/* Target Definitions for TI C6X. Copyright (C) 2010-2018 Free Software Foundation, Inc. Contributed by Andrew Jenner Contributed by Bernd Schmidt This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_C6X_H #define GCC_C6X_H /* Feature bit definitions that enable specific insns. */ #define C6X_INSNS_C62X 1 #define C6X_INSNS_C64X 2 #define C6X_INSNS_C64XP 4 #define C6X_INSNS_C67X 8 #define C6X_INSNS_C67XP 16 #define C6X_INSNS_C674X 32 #define C6X_INSNS_ATOMIC 64 #define C6X_INSNS_ALL_CPU_BITS 127 #define C6X_DEFAULT_INSN_MASK \ (C6X_INSNS_C62X | C6X_INSNS_C64X | C6X_INSNS_C64XP) /* A mask of allowed insn types, as defined above. */ extern unsigned long c6x_insn_mask; /* Value of -march= */ extern c6x_cpu_t c6x_arch; #define C6X_DEFAULT_ARCH C6X_CPU_C64XP /* True if the target has C64x instructions. */ #define TARGET_INSNS_64 ((c6x_insn_mask & C6X_INSNS_C64X) != 0) /* True if the target has C64x+ instructions. */ #define TARGET_INSNS_64PLUS ((c6x_insn_mask & C6X_INSNS_C64XP) != 0) /* True if the target has C67x instructions. */ #define TARGET_INSNS_67 ((c6x_insn_mask & C6X_INSNS_C67X) != 0) /* True if the target has C67x+ instructions. */ #define TARGET_INSNS_67PLUS ((c6x_insn_mask & C6X_INSNS_C67XP) != 0) /* True if the target supports doubleword loads. */ #define TARGET_LDDW (TARGET_INSNS_64 || TARGET_INSNS_67) /* True if the target supports doubleword loads. */ #define TARGET_STDW TARGET_INSNS_64 /* True if the target supports the MPY32 family of instructions. */ #define TARGET_MPY32 TARGET_INSNS_64PLUS /* True if the target has floating point hardware. */ #define TARGET_FP TARGET_INSNS_67 /* True if the target has C67x+ floating point extensions. */ #define TARGET_FP_EXT TARGET_INSNS_67PLUS #define TARGET_DEFAULT 0 /* Run-time Target. */ #define TARGET_CPU_CPP_BUILTINS() \ do \ { \ builtin_assert ("machine=tic6x"); \ builtin_assert ("cpu=tic6x"); \ builtin_define ("__TMS320C6X__"); \ builtin_define ("_TMS320C6X"); \ \ if (TARGET_DSBT) \ builtin_define ("__DSBT__"); \ \ if (TARGET_BIG_ENDIAN) \ builtin_define ("_BIG_ENDIAN"); \ else \ builtin_define ("_LITTLE_ENDIAN"); \ \ switch (c6x_arch) \ { \ case unk_isa: \ break; \ case C6X_CPU_C62X: \ builtin_define ("_TMS320C6200"); \ break; \ \ case C6X_CPU_C64XP: \ builtin_define ("_TMS320C6400_PLUS"); \ /* fall through */ \ case C6X_CPU_C64X: \ builtin_define ("_TMS320C6400"); \ break; \ \ case C6X_CPU_C67XP: \ builtin_define ("_TMS320C6700_PLUS"); \ /* fall through */ \ case C6X_CPU_C67X: \ builtin_define ("_TMS320C6700"); \ break; \ \ case C6X_CPU_C674X: \ builtin_define ("_TMS320C6740"); \ builtin_define ("_TMS320C6700_PLUS"); \ builtin_define ("_TMS320C6700"); \ builtin_define ("_TMS320C6400_PLUS"); \ builtin_define ("_TMS320C6400"); \ break; \ } \ } while (0) #define OPTION_DEFAULT_SPECS \ {"arch", "%{!march=*:-march=%(VALUE)}" } /* Storage Layout. */ #define BITS_BIG_ENDIAN 0 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) #define REG_WORDS_BIG_ENDIAN 0 #define UNITS_PER_WORD 4 #define PARM_BOUNDARY 8 #define STACK_BOUNDARY 64 #define FUNCTION_BOUNDARY 32 #define BIGGEST_ALIGNMENT 64 #define STRICT_ALIGNMENT 1 /* The ABI requires static arrays must be at least 8 byte aligned. Really only externally visible arrays must be aligned this way, as