#!/usr/bin/env python3 import os import uuid import sys import time import logging import shutil import csv import json import copy import boto3 import botocore from pathlib import Path from concurrent.futures import ThreadPoolExecutor from typing import Any, List, Tuple from types import ModuleType from scanners.headless.local_bridge import headless_scan from utils import FAST_CACHE_KEY, scan_utils # Default and maximum for local workers (threads) per-scanner. default_workers = 10 global_max_workers = 1000 # The default value to use for the maximum number of Lambda retries default_max_lambda_retries = 0 # Some metadata about the scan itself. start_time = scan_utils.local_now() start_command = str.join(" ", sys.argv) # Generate a random UUID for the entire scan. # scan_uuid = str(uuid.uuid4()) def set_aws_credentials(options): # AWS credentials should be set externally (disk, env, IAMs, etc.). # support AWS named profiles aws_profile = options.get("lambda_profile", None) if aws_profile: lambda_session = boto3.session.Session(profile_name=aws_profile) else: lambda_session = boto3.session.Session() invoke_config = botocore.config.Config( max_pool_connections=global_max_workers, connect_timeout=900, read_timeout=900, retries={'max_attempts': 0} ) invoke_client = lambda_session.client('lambda', config=invoke_config) logs_config = botocore.config.Config(max_pool_connections=global_max_workers) logs_client = lambda_session.client('logs', config=logs_config) return { "aws_profile": aws_profile, "lambda_session": lambda_session, "invoke_config": invoke_config, "invoke_client": invoke_client, "logs_config": logs_config, "logs_client": logs_client } # Fields that will always get prefixed before scan-specific data. PREFIX_HEADERS = ["Domain", "Base Domain"] # Local scan info. Requested with --meta. LOCAL_HEADERS = ["Local Errors", "Local Start Time", "Local End Time", "Local Duration"] # Lambda-specific scan info. Requested with --meta. # 1) Known or retrieved upon task completion. LAMBDA_HEADERS = [ "Lambda Request ID", "Lambda Log Group Name", "Lambda Log Stream Name", "Lambda Start Time", "Lambda End Time", "Lambda Memory Limit", "Lambda Measured Duration" ] # 2) Retrieved by subsequent log requests, after task completion. LAMBDA_DETAIL_HEADERS = [ "Lambda Reported Duration", "Lambda Log Delay", "Lambda Memory Used", "Lambda Fetching Errors" ] # A best-effort delay to sleep while waiting for CloudWatch Logs # about Lambda executions to show up after task completion. LAMBDA_LOG_DELAY = 20 ### # Entry point. `options` is a dict of CLI flags. ### def run(options=None, unknown=[], cache_dir=None, results_dir=None): if not options["domains"]: logging.error("Provide a CSV file, or domain name.") exit(1) if not options.get("scan"): logging.error("--scan must be one or more scanners.") exit(1) if cache_dir is None: cache_dir = Path( options.get("_", {}).get("cache_dir", "./cache")).resolve() if not cache_dir.exists(): raise FileNotFoundError domains = scan_utils.handle_domains_argument(options["domains"], cache_dir) # Import the scanners: scans = scan_utils.build_scanner_list(options["scan"].split(",")) # Now that we've loaded the modules, we can process args with them: options, unknown = scan_utils.handle_scanner_arguments(scans, options, unknown) # Kick off the scanning: scan_domains(scans, domains, options) ### # Given the selected scanner modules, and input domains, run each domain # through each scanner. # # Produces a CSV for each scan, with each domain and results. ### def scan_domains(scanners: List[ModuleType], domains: Path, options: dict) -> None: # Clear out existing result CSVs, to avoid inconsistent data. results_dir = options["_"]["results_dir"] for result in Path(os.path.curdir, results_dir).glob("*.csv"): os.remove(result) # Store local errors/timing info, and if using Lambda, trigger the # Lambda post-processing pipeline to get Lambda timing/usage info. meta = options.get("meta", False) # Run through each scanner and open a file and CSV for each. handles = {} durations = {} scan_uuid = str(uuid.uuid4()) # Store scan UUID. logging.debug("[%s] Scan UUID." % scan_uuid) for scanner in scanners: name = scanner.__name__.split(".")[-1] # e.g. 