/* Subroutines used for ISR of Andes NDS32 cpu for GNU compiler Copyright (C) 2012-2018 Free Software Foundation, Inc. Contributed by Andes Technology Corporation. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* ------------------------------------------------------------------------ */ #define IN_TARGET_CODE 1 #include "config.h" #include "system.h" #include "coretypes.h" #include "backend.h" #include "target.h" #include "rtl.h" #include "tree.h" #include "stringpool.h" #include "attribs.h" #include "diagnostic-core.h" #include "output.h" /* ------------------------------------------------------------------------ */ /* Refer to nds32.h, there are maximum 73 isr vectors in nds32 architecture. 0 for reset handler with __attribute__((reset())), 1-8 for exception handler with __attribute__((exception(1,...,8))), and 9-72 for interrupt handler with __attribute__((interrupt(0,...,63))). We use an array to record essential information for each vector. */ static struct nds32_isr_info nds32_isr_vectors[NDS32_N_ISR_VECTORS]; /* ------------------------------------------------------------------------ */ /* A helper function to emit section head template. */ static void nds32_emit_section_head_template (char section_name[], char symbol_name[], int align_value, bool object_p) { const char *flags_str; const char *type_str; flags_str = (object_p) ? "\"a\"" : "\"ax\""; type_str = (object_p) ? "@object" : "@function"; fprintf (asm_out_file, "\t.section\t%s, %s\n", section_name, flags_str); fprintf (asm_out_file, "\t.align\t%d\n", align_value); fprintf (asm_out_file, "\t.global\t%s\n", symbol_name); fprintf (asm_out_file, "\t.type\t%s, %s\n", symbol_name, type_str); fprintf (asm_out_file, "%s:\n", symbol_name); } /* A helper function to emit section tail template. */ static void nds32_emit_section_tail_template (char symbol_name[]) { fprintf (asm_out_file, "\t.size\t%s, .-%s\n", symbol_name, symbol_name); } /* Function to emit isr jump table section. */ static void nds32_emit_isr_jmptbl_section (int vector_id) { char section_name[100]; char symbol_name[100]; /* Prepare jmptbl section and symbol name. */ snprintf (section_name, sizeof (section_name), ".nds32_jmptbl.%02d", vector_id); snprintf (symbol_name, sizeof (symbol_name), "_nds32_jmptbl_%02d", vector_id); nds32_emit_section_head_template (section_name, symbol_name, 2, true); fprintf (asm_out_file, "\t.word\t%s\n", nds32_isr_vectors[vector_id].func_name); nds32_emit_section_tail_template (symbol_name); } /* Function to emit isr vector section. */ static void nds32_emit_isr_vector_section (int vector_id) { unsigned int vector_number_offset = 0; const char *c_str = "CATEGORY"; const char *sr_str = "SR"; const char *nt_str = "NT"; const char *vs_str = "VS"; char first_level_handler_name[100]; char section_name[100]; char symbol_name[100]; /* Set the vector number offset so that we can calculate the value that user specifies in the attribute. We also prepare the category string for first level handler name. */ switch (nds32_isr_vectors[vector_id].category) { case NDS32_ISR_INTERRUPT: vector_number_offset = 9; c_str = "i"; break; case NDS32_ISR_EXCEPTION: vector_number_offset = 0; c_str = "e"; break; case NDS32_ISR_NONE: case NDS32_ISR_RESET: /* Normally it should not be here. */ gcc_unreachable (); break; } /* Prepare save reg string for first level handler name. */ switch (nds32_isr_vectors[vector_id].save_reg) { case NDS32_SAVE_ALL: sr_str = "sa"; break; case NDS32_PARTIAL_SAVE: sr_str = "ps"; break; } /* Prepare nested