only those are directly visible from another compilation unit. But we don't have that information available here. */ #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \ (((ALIGN) < BITS_PER_UNIT * 8 && TREE_CODE (TYPE) == ARRAY_TYPE) \ ? BITS_PER_UNIT * 8 : (ALIGN)) /* Type Layout. */ #define DEFAULT_SIGNED_CHAR 1 #undef SIZE_TYPE #define SIZE_TYPE "unsigned int" #undef PTRDIFF_TYPE #define PTRDIFF_TYPE "int" /* Registers. */ #define FIRST_PSEUDO_REGISTER 67 #define FIXED_REGISTERS \ { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, \ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 1, 1, 1} #define CALL_USED_REGISTERS \ { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1} /* This lists call-used non-predicate registers first, followed by call-used registers, followed by predicate registers. We want to avoid allocating the predicate registers for other uses as much as possible. */ #define REG_ALLOC_ORDER \ { \ REG_A0, REG_A3, REG_A4, REG_A5, REG_A6, REG_A7, REG_A8, REG_A9, \ REG_A16, REG_A17, REG_A18, REG_A19, REG_A20, REG_A21, REG_A22, REG_A23, \ REG_A24, REG_A25, REG_A26, REG_A27, REG_A28, REG_A29, REG_A30, REG_A31, \ REG_B4, REG_B5, REG_B6, REG_B7, REG_B8, REG_B9, REG_B16, \ REG_B17, REG_B18, REG_B19, REG_B20, REG_B21, REG_B22, REG_B23, REG_B24, \ REG_B25, REG_B26, REG_B27, REG_B28, REG_B29, REG_B30, REG_B31, \ REG_A10, REG_A11, REG_A12, REG_A13, REG_A14, REG_A15, \ REG_B3, REG_B10, REG_B11, REG_B12, REG_B13, REG_B14, REG_B15, \ REG_A1, REG_A2, REG_B0, REG_B1, REG_B2, REG_ILC \ } /* Register Classes. */ enum reg_class { NO_REGS, PREDICATE_A_REGS, PREDICATE_B_REGS, PREDICATE_REGS, PICREG, SPREG, CALL_USED_B_REGS, NONPREDICATE_A_REGS, NONPREDICATE_B_REGS, NONPREDICATE_REGS, A_REGS, B_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES }; #define N_REG_CLASSES (int) LIM_REG_CLASSES #define REG_CLASS_NAMES { \ "NO_REGS", \ "PREDICATE_A_REGS", \ "PREDICATE_B_REGS", \ "PREDICATE_REGS", \ "PICREG", \ "SPREG", \ "CALL_USED_B_REGS", \ "NONPREDICATE_A_REGS", \ "NONPREDICATE_B_REGS", \ "NONPREDICATE_REGS", \ "A_REGS", \ "B_REGS", \ "GENERAL_REGS", \ "ALL_REGS" } #define REG_CLASS_CONTENTS \ { \ /* NO_REGS. */ \ { 0x00000000, 0x00000000, 0 }, \ /* PREDICATE_A_REGS. */ \ { 0x00000006, 0x00000000, 0 }, \ /* PREDICATE_B_REGS. */ \ { 0x00000000, 0x00000007, 0 }, \ /* PREDICATE_REGS. */ \ { 0x00000006, 0x00000007, 0 }, \ /* PICREG. */ \ { 0x00000000, 0x00004000, 0 }, \ /* SPREG. */ \ { 0x00000000, 0x00008000, 0 }, \ /* CALL_USED_B_REGS. */ \ { 0x00000000, 0xFFFF03FF, 0 }, \ /* NONPREDICATE_A_REGS. */ \ { 0xFFFFFFF9, 0x00000000, 0 }, \ /* NONPREDICATE_B_REGS. */ \ { 0x00000000, 0xFFFFFFF8, 0 }, \ /* NONPREDICATE_REGS. */ \ { 0xFFFFFFF9, 0xFFFFFFF8, 0 }, \ /* A_REGS. */ \ { 0xFFFFFFFF, 0x00000000, 3 }, \ /* B_REGS. */ \ { 0x00000000, 0xFFFFFFFF, 3 }, \ /* GENERAL_REGS. */ \ { 0xFFFFFFFF, 0xFFFFFFFF, 3 }, \ /* ALL_REGS. */ \ { 0xFFFFFFFF, 0xFFFFFFFF, 7 }, \ } #define A_REGNO_P(N) ((N) <= REG_A31) #define B_REGNO_P(N) ((N) >= REG_B0 && (N) <= REG_B31) #define A_REG_P(X) (REG_P (X) && A_REGNO_P (REGNO (X))) #define CROSS_OPERANDS(X0,X1) \ (A_REG_P (X0) == A_REG_P (X1) ? CROSS_N : CROSS_Y) #define REGNO_REG_CLASS(reg) \ ((reg) >= REG_A1 && (reg) <= REG_A2 ? PREDICATE_A_REGS \ : (reg) == REG_A0 && TARGET_INSNS_64 ? PREDICATE_A_REGS \ : (reg) >= REG_B0 && (reg) <= REG_B2 ? PREDICATE_B_REGS \ : A_REGNO_P (reg) ? NONPREDICATE_A_REGS \ : call_used_regs[reg] ? CALL_USED_B_REGS : B_REGS) #define BASE_REG_CLASS ALL_REGS #define INDEX_REG_CLASS ALL_REGS #define REGNO_OK_FOR_BASE_STRICT_P(X) \ ((X) < FIRST_PSEUDO_REGISTER \ || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER)) #define REGNO_OK_FOR_BASE_NONSTRICT_P(X) 1 #define REGNO_OK_FOR_INDEX_STRICT_P(X) \ ((X) < FIRST_PSEUDO_REGISTER \ || (reg_renumber[X] >= 0 && reg_renumber[X] < FIRST_PSEUDO_REGISTER)) #define REGNO_OK_FOR_INDEX_NONSTRICT_P(X) 1 #ifdef REG_OK_STRICT #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_STRICT_P (X) #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_STRICT_P (X) #else #define REGNO_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_NONSTRICT_P (X) #define REGNO_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_NONSTRICT_P (X) #endif #define CLASS_MAX_NREGS(class, mode) \ ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) #define REGNO_OK_FOR_INDIRECT_JUMP_P(REGNO, MODE) B_REGNO_P (REGNO) /* Stack and Calling. */ /* SP points to 4 bytes below the first word of the frame. */ #define STACK_POINTER_OFFSET 4 /* Likewise for AP (which is the incoming stack pointer). */ #define FIRST_PARM_OFFSET(fundecl) 4 #define FRAME_GROWS_DOWNWARD 1 #define STACK_GROWS_DOWNWARD 1 #define STACK_POINTER_REGNUM REG_B15 #define HARD_FRAME_POINTER_REGNUM REG_A15 /* These two always get eliminated in favour of the stack pointer or the hard frame pointer. */ #define FRAME_POINTER_REGNUM REG_FRAME #define ARG_POINTER_REGNUM REG_ARGP #define PIC_OFFSET_TABLE_REGNUM REG_B14 /* We keep the stack pointer constant rather than using push/pop instructions. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* Before the prologue, the return address is in the B3 register. */ #define RETURN_ADDR_REGNO REG_B3 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNO) #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (RETURN_ADDR_REGNO) #define RETURN_ADDR_RTX(COUNT, FRAME) c6x_return_addr_rtx (COUNT) #define INCOMING_FRAME_SP_OFFSET 0 #define ARG_POINTER_CFA_OFFSET(fundecl) 0 #define STATIC_CHAIN_REGNUM REG_A2 struct c6x_args { /* Number of arguments to pass in registers. */ int nregs; /* Number of arguments passed in registers so far. */ int count; }; #define CUMULATIVE_ARGS struct c6x_args #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \ c6x_init_cumulative_args (&cum, fntype, libname, n_named_args) #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ (c6x_block_reg_pad_upward (MODE, TYPE, FIRST) ? PAD_UPWARD : PAD_DOWNWARD) #define FUNCTION_ARG_REGNO_P(r) \ (((r) >= REG_A4 && (r) <= REG_A13) || ((r) >= REG_B4 && (r) <= REG_B13)) #define DEFAULT_PCC_STRUCT_RETURN 0 #define FUNCTION_PROFILER(file, labelno) \ fatal_error (input_location, \ "profiling is not yet implemented for this architecture") /* Trampolines. */ #define TRAMPOLINE_SIZE 32 #define TRAMPOLINE_ALIGNMENT 256 #define ELIMINABLE_REGS \ {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \ /* Define the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ((OFFSET) = c6x_initial_elimination_offset ((FROM), (TO))) /* Addressing Modes. */ #define