'pshtt' handles[name] = scan_utils.begin_csv_writing( scanner, options, (PREFIX_HEADERS, LOCAL_HEADERS, LAMBDA_HEADERS)) # Initialize all scanner-specific environments. # Useful for data that should be cached/passed to each instance, # such as data from third-party network sources. # Checked now, so that failure can immediately halt the whole scan. environment = { 'scan_method': 'lambda' if handles[name]['use_lambda'] else 'local', 'scan_uuid': scan_uuid, } # Select workers here, so that it can be passed to the # init function. workers = scan_utils.determine_scan_workers( scanner, options, default_workers, global_max_workers) environment['workers'] = workers # type: ignore # mypy dict issues. # Initialize the scanner: if hasattr(scanner, "init"): init = scanner.init(environment, options) # type: ignore # If a scanner's init() function returns false, stop entirely. if init is False: logging.warning("[%s] Scanner init function returned false! Bailing." % handles[name]['name']) exit(1) if type(init) is dict: environment = {**environment, **init} handles[name]['environment'] = environment # Run each scanner (unique process pool) over each domain. # User can force --serial, and scanners can override default of 10. # Scan environment, passed to all scanners (local or cloud). # Kick off workers in parallel. Returns when all are done. scan_start_time = scan_utils.local_now() with ThreadPoolExecutor(max_workers=workers) as executor: tasks = ((scanner, domain, handles, environment, options) for domain in scan_utils.domains_from( domains, domain_suffix=options.get("suffix"))) executor.map(perform_scan, tasks) scan_end_time = scan_utils.local_now() duration = scan_end_time - scan_start_time # Store scan-specific time information. durations[handles[name]['name']] = { 'start_time': scan_utils.utc_timestamp(scan_start_time), 'end_time': scan_utils.utc_timestamp(scan_end_time), 'duration': scan_utils.just_microseconds(duration) } # Close up all the files, --sort if requested (memory-expensive). # Also fetch Lambda info if requested (time-expensive). lambda_used = any(handles[k]['use_lambda'] for k in handles) get_lambda_details = meta and lambda_used and options.get("lambda-details") # Sleeping's not ideal, but no better idea right now. if get_lambda_details: logging.warning("\tWaiting %is for logs to show up in CloudWatch..." % LAMBDA_LOG_DELAY) time.sleep(LAMBDA_LOG_DELAY) for handle in handles.values(): handle['file'].close() if options.get("sort"): scan_utils.sort_csv(handle['filename']) if get_lambda_details: add_lambda_details(handle['filename'], options["_"]["lambda_options"]["logs_client"]) logging.warning("Results written to CSV.") # Save metadata. end_time = scan_utils.local_now() duration = end_time - start_time metadata = { 'start_time': scan_utils.utc_timestamp(start_time), 'end_time': scan_utils.utc_timestamp(end_time), 'duration': scan_utils.just_microseconds(duration), 'durations': durations, 'command': start_command, 'scan_uuid': scan_uuid } scan_utils.write(scan_utils.json_for(metadata), "%s/meta.json" % results_dir) def copy_environment(env: dict) -> dict: """ Return a copy of the environment In the copy, the FAST_CACHE_KEY value is the same object but all other values are deep copies. Parameters ---------- env : dict The original environment dict. Returns ------- dict A new dict in which the FAST_CACHE_KEY value is the same object but all other values are deep copies. """ # Deep copy everything but the cache env_copy = {key: copy.deepcopy(value) for key, value in env.items() if key != FAST_CACHE_KEY} # Reuse the same cache object, if it exists if FAST_CACHE_KEY in env: env_copy[FAST_CACHE_KEY] = env[FAST_CACHE_KEY] return env_copy ### # Core scan method for scanners. (Run once in each worker.) def perform_scan(params: Tuple[Any, str, dict, dict, dict]): scanner, domain, handles, environment, options = params # If the scanner needs to add extra variables in the way that used to be # handled by init_domain, it now needs to deal with those in its __init__ # function and then to call cache_dir = options["_"]["cache_dir"] meta = {'errors': []} rows = None name = scanner.__name__.split(".")[-1] assert name == handles[name]['name'] # Sanity check try: logging.warning("[%s][%s] Running scan..." % (domain, name)) data = None # Init function per-domain (always run locally). scan_environment = {} if hasattr(scanner, "init_domain"): environment_copy = copy_environment(environment) scan_environment = scanner.init_domain(domain, environment_copy, options) # Rely on scanner to say why. if scan_environment is False: # TODO: should we be raising an error here? return scan_environment = {**environment, **scan_environment} # If --cache is on, read from this. Always write to it. domain_cache = scan_utils.cache_path( domain, name, ext="json", cache_dir=cache_dir ) if (options.get("cache")) and (os.path.exists(domain_cache)): logging.warning("\tUsing cached scan response.") raw = scan_utils.read(domain_cache) data = json.loads(raw) if (data.