type string for first level handler name. */ switch (nds32_isr_vectors[vector_id].nested_type) { case NDS32_NESTED: nt_str = "ns"; break; case NDS32_NOT_NESTED: nt_str = "nn"; break; case NDS32_NESTED_READY: nt_str = "nr"; break; } /* Currently we have 4-byte or 16-byte size for each vector. If it is 4-byte, the first level handler name has suffix string "_4b". */ vs_str = (nds32_isr_vector_size == 4) ? "_4b" : ""; /* Now we can create first level handler name. */ snprintf (first_level_handler_name, sizeof (first_level_handler_name), "_nds32_%s_%s_%s%s", c_str, sr_str, nt_str, vs_str); /* Prepare vector section and symbol name. */ snprintf (section_name, sizeof (section_name), ".nds32_vector.%02d", vector_id); snprintf (symbol_name, sizeof (symbol_name), "_nds32_vector_%02d%s", vector_id, vs_str); /* Everything is ready. We can start emit vector section content. */ nds32_emit_section_head_template (section_name, symbol_name, floor_log2 (nds32_isr_vector_size), false); /* According to the vector size, the instructions in the vector section may be different. */ if (nds32_isr_vector_size == 4) { /* This block is for 4-byte vector size. Hardware $VID support is necessary and only one instruction is needed in vector section. */ fprintf (asm_out_file, "\tj\t%s ! jump to first level handler\n", first_level_handler_name); } else { /* This block is for 16-byte vector size. There is NO hardware $VID so that we need several instructions such as pushing GPRs and preparing software vid at vector section. For pushing GPRs, there are four variations for 16-byte vector content and we have to handle each combination. For preparing software vid, note that the vid need to be substracted vector_number_offset. */ if (TARGET_REDUCED_REGS) { if (nds32_isr_vectors[vector_id].save_reg == NDS32_SAVE_ALL) { /* Case of reduced set registers and save_all attribute. */ fprintf (asm_out_file, "\t! reduced set regs + save_all\n"); fprintf (asm_out_file, "\tsmw.adm\t$r15, [$sp], $r15, 0xf\n"); fprintf (asm_out_file, "\tsmw.adm\t$r0, [$sp], $r10, 0x0\n"); } else { /* Case of reduced set registers and partial_save attribute. */ fprintf (asm_out_file, "\t! reduced set regs + partial_save\n"); fprintf (asm_out_file, "\tsmw.adm\t$r15, [$sp], $r15, 0x2\n"); fprintf (asm_out_file, "\tsmw.adm\t$r0, [$sp], $r5, 0x0\n"); } } else { if (nds32_isr_vectors[vector_id].save_reg == NDS32_SAVE_ALL) { /* Case of full set registers and save_all attribute. */ fprintf (asm_out_file, "\t! full set regs + save_all\n"); fprintf (asm_out_file, "\tsmw.adm\t$r0, [$sp], $r27, 0xf\n"); } else { /* Case of full set registers and partial_save attribute. */ fprintf (asm_out_file, "\t! full set regs + partial_save\n"); fprintf (asm_out_file, "\tsmw.adm\t$r15, [$sp], $r27, 0x2\n"); fprintf (asm_out_file, "\tsmw.adm\t$r0, [$sp], $r5, 0x0\n"); } } fprintf (asm_out_file, "\tmovi\t$r0, %d ! preparing software vid\n", vector_id - vector_number_offset); fprintf (asm_out_file, "\tj\t%s ! jump to first level handler\n", first_level_handler_name); } nds32_emit_section_tail_template (symbol_name); } /* Function to emit isr reset handler content. Including all jmptbl/vector references, jmptbl section, vector section, nmi handler section, and warm handler section. */ static void nds32_emit_isr_reset_content (void) { unsigned int i; unsigned int total_n_vectors; const char *vs_str; char reset_handler_name[100]; char section_name[100]; char symbol_name[100]; total_n_vectors = nds32_isr_vectors[0].total_n_vectors; vs_str = (nds32_isr_vector_size == 4) ? "_4b" : ""; fprintf (asm_out_file, "\t! RESET HANDLER CONTENT - BEGIN !