CONSTANT_ADDRESS_P(x) (CONSTANT_P(x) && GET_CODE(x) != CONST_DOUBLE) #define MAX_REGS_PER_ADDRESS 2 #define HAVE_PRE_DECREMENT 1 #define HAVE_POST_DECREMENT 1 #define HAVE_PRE_INCREMENT 1 #define HAVE_POST_INCREMENT 1 /* Register forms are available, but due to scaling we currently don't support them. */ #define HAVE_PRE_MODIFY_DISP 1 #define HAVE_POST_MODIFY_DISP 1 #define LEGITIMATE_PIC_OPERAND_P(X) \ (!symbolic_operand (X, SImode)) struct GTY(()) machine_function { /* True if we expanded a sibling call. */ int contains_sibcall; }; /* Costs. */ #define NO_FUNCTION_CSE 1 #define SLOW_BYTE_ACCESS 0 #define BRANCH_COST(speed_p, predictable_p) 6 /* Model costs for the vectorizer. */ /* Cost of conditional branch. */ #ifndef TARG_COND_BRANCH_COST #define TARG_COND_BRANCH_COST 6 #endif /* Cost of any scalar operation, excluding load and store. */ #ifndef TARG_SCALAR_STMT_COST #define TARG_SCALAR_STMT_COST 1 #endif /* Cost of scalar load. */ #undef TARG_SCALAR_LOAD_COST #define TARG_SCALAR_LOAD_COST 2 /* load + rotate */ /* Cost of scalar store. */ #undef TARG_SCALAR_STORE_COST #define TARG_SCALAR_STORE_COST 10 /* Cost of any vector operation, excluding load, store, or vector to scalar operation. */ #undef TARG_VEC_STMT_COST #define TARG_VEC_STMT_COST 1 /* Cost of vector to scalar operation. */ #undef TARG_VEC_TO_SCALAR_COST #define TARG_VEC_TO_SCALAR_COST 1 /* Cost of scalar to vector operation. */ #undef TARG_SCALAR_TO_VEC_COST #define TARG_SCALAR_TO_VEC_COST 1 /* Cost of aligned vector load. */ #undef TARG_VEC_LOAD_COST #define TARG_VEC_LOAD_COST 1 /* Cost of misaligned vector load. */ #undef TARG_VEC_UNALIGNED_LOAD_COST #define TARG_VEC_UNALIGNED_LOAD_COST 2 /* Cost of vector store. */ #undef TARG_VEC_STORE_COST #define TARG_VEC_STORE_COST 1 /* Cost of vector permutation. */ #ifndef TARG_VEC_PERMUTE_COST #define TARG_VEC_PERMUTE_COST 1 #endif /* ttype entries (the only interesting data references used) are sb-relative got-indirect (aka .ehtype). */ #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \ (((code) == 0 && (data) == 1) ? (DW_EH_PE_datarel | DW_EH_PE_indirect) \ : DW_EH_PE_absptr) /* This should be the same as the definition in elfos.h, plus the call to output special unwinding directives. */ #undef ASM_DECLARE_FUNCTION_NAME #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ do \ { \ c6x_output_file_unwind (FILE); \ ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \ ASM_OUTPUT_LABEL (FILE, NAME); \ } \ while (0) /* This should be the same as the definition in elfos.h, plus the call to output special unwinding directives. */ #undef ASM_DECLARE_FUNCTION_SIZE #define ASM_DECLARE_FUNCTION_SIZE(STREAM, NAME, DECL) \ c6x_function_end (STREAM, NAME) /* Arbitrarily choose A4/A5. */ #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? (N) + 4 : INVALID_REGNUM) /* The register that holds the return address in exception handlers. */ #define C6X_EH_STACKADJ_REGNUM 3 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, C6X_EH_STACKADJ_REGNUM) /* Assembler Format. */ #define DWARF2_ASM_LINE_DEBUG_INFO 1 #undef ASM_APP_ON #define ASM_APP_ON "\t; #APP \n" #undef ASM_APP_OFF #define ASM_APP_OFF "\t; #NO_APP \n" #define ASM_OUTPUT_COMMON(stream, name, size, rounded) #define