/* Definitions of target machine for GNU compiler, for IBM S/390
Copyright (C) 1999-2018 Free Software Foundation, Inc.
Contributed by Hartmut Penner (hpenner@de.ibm.com) and
Ulrich Weigand (uweigand@de.ibm.com).
Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
. */
#ifndef _S390_H
#define _S390_H
/* Optional architectural facilities supported by the processor. */
enum processor_flags
{
PF_IEEE_FLOAT = 1,
PF_ZARCH = 2,
PF_LONG_DISPLACEMENT = 4,
PF_EXTIMM = 8,
PF_DFP = 16,
PF_Z10 = 32,
PF_Z196 = 64,
PF_ZEC12 = 128,
PF_TX = 256,
PF_Z13 = 512,
PF_VX = 1024,
PF_ARCH12 = 2048,
PF_VXE = 4096
};
/* This is necessary to avoid a warning about comparing different enum
types. */
#define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_2964_Z13 ? PROCESSOR_2964_Z13 : s390_tune ))
/* These flags indicate that the generated code should run on a cpu
providing the respective hardware facility regardless of the
current cpu mode (ESA or z/Architecture). */
#define TARGET_CPU_IEEE_FLOAT \
(s390_arch_flags & PF_IEEE_FLOAT)
#define TARGET_CPU_IEEE_FLOAT_P(opts) \
(opts->x_s390_arch_flags & PF_IEEE_FLOAT)
#define TARGET_CPU_ZARCH \
(s390_arch_flags & PF_ZARCH)
#define TARGET_CPU_ZARCH_P(opts) \
(opts->x_s390_arch_flags & PF_ZARCH)
#define TARGET_CPU_LONG_DISPLACEMENT \
(s390_arch_flags & PF_LONG_DISPLACEMENT)
#define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
(opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
#define TARGET_CPU_EXTIMM \
(s390_arch_flags & PF_EXTIMM)
#define TARGET_CPU_EXTIMM_P(opts) \
(opts->x_s390_arch_flags & PF_EXTIMM)
#define TARGET_CPU_DFP \
(s390_arch_flags & PF_DFP)
#define TARGET_CPU_DFP_P(opts) \
(opts->x_s390_arch_flags & PF_DFP)
#define TARGET_CPU_Z10 \
(s390_arch_flags & PF_Z10)
#define TARGET_CPU_Z10_P(opts) \
(opts->x_s390_arch_flags & PF_Z10)
#define TARGET_CPU_Z196 \
(s390_arch_flags & PF_Z196)
#define TARGET_CPU_Z196_P(opts) \
(opts->x_s390_arch_flags & PF_Z196)
#define TARGET_CPU_ZEC12 \
(s390_arch_flags & PF_ZEC12)
#define TARGET_CPU_ZEC12_P(opts) \
(opts->x_s390_arch_flags & PF_ZEC12)
#define TARGET_CPU_HTM \
(s390_arch_flags & PF_TX)
#define TARGET_CPU_HTM_P(opts) \
(opts->x_s390_arch_flags & PF_TX)
#define TARGET_CPU_Z13 \
(s390_arch_flags & PF_Z13)
#define TARGET_CPU_Z13_P(opts) \
(opts->x_s390_arch_flags & PF_Z13)
#define TARGET_CPU_VX \
(s390_arch_flags & PF_VX)
#define TARGET_CPU_VX_P(opts) \
(opts->x_s390_arch_flags & PF_VX)
#define TARGET_CPU_ARCH12 \
(s390_arch_flags & PF_ARCH12)
#define TARGET_CPU_ARCH12_P(opts) \
(opts->x_s390_arch_flags & PF_ARCH12)
#define TARGET_CPU_VXE \
(s390_arch_flags & PF_VXE)
#define TARGET_CPU_VXE_P(opts) \
(opts->x_s390_arch_flags & PF_VXE)
#define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
/* These flags indicate that the generated code should run on a cpu
providing the respective hardware facility when run in
z/Architecture mode. */
#define TARGET_LONG_DISPLACEMENT \
(TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
#define TARGET_LONG_DISPLACEMENT_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) \
&& TARGET_CPU_LONG_DISPLACEMENT_P (opts))
#define TARGET_EXTIMM \
(TARGET_ZARCH && TARGET_CPU_EXTIMM)
#define TARGET_EXTIMM_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
#define TARGET_DFP \
(TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
#define TARGET_DFP_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
&& TARGET_HARD_FLOAT_P (opts->x_target_flags))
#define TARGET_Z10 \
(TARGET_ZARCH && TARGET_CPU_Z10)
#define TARGET_Z10_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
#define TARGET_Z196 \
(TARGET_ZARCH && TARGET_CPU_Z196)
#define TARGET_Z196_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
#define TARGET_ZEC12 \
(TARGET_ZARCH && TARGET_CPU_ZEC12)
#define TARGET_ZEC12_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
#define TARGET_HTM (TARGET_OPT_HTM)
#define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
#define TARGET_Z13 \
(TARGET_ZARCH && TARGET_CPU_Z13)
#define TARGET_Z13_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
#define TARGET_VX \
(TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
#define TARGET_VX_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
&& TARGET_OPT_VX_P (opts->x_target_flags) \
&& TARGET_HARD_FLOAT_P (opts->x_target_flags))
