", // "pcar17"}; std::vector features = {"fpfh", "usc"}; std::vector features = {"fpfh", "d32"}; std::vector pcd_names; utility::filesystem::ListFilesInDirectoryWithExtension(pcd_dirname, "pcd", pcd_names); std::vector pcds(pcd_names.size()); std::vector kdtrees(pcd_names.size()); for (size_t i = 0; i < pcd_names.size(); i++) { io::ReadPointCloud( pcd_dirname + "cloud_bin_" + std::to_string(i) + ".pcd", pcds[i]); kdtrees[i].SetGeometry(pcds[i]); } std::vector> pair_ids; std::vector transformations; ReadLogFile(log_filename, pair_ids, transformations); int total_point_num = 0; int total_correspondence_num = 0; for (size_t k = 0; k < pair_ids.size(); k++) { geometry::PointCloud source = pcds[pair_ids[k].second]; source.Transform(transformations[k]); std::vector indices(1); std::vector distance2(1); int correspondence_num = 0; for (const auto &pt : source.points_) { if (kdtrees[pair_ids[k].first].SearchKNN(pt, 1, indices, distance2) > 0) { if (distance2[0] < threshold2) { correspondence_num++; } } } total_correspondence_num += correspondence_num; total_point_num += (int)source.points_.size(); utility::LogInfo("#{:d} <-- #{:d} : {:d} out of {:d} ({:.2f}%).", pair_ids[k].first, pair_ids[k].second, correspondence_num, (int)source.points_.size(), correspondence_num * 100.0 / source.points_.size()); } utility::LogInfo("Total {:d} out of {:d} ({:.2f}% coverage).", total_correspondence_num, total_point_num, total_correspondence_num * 100.0 / total_point_num); for (const auto feature : features) { utility::LogInfo("Evaluate feature {}.", feature); std::vector feature_trees(pcd_names.size()); #ifdef _OPENMP #pragma omp parallel for schedule(static) num_threads(16) #endif for (int i = 0; i < int(pcd_names.size()); i++) { feature_trees[i].LoadFromFile(pcd_dirname + "cloud_bin_" + std::to_string(i) + "." + feature); } utility::LogInfo("All KDTrees built."); int total_point_num = 0; int total_correspondence_num = 0; int total_positive = 0; for (size_t k = 0; k < pair_ids.size(); k++) { geometry::PointCloud source = pcds[pair_ids[k].second]; total_point_num += (int)source.points_.size(); } std::vector true_dis(total_point_num, -1.0); total_point_num = 0; for (size_t k = 0; k < pair_ids.size(); k++) { geometry::PointCloud source = pcds[pair_ids[k].second]; source.Transform(transformations[k]); std::vector indices(1); std::vector distance2(1); std::vector fdistance2(1); int positive = 0; int correspondence_num = 0; std::vector has_correspondence( pcds[pair_ids[k].second].points_.size(), false); for (size_t i = 0; i < source.points_.size(); i++) { const auto &pt = source.points_[i]; if (kdtrees[pair_ids[k].first].SearchKNN(pt, 1, indices, distance2) > 0) { if (distance2[0] < threshold2) { has_correspondence[i] = true; correspondence_num++; } } } #ifdef _OPENMP #pragma omp parallel for schedule(static) \ num_threads(16) private(indices, fdistance2) #endif for (int i = 0; i < int(source.points_.size()); i++) { if (has_correspondence[i]) { if (feature_trees[pair_ids[k].first].SearchKNN( feature_trees[pair_ids[k].second].data_, i, 1, indices, fdistance2) > 0) { double new_dis = (source.points_[i] - pcds[pair_ids[k].first].points_[indices[0]]) .norm(); true_dis[total_point_num + i] = new_dis; if (new_dis < threshold) { #ifdef _OPENMP #pragma omp atomic #endif positive++; } } } } total_correspondence_num += correspondence_num; total_positive += positive; total_point_num += (int)source.points_.size(); utility::LogInfo( "#{:d} <-- #{:d} : {:d} out of {:d} out of {:d} ({:.2f}% " "w.r.t. " "correspondences).", pair_ids[k].first, pair_ids[k].second, positive, correspondence_num, (int)source.points_.size(), positive * 100.0 / correspondence_num); } utility::LogInfo( "Total {:d} out of {:d} out of {:d} ({:.2f}% w.r.t. " "correspondences).", total_positive, total_correspondence_num, total_point_num, total_positive * 100.0 / total_correspondence_num); WriteBinaryResult(pcd_dirname + feature + ".bin", true_dis); } return 0; }