\n"); /* Create references in .rodata according to total number of vectors. */ fprintf (asm_out_file, "\t.section\t.rodata\n"); fprintf (asm_out_file, "\t.align\t2\n"); /* Emit jmptbl references. */ fprintf (asm_out_file, "\t ! references to jmptbl section entries\n"); for (i = 0; i < total_n_vectors; i++) fprintf (asm_out_file, "\t.word\t_nds32_jmptbl_%02d\n", i); /* Emit vector references. */ fprintf (asm_out_file, "\t ! references to vector section entries\n"); for (i = 0; i < total_n_vectors; i++) fprintf (asm_out_file, "\t.word\t_nds32_vector_%02d%s\n", i, vs_str); /* Emit jmptbl_00 section. */ snprintf (section_name, sizeof (section_name), ".nds32_jmptbl.00"); snprintf (symbol_name, sizeof (symbol_name), "_nds32_jmptbl_00"); fprintf (asm_out_file, "\t! ....................................\n"); nds32_emit_section_head_template (section_name, symbol_name, 2, true); fprintf (asm_out_file, "\t.word\t%s\n", nds32_isr_vectors[0].func_name); nds32_emit_section_tail_template (symbol_name); /* Emit vector_00 section. */ snprintf (section_name, sizeof (section_name), ".nds32_vector.00"); snprintf (symbol_name, sizeof (symbol_name), "_nds32_vector_00%s", vs_str); snprintf (reset_handler_name, sizeof (reset_handler_name), "_nds32_reset%s", vs_str); fprintf (asm_out_file, "\t! ....................................\n"); nds32_emit_section_head_template (section_name, symbol_name, floor_log2 (nds32_isr_vector_size), false); fprintf (asm_out_file, "\tj\t%s ! jump to reset handler\n", reset_handler_name); nds32_emit_section_tail_template (symbol_name); /* Emit nmi handler section. */ snprintf (section_name, sizeof (section_name), ".nds32_nmih"); snprintf (symbol_name, sizeof (symbol_name), "_nds32_nmih"); fprintf (asm_out_file, "\t! ....................................\n"); nds32_emit_section_head_template (section_name, symbol_name, 2, true); fprintf (asm_out_file, "\t.word\t%s\n", (strlen (nds32_isr_vectors[0].nmi_name) == 0) ? "0" : nds32_isr_vectors[0].nmi_name); nds32_emit_section_tail_template (symbol_name); /* Emit warm handler section. */ snprintf (section_name, sizeof (section_name), ".nds32_wrh"); snprintf (symbol_name, sizeof (symbol_name), "_nds32_wrh"); fprintf (asm_out_file, "\t! ....................................\n"); nds32_emit_section_head_template (section_name, symbol_name, 2, true); fprintf (asm_out_file, "\t.word\t%s\n", (strlen (nds32_isr_vectors[0].warm_name) == 0) ? "0" : nds32_isr_vectors[0].warm_name); nds32_emit_section_tail_template (symbol_name); fprintf (asm_out_file, "\t! RESET HANDLER CONTENT - END !\n"); } /* Function for nds32_merge_decl_attributes() and nds32_insert_attributes() to check if there are any conflict isr-specific attributes being set. We need to check: 1. Only 'save_all' or 'partial_save' in the attributes. 2. Only 'nested', 'not_nested', or 'nested_ready' in the attributes. 3. Only 'interrupt', 'exception', or 'reset' in the attributes. */ void nds32_check_isr_attrs_conflict (tree func_decl, tree func_attrs) { int save_all_p, partial_save_p; int nested_p, not_nested_p, nested_ready_p; int intr_p, excp_p, reset_p; /* Initialize variables. */ save_all_p = partial_save_p = 0; nested_p = not_nested_p = nested_ready_p = 0; intr_p = excp_p = reset_p = 0; /* We must check at MOST one attribute to set save-reg. */ if (lookup_attribute ("save_all", func_attrs)) save_all_p = 1; if (lookup_attribute ("partial_save", func_attrs)) partial_save_p = 1; if ((save_all_p + partial_save_p) > 1) error ("multiple save reg attributes to function %qD", func_decl); /* We must check at MOST one attribute to set nested-type. */ if (lookup_attribute ("nested", func_attrs)) nested_p = 1; if (lookup_attribute ("not_nested", func_attrs)) not_nested_p = 1; if (lookup_attribute ("nested_ready", func_attrs)) nested_ready_p = 1; if ((nested_p + not_nested_p + nested_ready_p) > 1) error ("multiple nested types attributes to function %qD", func_decl); /* We must check at MOST one attribute to set interrupt/exception/reset. */ if (lookup_attribute ("interrupt", func_attrs)) intr_p = 1; if (lookup_attribute ("exception", func_attrs)) excp_p = 1; if (lookup_attribute ("reset", func_attrs)) reset_p = 1; if ((intr_p + excp_p + reset_p) > 1) error ("multiple interrupt attributes to function %qD", func_decl); } /* Function to construct isr vectors information array. We DO NOT HAVE TO check if the attributes are valid because those works are supposed to be done on nds32_merge_decl_attributes() and nds32_insert_attributes(). */ void nds32_construct_isr_vectors_information (tree func_attrs, const char *func_name) { tree save_all, partial_save; tree nested, not_nested, nested_ready; tree intr, excp, reset; save_all = lookup_attribute ("save_all", func_attrs); partial_save = lookup_attribute ("partial_save", func_attrs); nested = lookup_attribute ("nested", func_attrs); not_nested = lookup_attribute ("not_nested", func_attrs); nested_ready = lookup_attribute ("nested_ready", func_attrs); intr = lookup_attribute ("interrupt", func_attrs); excp = lookup_attribute ("exception", func_attrs); reset = lookup_attribute ("reset", func_attrs); /* If there is no interrupt/exception/reset, we can return immediately. */ if (!intr && !excp && !reset) return; /* If we are here, either we have interrupt/exception, or reset attribute. */ if (intr || excp) { tree id_list; /* Prepare id list so that we can traverse and set vector id. */ id_list = (intr) ? (TREE_VALUE (intr)) : (TREE_VALUE (excp)); while (id_list) { tree id; int vector_id; unsigned int vector_number_offset; /* The way to handle interrupt or exception is the same, we just need to take care of actual vector number. For interrupt(0..63), the actual vector number is (9..72). For exception(1..8), the actual vector number is (1..8). */ vector_number_offset = (intr) ? (9) : (0); /* Pick up each vector id value. */ id = TREE_VALUE (id_list); /* Add vector_number_offset to get actual vector number. */ vector_id = TREE_INT_CST_LOW (id) + vector_number_offset; /* Enable corresponding vector and set function name. */ nds32_isr_vectors[vector_id].category = (intr) ? (NDS32_ISR_INTERRUPT) : (NDS32_ISR_EXCEPTION); strcpy (nds32_isr_vectors[vector_id].func_name, func_name); /* Set register saving scheme. */ if (save_all) nds32_isr_vectors[vector_id].save_reg = NDS32_SAVE_ALL; else if (partial_save) nds32_isr_vectors[vector_id].save_reg = NDS32_PARTIAL_SAVE; /* Set nested type. */ if (nested) nds32_isr_vectors[vector_id].nested_type = NDS32_NESTED; else if (not_nested) nds32_isr_vectors[vector_id].nested_type = NDS32_NOT_NESTED; else if (nested_ready) nds32_isr_vectors[vector_id].nested_type = NDS32_NESTED_READY; /* Advance to next id. */ id_list = TREE_CHAIN (id_list); } } else { tree id_list; tree id; tree nmi, warm; /* Deal with reset attribute. Its vector number is always 0. */ nds32_isr_vectors[0].category = NDS32_ISR_RESET; /* Prepare id_list and identify id value so that we can set total number of vectors. */ id_list = TREE_VALUE (reset); id = TREE_VALUE (id_list); /* The total vectors = interrupt + exception numbers + reset. There are 8 exception and 1 reset in nds32 architecture. */ nds32_isr_vectors[0].total_n_vectors = TREE_INT_CST_LOW (id) + 8 + 1; strcpy (nds32_isr_vectors[0].func_name, func_name); /* Retrieve nmi and warm function. */ nmi = lookup_attribute ("nmi", func_attrs); warm = lookup_attribute ("warm", func_attrs); if (nmi != NULL_TREE) { tree nmi_func_list; tree nmi_func; nmi_func_list = TREE_VALUE (nmi); nmi_func = TREE_VALUE (nmi_func_list); /* Record nmi function name. */ strcpy (nds32_isr_vectors[0].nmi_name, IDENTIFIER_POINTER (nmi_func)); } if (warm != NULL_TREE) { tree warm_func_list; tree warm_func; warm_func_list = TREE_VALUE (warm); warm_func = TREE_VALUE (warm_func_list); /* Record warm function name. */ strcpy (nds32_isr_vectors[0].warm_name, IDENTIFIER_POINTER (warm_func)); } } } /* A helper function to handle isr stuff at the beginning of asm file. */ void nds32_asm_file_start_for_isr (void) { int i; /* Initialize isr vector information array before compiling functions. */ for (i = 0; i < NDS32_N_ISR_VECTORS; i++) { nds32_isr_vectors[i].category = NDS32_ISR_NONE; strcpy (nds32_isr_vectors[i].func_name, ""); nds32_isr_vectors[i].save_reg = NDS32_PARTIAL_SAVE; nds32_isr_vectors[i].nested_type = NDS32_NOT_NESTED; nds32_isr_vectors[i].total_n_vectors = 0; strcpy (nds32_isr_vectors[i].nmi_name, ""); strcpy (nds32_isr_vectors[i].warm_name, ""); } } /* A helper function to handle isr stuff at the end of asm file. */ void nds32_asm_file_end_for_isr (void) { int i; /* If all the vectors are NDS32_ISR_NONE, we can return immediately. */ for (i = 0; i < NDS32_N_ISR_VECTORS; i++) if (nds32_isr_vectors[i].category != NDS32_ISR_NONE) break; if (i == NDS32_N_ISR_VECTORS) return; /* At least one vector is NOT NDS32_ISR_NONE, we should output isr vector information. */ fprintf (asm_out_file, "\t! ------------------------------------\n"); fprintf (asm_out_file, "\t! The isr vector information:\n"); fprintf (asm_out_file, "\t! ------------------------------------\n"); /* Check reset handler first. Its vector number is always 0. */ if (nds32_isr_vectors[0].category == NDS32_ISR_RESET) { nds32_emit_isr_reset_content (); fprintf (asm_out_file, "\t! ------------------------------------\n"); } /* Check other vectors, starting from vector number 1. */ for (i = 1; i < NDS32_N_ISR_VECTORS; i++) { if (nds32_isr_vectors[i].category == NDS32_ISR_INTERRUPT || nds32_isr_vectors[i].category == NDS32_ISR_EXCEPTION) { /* Found one vector which is interupt or exception. Output its jmptbl and vector section content. */ fprintf (asm_out_file, "\t! interrupt/exception vector %02d\n", i); fprintf (asm_out_file, "\t! ------------------------------------\n"); nds32_emit_isr_jmptbl_section (i); fprintf (asm_out_file, "\t! ....................................\n"); nds32_emit_isr_vector_section (i); fprintf (asm_out_file, "\t! ------------------------------------\n"); } } } /* Return true if FUNC is a isr function. */ bool nds32_isr_function_p (tree func) { tree t_intr; tree t_excp; tree t_reset; tree attrs; if (TREE_CODE (func) != FUNCTION_DECL) abort (); attrs = DECL_ATTRIBUTES (func); t_intr = lookup_attribute ("interrupt", attrs); t_excp = lookup_attribute ("exception", attrs); t_reset = lookup_attribute ("reset", attrs); return ((t_intr != NULL_TREE) || (t_excp != NULL_TREE) || (t_reset != NULL_TREE)); } /* ------------------------------------------------------------------------ */