#define TARGET_ARCH12 (TARGET_ZARCH && TARGET_CPU_ARCH12)
#define TARGET_ARCH12_P(opts) \
(TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ARCH12_P (opts))
#define TARGET_VXE \
(TARGET_VX && TARGET_CPU_VXE)
#define TARGET_VXE_P(opts) \
(TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
#ifdef HAVE_AS_MACHINE_MACHINEMODE
#define S390_USE_TARGET_ATTRIBUTE 1
#else
#define S390_USE_TARGET_ATTRIBUTE 0
#endif
#ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
#define S390_USE_ARCHITECTURE_MODIFIERS 1
#else
#define S390_USE_ARCHITECTURE_MODIFIERS 0
#endif
#if S390_USE_TARGET_ATTRIBUTE
/* For switching between functions with different target attributes. */
#define SWITCHABLE_TARGET 1
#endif
#define TARGET_SUPPORTS_WIDE_INT 1
/* Use the ABI introduced with IBM z13:
- pass vector arguments <= 16 bytes in VRs
- align *all* vector types to 8 bytes */
#define TARGET_VX_ABI TARGET_VX
#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
/* Run-time target specification. */
/* Defaults for option flags defined only on some subtargets. */
#ifndef TARGET_TPF_PROFILING
#define TARGET_TPF_PROFILING 0
#endif
/* This will be overridden by OS headers. */
#define TARGET_TPF 0
/* Target CPU builtins. */
#define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
#ifdef DEFAULT_TARGET_64BIT
#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
| MASK_OPT_HTM | MASK_OPT_VX)
#else
#define TARGET_DEFAULT 0
#endif
/* Support for configure-time defaults. */
#define OPTION_DEFAULT_SPECS \
{ "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
{ "arch", "%{!march=*:-march=%(VALUE)}" }, \
{ "tune", "%{!mtune=*:%{!march=*:-mtune=%(VALUE)}}" }
#ifdef __s390__
extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
# define EXTRA_SPEC_FUNCTIONS \
{ "local_cpu_detect", s390_host_detect_local_cpu },
#define MARCH_MTUNE_NATIVE_SPECS \
"%{mtune=native:%= 0 && (N) < 16)
#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
#define CC_REGNO_P(N) ((N) == 33)
#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
#define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
#define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
#define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
#define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
/* Set up fixed registers and calling convention:
GPRs 0-5 are always call-clobbered,
GPRs 6-15 are always call-saved.
GPR 12 is fixed if used as GOT pointer.
GPR 13 is always fixed (as literal pool pointer).
GPR 14 is always fixed on S/390 machines (as return address).
GPR 15 is always fixed (as stack pointer).
The 'fake' hard registers are call-clobbered and fixed.
The access registers are call-saved and fixed.
On 31-bit, FPRs 18-19 are call-clobbered;
on 64-bit, FPRs 24-31 are call-clobbered.
The remaining FPRs are call-saved.
All non-FP vector registers are call-clobbered v16-v31. */
#define FIXED_REGISTERS \
{ 0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 1, 1, 1, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
1, 1, 1, 1, \
1, 1, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0 }
#define CALL_USED_REGISTERS \
{ 1, 1, 1, 1, \
1, 1, 0, 0, \
0, 0, 0, 0, \
0, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1 }
#define CALL_REALLY_USED_REGISTERS \
{ 1, 1, 1, 1, /* r0 - r15 */ \
1, 1, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, 0, \
1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, \
1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
0, 0, /* a0 (36), a1 (37) */ \
1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
1, 1, 1, 1, \
1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
1, 1, 1, 1 }
/* Preferred register allocation order. */
#define REG_ALLOC_ORDER \
{ 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
16, 17, 18, 19, 20, 21, 22, 23, \
24, 25, 26, 27, 28, 29, 30, 31, \
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
15, 32, 33, 34, 35, 36, 37 }
#define HARD_REGNO_RENAME_OK(FROM, TO) \
s390_hard_regno_rename_ok ((FROM), (TO))
/* Maximum number of registers to represent a value of mode MODE
in a register of class CLASS. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
s390_class_max_nregs ((CLASS), (MODE))
/* We can reverse a CC mode safely if we know whether it comes from a
floating point compare or not. With the vector modes it is encoded
as part of the mode.