__class__ is dict) and data.get('invalid'): data = None else: # Supported methods: local scans, and Lambda-based. if environment['scan_method'] == "lambda": scan_method = perform_lambda_scan else: scan_method = perform_local_scan # Capture local start and end times around scan. meta['start_time'] = scan_utils.local_now() # Drop the fast cache from the scan_environment before # (potentially) sending to Lambda, since it may be huge scan_environment.pop(FAST_CACHE_KEY, None) data = scan_method(scanner, domain, handles, scan_environment, options, meta) meta['end_time'] = scan_utils.local_now() meta['duration'] = meta['end_time'] - meta['start_time'] # Run the post-scan hook if it's present if hasattr(scanner, 'post_scan'): scanner.post_scan(domain, data, environment, options) if data is not None: # Cache locally. scan_utils.write(scan_utils.json_for(data), domain_cache) # Convert to rows for CSV. rows = scanner.to_rows(data) else: scan_utils.write(scan_utils.invalid(), domain_cache) meta['errors'].append("Scan returned nothing.") except: exception = scan_utils.format_last_exception() meta['errors'].append("Unknown exception: %s" % exception) try: # Always print errors. if len(meta['errors']) > 0: for error in meta['errors']: logging.warning("\t%s" % error) # If --meta wasn't requested, throw it all away. if not options.get("meta", False): meta = {} scan_utils.write_rows( rows, domain, scan_utils.base_domain_for(domain, cache_dir=cache_dir), scanner, handles[name]['writer'], meta=meta) except: logging.warning(scan_utils.format_last_exception()) ### # Local scan (default). # # Run the scan using local CPU, within this worker. # # Let all errors bubble up to perform_scan. def perform_local_scan(scanner, domain, handles, environment, options, meta): logging.warning("\tExecuting local scan...") scanner_name = scanner.__name__.split(".")[-1] # e.g. 'pshtt' # Special Python->JS shim for local use of headless Chrome. if hasattr(scanner, "scan_headless") and (scanner.scan_headless is True): response = headless_scan(scanner_name, domain, environment, options) # Otherwise, just call out and expect the scan to run in Python. else: response = scanner.scan(domain, environment, options) # Serialize and re-parse data as JSON, to normalize dates # using explicit formatting regardless of local Python environment. # # This is also done for Lambda scans, but performed server-side # by the Lambda handler so that it's done before Amazon's own # JSON serialization is used for data transport to the client. return scan_utils.from_json(scan_utils.json_for(response)) ### # Lambda-based scan. # # Run the scan using a Lambda function. This worker will wait # for the Lambda task to complete synchronously. # # Catch some Lambda-specific exceptions around the invoke call, # but otherwise allow exceptions to bubble up to perform_scan. def perform_lambda_scan(scanner, domain, handles, environment, options, meta, previousData=None): logging.warning("\tExecuting Lambda scan...") scanner_name = scanner.__name__.split(".")[-1] # e.g. 'pshtt' invoke_client = options["_"]["lambda_options"]["invoke_client"] data = None max_lambda_retries = options.get('lambda_retries', default_max_lambda_retries) if 'lambda' not in meta: meta['lambda'] = { 'retries': 0 } else: if meta['lambda']['retries'] < max_lambda_retries: meta['lambda']['retries'] = meta['lambda']['retries'] + 1 logging.info('Attempting retry number {} for {}'.format(meta['lambda']['retries'], domain)) else: logging.warn('No more retries for {}'.format(domain)) return previousData task_prefix = "task_" # default, maybe make optional later task_name = "%s%s" % (task_prefix, scanner_name) # JSON payload that arrives as the 'event' object in Lambda. payload = { 'domain': domain, 'options': options, 'scanner': scanner_name, 'environment': environment } bytes_payload = bytes(scan_utils.json_for(payload), encoding='utf-8') try: # For now, do synchronous Lambda requests, essentially just # farming out the hard work to Lambda. This increases max workers # somewhat, since waiting on responses is much, much cheaper than # performing active scanning. retry = False api_response = invoke_client.invoke( FunctionName=task_name, InvocationType='RequestResponse', LogType='None', Payload=bytes_payload ) # Store Lambda request ID for reference in Lambda logs. meta['lambda']['request_id'] = api_response['ResponseMetadata']['RequestId'] # Read payload from Lambda task. raw = str(api_response['Payload'].read(), encoding='utf-8') response = json.loads(raw) logging.debug('Response is: {}'.format(response)) if response is None: meta['errors'].append("Response came back empty. Raw payload response:\n%s\nFull api_response:\n%s" % (raw, api_response)) retry = True # An errorMessage field implies a Lambda-level error. elif response.get("errorMessage") is None: # Payload has some per-task Lambda-specific info. meta['lambda'] = {**meta['lambda'], **response['lambda']} if 'data' in