ASM_OUTPUT_LOCAL(stream, name, size, rounded) #define GLOBAL_ASM_OP "\t.global\t" #define REGISTER_NAMES \ { \ "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7", \ "A8", "A9", "A10", "A11", "A12", "A13", "A14", "A15", \ "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", \ "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", \ "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7", \ "B8", "B9", "B10", "B11", "B12", "B13", "B14", "B15", \ "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", \ "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", \ "FP", "ARGP", "ILC" } #define DBX_REGISTER_NUMBER(N) (dbx_register_map[(N)]) extern unsigned const dbx_register_map[FIRST_PSEUDO_REGISTER]; #define FINAL_PRESCAN_INSN c6x_final_prescan_insn #define TEXT_SECTION_ASM_OP ".text;" #define DATA_SECTION_ASM_OP ".data;" #define ASM_OUTPUT_ALIGN(stream, power) \ do \ { \ if (power) \ fprintf ((stream), "\t.align\t%d\n", power); \ } \ while (0) #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ do { char __buf[256]; \ fprintf (FILE, "\t.long\t"); \ ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \ assemble_name (FILE, __buf); \ fputc ('\n', FILE); \ } while (0) /* Determine whether to place EXP (an expression or a decl) should be placed into one of the small data sections. */ #define PLACE_IN_SDATA_P(EXP) \ (c6x_sdata_mode == C6X_SDATA_NONE ? false \ : c6x_sdata_mode == C6X_SDATA_ALL ? true \ : !AGGREGATE_TYPE_P (TREE_TYPE (EXP))) #define SCOMMON_ASM_OP "\t.scomm\t" #undef ASM_OUTPUT_ALIGNED_DECL_COMMON #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \ do \ { \ if (DECL != NULL && PLACE_IN_SDATA_P (DECL)) \ fprintf ((FILE), "%s", SCOMMON_ASM_OP); \ else \ fprintf ((FILE), "%s", COMMON_ASM_OP); \ assemble_name ((FILE), (NAME)); \ fprintf ((FILE), ",%u,%u\n", (int)(SIZE), (ALIGN) / BITS_PER_UNIT);\ } \ while (0) /* This says how to output assembler code to declare an uninitialized internal linkage data object. */ #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \ do { \ if (PLACE_IN_SDATA_P (DECL)) \ switch_to_section (sbss_section); \ else \ switch_to_section (bss_section); \ ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "object"); \ if (!flag_inhibit_size_directive) \ ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \ ASM_OUTPUT_ALIGN ((FILE), exact_log2((ALIGN) / BITS_PER_UNIT)); \ ASM_OUTPUT_LABEL(FILE, NAME); \ ASM_OUTPUT_SKIP((FILE), (SIZE) ? (SIZE) : 1); \ } while (0) #define CASE_VECTOR_PC_RELATIVE flag_pic #define JUMP_TABLES_IN_TEXT_SECTION flag_pic #define ADDR_VEC_ALIGN(VEC) (JUMP_TABLES_IN_TEXT_SECTION ? 5 : 2) /* This is how to output an element of a case-vector that is relative. */ #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ do { char buf[100]; \ fputs ("\t.long ", FILE); \ ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \ assemble_name (FILE, buf); \ putc ('-', FILE); \ ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \ assemble_name (FILE, buf); \ putc ('\n', FILE); \ } while (0) /* Misc. */ #define CASE_VECTOR_MODE SImode #define MOVE_MAX 4 #define MOVE_RATIO(SPEED) 4 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1) #define Pmode SImode #define FUNCTION_MODE QImode #define CPU_UNITS_QUERY 1 extern int c6x_initial_flag_pic; #endif /* GCC_C6X_H */