FIXME: It might make sense to do this for other cc modes as well. */
#define REVERSIBLE_CC_MODE(MODE) \
((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
|| (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
/* Given a condition code and a mode, return the inverse condition. */
#define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
/* Register classes. */
/* We use the following register classes:
GENERAL_REGS All general purpose registers
ADDR_REGS All general purpose registers except %r0
(These registers can be used in address generation)
FP_REGS All floating point registers
CC_REGS The condition code register
ACCESS_REGS The access registers
GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
NO_REGS No registers
ALL_REGS All registers
Note that the 'fake' frame pointer and argument pointer registers
are included amongst the address registers here. */
enum reg_class
{
NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
ADDR_CC_REGS, GENERAL_CC_REGS,
FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
ALL_REGS, LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
#define REG_CLASS_NAMES \
{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
"ADDR_CC_REGS", "GENERAL_CC_REGS", \
"FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
"VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
"ALL_REGS" }
/* Class -> register mapping. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000 }, /* NO_REGS */ \
{ 0x00000000, 0x00000002 }, /* CC_REGS */ \
{ 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
{ 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
{ 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
{ 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
{ 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
{ 0xffff0000, 0x00000000 }, /* FP_REGS */ \
{ 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
{ 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
{ 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
{ 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
{ 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
{ 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
}
/* In some case register allocation order is not enough for IRA to
generate a good code. The following macro (if defined) increases
cost of REGNO for a pseudo approximately by pseudo usage frequency
multiplied by the macro value.
We avoid usage of BASE_REGNUM by nonzero macro value because the
reload can decide not to use the hard register because some
constant was forced to be in memory. */
#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
((regno) != BASE_REGNUM ? 0.0 : 0.5)
/* Register -> class mapping. */
extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
/* ADDR_REGS can be used as base or index register. */
#define INDEX_REG_CLASS ADDR_REGS
#define BASE_REG_CLASS ADDR_REGS
/* Check whether REGNO is a hard register of the suitable class
or a pseudo register currently allocated to one such. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
(((REGNO) < FIRST_PSEUDO_REGISTER \
&& REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
|| ADDR_REGNO_P (reg_renumber[REGNO]))
#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
/* Stack layout and calling conventions. */
/* Our stack grows from higher to lower addresses. However, local variables
are accessed by positive offsets, and function arguments are stored at
increasing addresses. */
#define STACK_GROWS_DOWNWARD 1
#define FRAME_GROWS_DOWNWARD 1
/* #undef ARGS_GROW_DOWNWARD */
/* The basic stack layout looks like this: the stack pointer points
to the register save area for called functions. Above that area
is the location to place outgoing arguments. Above those follow
dynamic allocations (alloca), and finally the local variables. */
/* Offset from stack-pointer to first location of outgoing args. */
#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
/* Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by `alloca'. */
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
(STACK_POINTER_OFFSET + crtl->outgoing_args_size)
/* Offset of first parameter from the argument pointer register value.
We have a fake argument pointer register that points directly to
the argument area. */
#define FIRST_PARM_OFFSET(FNDECL) 0
/* Defining this macro makes __builtin_frame_address(0) and
__builtin_return_address(0) work with -fomit-frame-pointer. */
#define INITIAL_FRAME_ADDRESS_RTX \
(plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
/* The return address of the current frame is retrieved
from the initial value of register RETURN_REGNUM.