response: # Payload has the actual scan response data. data = response['data'] else: meta['errors'].append("Response object lacked 'data' field. Raw response: %s" % raw) retry = True # An error field implies an exception during the scan. if 'error' in response: meta['errors'].append("Error or exception during scan: %s" % response['error']) retry = True else: meta['errors'].append("Lambda error: %s" % raw) retry = True except botocore.vendored.requests.exceptions.ReadTimeout: meta['errors'].append("Connection timeout while talking to Lambda.") retry = True if not retry: return data else: # Retry return perform_lambda_scan(scanner, domain, handles, environment, options, meta, data) # Given just a CSV with some Lambda detail headers at the end, # fill in the remaining fields from CloudWatch logs. Try to keep # this function relatively stateless (only relying on info in the # Lambda detail fields) to make parallelization/refactoring easier. def add_lambda_details(input_filename, logs_client): logging.warning("Fetching more Lambda details for %s..." % input_filename) input_file = open(input_filename, encoding='utf-8', newline='') tmp_filename = "%s.tmp" % input_filename tmp_file = open(tmp_filename, 'w', newline='') tmp_writer = csv.writer(tmp_file) header = None rows = [] for row in csv.reader(input_file): # keep header and add the Lambda detail headers if (row[0].lower() == "domain"): header = row continue # Read the row into a dict, keyed by header name. dict_row = {} for i, cell in enumerate(row): dict_row[header[i]] = cell logging.warning("[%s][%s] Fetching Lambda details from logs..." % (row[0], input_filename)) details = fetch_lambda_details(dict_row, logs_client) # Matches order of LAMBDA_DETAIL_HEADERS row.append(details.get('reported_duration')) row.append(scan_utils.just_microseconds(details.get('log_delay'))) row.append(details.get('memory_used')) row.append(details.get('errors')) rows.append(row) # Write out headers, adding new fields. tmp_writer.writerow(header + LAMBDA_DETAIL_HEADERS) for row in rows: tmp_writer.writerow(row) # close the file handles input_file.close() tmp_file.close() # replace the original shutil.move(tmp_filename, input_filename) # Get every field in the Lambda details headers. def fetch_lambda_details(dict_row, logs_client): lambda_fields = {'errors': None} request_id = dict_row['Lambda Request ID'] log_group_name = dict_row['Lambda Log Group Name'] log_stream_name = dict_row['Lambda Log Stream Name'] if dict_row.get('Lambda End Time'): lambda_end_time = scan_utils.utc_timestamp_to_local_now(dict_row['Lambda End Time']) else: lambda_end_time = None # Filter log events to final event, with request ID. filter_pattern = ("\"%s\" \"Max Memory Used\"" % request_id) # If requested and available, grab log entries we just generated. try: events = logs_client.filter_log_events( logGroupName=log_group_name, logStreamNames=[log_stream_name], filterPattern=filter_pattern ) except botocore.exceptions.ClientError: lambda_fields['errors'] = "Lambda declined, too many requests." return lambda_fields except: exception = scan_utils.format_last_exception() lambda_fields['errors'] = ("Unknown exception: %s" % exception) logging.warning(exception) return lambda_fields if events and events.get('events'): last_event = events['events'][-1] # Track when the last log entry for this task was ingested. if lambda_end_time: log_end_time = last_event['ingestionTime'] / 1000 lambda_fields['log_delay'] = log_end_time - lambda_end_time else: lambda_fields['log_delay'] = None # Get time and memory use from concluding event message pieces = last_event.get('message', '').strip().split("\t") values = [field.split(":")[1] for field in pieces] lambda_fields['reported_duration'] = values[1] lambda_fields['memory_used'] = values[4] else: lambda_fields["errors"] = "No logs found for this task." logging.warning("\tNo logs found for (group, stream, task): %s, %s, %s" % (log_group_name, log_stream_name, request_id)) return lambda_fields if __name__ == '__main__': options, unknown = scan_utils.options() lambda_mode = options.get("lambda", False) # basic setup - logs, output dirs scan_utils.configure_logging(options) scan_utils.mkdir_p(options["_"]["cache_dir"]) cache_dir = Path(options["_"]["cache_dir"]).resolve() if not cache_dir.exists(): raise FileNotFoundError scan_utils.mkdir_p(options["_"]["results_dir"]) results_dir = Path(options["_"]["results_dir"]).resolve() if not results_dir.exists(): raise FileNotFoundError if lambda_mode: lambda_options = set_aws_credentials(options) lo = options["_"].get("lambda_options", {}) lo.update(lambda_options) lo["lambda_mode"] = True options["_"]["lambda_options"] = lo run(options, unknown, cache_dir, results_dir)