For frames farther back, we use the stack slot where
the corresponding RETURN_REGNUM register was saved. */
#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
(TARGET_PACKED_STACK ? \
plus_constant (Pmode, (FRAME), \
STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
builtin_frame_address. Otherwise arg pointer -
STACK_POINTER_OFFSET would be returned for
__builtin_frame_address(0) what might result in an address pointing
somewhere into the middle of the local variables since the packed
stack layout generally does not need all the bytes in the register
save area. */
#define FRAME_ADDR_RTX(FRAME) \
DYNAMIC_CHAIN_ADDRESS ((FRAME))
#define RETURN_ADDR_RTX(COUNT, FRAME) \
s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
/* In 31-bit mode, we need to mask off the high bit of return addresses. */
#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
/* Exception handling. */
/* Describe calling conventions for DWARF-2 exception handling. */
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
#define DWARF_FRAME_RETURN_COLUMN 14
/* Describe how we implement __builtin_eh_return. */
#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
/* Select a format to encode pointers in exception handling data. */
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
(flag_pic \
? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
: DW_EH_PE_absptr)
/* Register save slot alignment. */
#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
/* Let the assembler generate debug line info. */
#define DWARF2_ASM_LINE_DEBUG_INFO 1
/* Define the dwarf register mapping.
v16-v31 -> 68-83
rX -> X otherwise */
#define DBX_REGISTER_NUMBER(regno) \
(((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
/* Frame registers. */
#define STACK_POINTER_REGNUM 15
#define FRAME_POINTER_REGNUM 34
#define HARD_FRAME_POINTER_REGNUM 11
#define ARG_POINTER_REGNUM 32
#define RETURN_ADDRESS_POINTER_REGNUM 35
/* The static chain must be call-clobbered, but not used for
function argument passing. As register 1 is clobbered by
the trampoline code, we only have one option. */
#define STATIC_CHAIN_REGNUM 0
/* Number of hardware registers that go into the DWARF-2 unwind info.
To avoid ABI incompatibility, this number must not change even as
'fake' hard registers are added or removed. */
#define DWARF_FRAME_REGISTERS 34
/* Frame pointer and argument pointer elimination. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
{ BASE_REGNUM, BASE_REGNUM }}
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
(OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
/* Stack arguments. */
/* We need current_function_outgoing_args to be valid. */
#define ACCUMULATE_OUTGOING_ARGS 1
/* Register arguments. */
typedef struct s390_arg_structure
{
int gprs; /* gpr so far */
int fprs; /* fpr so far */
int vrs; /* vr so far */
}
CUMULATIVE_ARGS;
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
#define FIRST_VEC_ARG_REGNO 46
#define LAST_VEC_ARG_REGNO 53
/* Arguments can be placed in general registers 2 to 6, or in floating
point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
bit. */
#define FUNCTION_ARG_REGNO_P(N) \
(((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
|| (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
|| (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
/* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
#define FUNCTION_VALUE_REGNO_P(N) \
((N) == 2 || (N) == 16 \
|| (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
/* Function entry and exit. */
/* When returning from a function, the stack pointer does not matter. */
#define EXIT_IGNORE_STACK 1
/* Profiling. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
s390_function_profiler ((FILE), ((LABELNO)))
#define PROFILE_BEFORE_PROLOGUE 1
/* Trampolines for nested functions. */
#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
/* Addressing modes, and classification of registers for them. */
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) 0
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* This definition replaces the formerly used 'm' constraint with a
different constraint letter in order to avoid changing semantics of
the 'm' constraint when accepting new address formats in
TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
must not be used in insn definitions or inline assemblies. */
#define TARGET_MEM_CONSTRAINT 'e'
/* Try a machine-dependent way of reloading an illegitimate address
operand. If we find one, push the reload and jump to WIN. This
macro is used in only one place: `find_reloads_address' in reload.c. */
#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
do { \
rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
(OPNUM), (int)(TYPE)); \
if (new_rtx) \
{ \
(AD) = new_rtx; \
goto WIN; \
} \
} while (0)
/* Helper macro for s390.c and s390.md to check for symbolic constants. */
#define SYMBOLIC_CONST(X) \
(GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == LABEL_REF \
|| (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
#define TLS_SYMBOLIC_CONST(X) \
((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
|| (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
/* Condition codes. */
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. */
#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
/* Relative costs of operations. */
/* A C expression for the cost of a branch instruction. A value of 1
is the default; other values are interpreted relative to that. */
#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
/* Nonzero if access to memory by bytes is slow and undesirable. */
#define SLOW_BYTE_ACCESS 1
/* An integer expression for the size in bits of the largest integer machine
mode that should actually be used. We allow pairs of registers. */
#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
/* The maximum number of bytes that a single instruction can move quickly
between memory and registers or between two memory locations. */
#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
#define MAX_MOVE_MAX 16
/* Don't perform CSE on function addresses. */
#define NO_FUNCTION_CSE 1
/* This value is used in tree-sra to decide whether it might benefical
to split a struct move into several word-size moves. For S/390
only small values make sense here since struct moves are relatively
cheap thanks to mvc so the small default value chosen for archs
with memmove patterns should be ok. But this value is multiplied
in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
here to compensate for that factor since mvc costs exactly the same
on 31 and 64 bit. */
#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
/* Sections. */
/* Output before read-only data. */
#define TEXT_SECTION_ASM_OP ".text"
/* Output before writable (initialized) data. */
#define DATA_SECTION_ASM_OP ".data"
/* Output before writable (uninitialized) data. */
#define BSS_SECTION_ASM_OP ".bss"
/* S/390 constant pool breaks the devices in crtstuff.c to control section
in where code resides. We have to write it as asm code. */
#ifndef __s390x__
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
asm (SECTION_OP "\n\
bras\t%r2,1f\n\
0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
1: l\t%r3,0(%r2)\n\
bas\t%r14,0(%r3,%r2)\n\
.previous");
#endif
/* Position independent code. */
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
#ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
#define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
#endif
/* Assembler file format. */
/* Character to start a comment. */
#define ASM_COMMENT_START "#"
/* Declare an uninitialized external linkage data object. */
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
/* Globalizing directive for a label. */
#define GLOBAL_ASM_OP ".globl "
/* Advance the location counter to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE, LOG) \
if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
/* Advance the location counter by SIZE bytes. */
#define ASM_OUTPUT_SKIP(FILE, SIZE) \
fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
#define LOCAL_LABEL_PREFIX "."
#define LABEL_ALIGN(LABEL) \
s390_label_align ((LABEL))
/* How to refer to registers in assembler output. This sequence is
indexed by compiler's hard-register-number (see above). */
#define REGISTER_NAMES \
{ "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
"%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
"%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
"%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
"%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
"%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
}
#define ADDITIONAL_REGISTER_NAMES \
{ { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
{ "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
{ "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
{ "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
/* Print operand X (an rtx) in assembler syntax to file FILE. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
/* Output an element of a case-vector that is absolute. */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do { \
char buf[32]; \
fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
assemble_name ((FILE), buf); \
fputc ('\n', (FILE)); \
} while (0)
/* Output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do { \
char buf[32]; \
fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
assemble_name ((FILE), buf); \
fputc ('-', (FILE)); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
assemble_name ((FILE), buf); \
fputc ('\n', (FILE)); \
} while (0)
/* Mark the return register as used by the epilogue so that we can
use it in unadorned (return) and (simple_return) instructions. */
#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
#undef ASM_OUTPUT_FUNCTION_LABEL
#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
s390_asm_output_function_label ((FILE), (NAME), (DECL))
#if S390_USE_TARGET_ATTRIBUTE
/* Hook to output .machine and .machinemode at start of function. */
#undef ASM_OUTPUT_FUNCTION_PREFIX
#define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
/* Hook to output .machine and .machinemode at end of function. */
#undef ASM_DECLARE_FUNCTION_SIZE
#define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
#endif
/* Miscellaneous parameters. */
/* Specify the machine mode that this machine uses for the index in the
tablejump instruction. */
#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode (TARGET_64BIT ? DImode : SImode)
/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
#define POINTERS_EXTEND_UNSIGNED -1
/* A function address in a call instruction is a byte address (for
indexing purposes) so give the MEM rtx a byte's mode. */
#define FUNCTION_MODE QImode
/* Specify the value which is used when clz operand is zero. */
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
/* Machine-specific symbol_ref flags. */
#define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
#define SYMBOL_FLAG_ALIGN_MASK \
((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
#define SYMBOL_FLAG_SET_ALIGN(X, A) \
(SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
| (A << SYMBOL_FLAG_ALIGN_SHIFT))
#define SYMBOL_FLAG_GET_ALIGN(X) \
((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
/* Helpers to access symbol_ref flags. They are used in
check_symref_alignment() and larl_operand to detect if the
available alignment matches the required one. We do not use
a positive check like _ALIGN2 because in that case we would have
to annotate every symbol_ref. However, we only want to touch
the symbol_refs that can be misaligned and assume that the others
are correctly aligned. Hence, if a symbol_ref does not have
a _NOTALIGN flag it is supposed to be correctly aligned. */
#define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
#define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
#define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
#define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
#define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
|| SYMBOL_FLAG_GET_ALIGN(X) == 1)
#define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
|| SYMBOL_FLAG_GET_ALIGN(X) == 2 \
|| SYMBOL_FLAG_GET_ALIGN(X) == 1)
/* Check whether integer displacement is in range for a short displacement. */
#define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
/* Check whether integer displacement is in range. */
#define DISP_IN_RANGE(d) \
(TARGET_LONG_DISPLACEMENT \
? ((d) >= -524288 && (d) <= 524287) \
: SHORT_DISP_IN_RANGE(d))
/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
#define READ_CAN_USE_WRITE_PREFETCH 1
extern const int processor_flags_table[];
/* The truth element value for vector comparisons. Our instructions
always generate -1 in that case. */
#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
/* Target pragma. */
/* resolve_overloaded_builtin can not be defined the normal way since
it is defined in code which technically belongs to the
front-end. */
#define REGISTER_TARGET_PRAGMAS() \
do { \
s390_register_target_pragmas (); \
} while (0)
#ifndef USED_FOR_TARGET
/* The following structure is embedded in the machine
specific part of struct function. */
struct GTY (()) s390_frame_layout
{
/* Offset within stack frame. */
HOST_WIDE_INT gprs_offset;
HOST_WIDE_INT f0_offset;
HOST_WIDE_INT f4_offset;
HOST_WIDE_INT f8_offset;
HOST_WIDE_INT backchain_offset;
/* Number of first and last gpr where slots in the register
save area are reserved for. */
int first_save_gpr_slot;
int last_save_gpr_slot;
/* Location (FP register number) where GPRs (r0-r15) should
be saved to.
0 - does not need to be saved at all
-1 - stack slot */
#define SAVE_SLOT_NONE 0
#define SAVE_SLOT_STACK -1
signed char gpr_save_slots[16];
/* Number of first and last gpr to be saved, restored. */
int first_save_gpr;
int first_restore_gpr;
int last_save_gpr;
int last_restore_gpr;
/* Bits standing for floating point registers. Set, if the
respective register has to be saved. Starting with reg 16 (f0)
at the rightmost bit.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fpr 15 13 11 9 14 12 10 8 7 5 3 1 6 4 2 0
reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 */
unsigned int fpr_bitmap;
/* Number of floating point registers f8-f15 which must be saved. */
int high_fprs;
/* Set if return address needs to be saved.
This flag is set by s390_return_addr_rtx if it could not use
the initial value of r14 and therefore depends on r14 saved
to the stack. */
bool save_return_addr_p;
/* Size of stack frame. */
HOST_WIDE_INT frame_size;
};
/* Define the structure for the machine field in struct function. */
struct GTY(()) machine_function
{
struct s390_frame_layout frame_layout;
/* Literal pool base register. */
rtx base_reg;
/* True if we may need to perform branch splitting. */
bool split_branches_pending_p;
bool has_landing_pad_p;
/* True if the current function may contain a tbegin clobbering
FPRs. */
bool tbegin_p;
/* For -fsplit-stack support: A stack local which holds a pointer to
the stack arguments for a function with a variable number of
arguments. This is set at the start of the function and is used
to initialize the overflow_arg_area field of the va_list
structure. */
rtx split_stack_varargs_pointer;
enum indirect_branch indirect_branch_jump;
enum indirect_branch indirect_branch_call;
enum indirect_branch function_return_mem;
enum indirect_branch function_return_reg;
};
#endif
#define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION \
(cfun->machine->function_return_reg != indirect_branch_keep \
|| cfun->machine->function_return_mem != indirect_branch_keep)
#define TARGET_INDIRECT_BRANCH_NOBP_RET \
((cfun->machine->function_return_reg != indirect_branch_keep \
&& !s390_return_addr_from_memory ()) \
|| (cfun->machine->function_return_mem != indirect_branch_keep \
&& s390_return_addr_from_memory ()))
#define TARGET_INDIRECT_BRANCH_NOBP_JUMP \
(cfun->machine->indirect_branch_jump != indirect_branch_keep)
#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK \
(cfun->machine->indirect_branch_jump == indirect_branch_thunk \
|| cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern)
#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK \
(cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline)
#define TARGET_INDIRECT_BRANCH_NOBP_CALL \
(cfun->machine->indirect_branch_call != indirect_branch_keep)
#ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE
#define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0
#endif
#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d"
#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX "__s390_indirect_jump_r%duse_r%d"
#define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table
#endif /* S390_H */