/* Definitions for C++ name lookup routines. Copyright (C) 2003-2018 Free Software Foundation, Inc. Contributed by Gabriel Dos Reis This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #include "config.h" #define INCLUDE_UNIQUE_PTR #include "system.h" #include "coretypes.h" #include "cp-tree.h" #include "timevar.h" #include "stringpool.h" #include "print-tree.h" #include "attribs.h" #include "debug.h" #include "c-family/c-pragma.h" #include "params.h" #include "gcc-rich-location.h" #include "spellcheck-tree.h" #include "parser.h" #include "c-family/name-hint.h" #include "c-family/known-headers.h" #include "c-family/c-spellcheck.h" static cxx_binding *cxx_binding_make (tree value, tree type); static cp_binding_level *innermost_nonclass_level (void); static void set_identifier_type_value_with_scope (tree id, tree decl, cp_binding_level *b); static bool maybe_suggest_missing_std_header (location_t location, tree name); /* Create an overload suitable for recording an artificial TYPE_DECL and another decl. We use this machanism to implement the struct stat hack within a namespace. It'd be nice to use it everywhere. */ #define STAT_HACK_P(N) ((N) && TREE_CODE (N) == OVERLOAD && OVL_LOOKUP_P (N)) #define STAT_TYPE(N) TREE_TYPE (N) #define STAT_DECL(N) OVL_FUNCTION (N) #define MAYBE_STAT_DECL(N) (STAT_HACK_P (N) ? STAT_DECL (N) : N) #define MAYBE_STAT_TYPE(N) (STAT_HACK_P (N) ? STAT_TYPE (N) : NULL_TREE) /* Create a STAT_HACK node with DECL as the value binding and TYPE as the type binding. */ static tree stat_hack (tree decl = NULL_TREE, tree type = NULL_TREE) { tree result = make_node (OVERLOAD); /* Mark this as a lookup, so we can tell this is a stat hack. */ OVL_LOOKUP_P (result) = true; STAT_DECL (result) = decl; STAT_TYPE (result) = type; return result; } /* Create a local binding level for NAME. */ static cxx_binding * create_local_binding (cp_binding_level *level, tree name) { cxx_binding *binding = cxx_binding_make (NULL, NULL); INHERITED_VALUE_BINDING_P (binding) = false; LOCAL_BINDING_P (binding) = true; binding->scope = level; binding->previous = IDENTIFIER_BINDING (name); IDENTIFIER_BINDING (name) = binding; return binding; } /* Find the binding for NAME in namespace NS. If CREATE_P is true, make an empty binding if there wasn't one. */ static tree * find_namespace_slot (tree ns, tree name, bool create_p = false) { tree *slot = DECL_NAMESPACE_BINDINGS (ns) ->find_slot_with_hash (name, name ? IDENTIFIER_HASH_VALUE (name) : 0, create_p ? INSERT : NO_INSERT); return slot; } static tree find_namespace_value (tree ns, tree name) { tree *b = find_namespace_slot (ns, name); return b ? MAYBE_STAT_DECL (*b) : NULL_TREE; } /* Add DECL to the list of things declared in B. */ static void add_decl_to_level (cp_binding_level *b, tree decl) { gcc_assert (b->kind != sk_class); /* Make sure we don't create a circular list. xref_tag can end up pushing the same artificial decl more than once. We should have already detected that in update_binding. */ gcc_assert (b->names != decl); /* We build up the list in reverse order, and reverse it later if necessary. */ TREE_CHAIN (decl) = b->names; b->names = decl; /* If appropriate, add decl to separate list of statics. We include extern variables because they might turn out to be static later. It's OK for this list to contain a few false positives. */ if (b->kind == sk_namespace && ((VAR_P (decl) && (TREE_STATIC (decl) || DECL_EXTERNAL (decl))) || (TREE_CODE (decl) == FUNCTION_DECL && (!TREE_PUBLIC (decl) || decl_anon_ns_mem_p (decl) || DECL_DECLARED_INLINE_P (decl))))) vec_safe_push (static_decls, decl); } /* Find the binding for NAME in the local binding level B. */ static cxx_binding * find_local_binding (cp_binding_level *b, tree name) { if (cxx_binding *binding = IDENTIFIER_BINDING (name)) for (;; b = b->level_chain) { if (binding->scope == b && !(VAR_P (binding->value) && DECL_DEAD_FOR_LOCAL (binding->value))) return binding; /* Cleanup contours are transparent to the language. */ if (b->kind != sk_cleanup) break; } return NULL; } struct name_lookup { public: typedef std::pair using_pair; typedef vec using_queue; public: tree name; /* The identifier being looked for. */ tree value; /* A (possibly ambiguous) set of things found. */ tree type; /* A type that has been found. */ int flags; /* Lookup flags. */ bool deduping; /* Full deduping is needed because using declarations are in play. */ vec *scopes; name_lookup *previous; /* Previously active lookup. */ protected: /* Marked scope stack for outermost name lookup. */ static vec *shared_scopes; /* Currently active lookup. */ static name_lookup *active; public: name_lookup (tree n, int f = 0) : name (n), value (NULL_TREE), type (NULL_TREE), flags (f), deduping (false), scopes (NULL), previous (NULL) { preserve_state (); } ~name_lookup () { restore_state (); } private: /* Uncopyable, unmovable, unassignable. I am a rock. */ name_lookup (const name_lookup &); name_lookup &operator= (const name_lookup &); protected: static bool seen_p (tree scope) { return LOOKUP_SEEN_P (scope); } static bool found_p (tree scope) { return LOOKUP_FOUND_P (scope); } void mark_seen (tree scope); /* Mark and add to scope vector. */ static void mark_found (tree scope) { gcc_checking_assert (seen_p (scope)); LOOKUP_FOUND_P (scope) = true; } bool see_and_mark (tree scope) { bool ret = seen_p (scope); if (!ret) mark_seen (scope); return ret; } bool find_and_mark (tree scope); private: void preserve_state (); void restore_state (); private: static tree ambiguous (tree thing, tree current); void add_overload (tree fns); void add_value (tree new_val); void add_type (tree new_type); bool process_binding (tree val_bind, tree type_bind); /* Look in only namespace. */ bool search_namespace_only (tree scope); /* Look in namespace and its (recursive) inlines. Ignore using directives. Return true if something found (inc dups). */ bool search_namespace (tree scope); /* Look in the using directives of namespace + inlines using qualified lookup rules. */ bool search_usings (tree scope); private: using_queue *queue_namespace (using_queue *queue, int depth, tree scope); using_queue *do_queue_usings (using_queue *queue, int depth, vec *usings); using_queue *queue_usings (using_queue *queue, int depth, vec *usings) { if (usings) queue = do_queue_usings (queue, depth, usings); return queue; } private: void add_fns (tree); void adl_expr (tree); void adl_type (tree); void adl_template_arg (tree); void adl_class (tree); void adl_bases (tree); void adl_class_only (tree); void adl_namespace (tree); void adl_namespace_only (tree); public: /* Search namespace + inlines + maybe usings as qualified lookup. */ bool search_qualified (tree scope, bool usings = true); /* Search namespace + inlines + usings as unqualified lookup. */ bool search_unqualified (tree scope, cp_binding_level *); /* ADL lookup of ARGS. */ tree search_adl (tree fns, vec *args); }; /* Scope stack shared by all outermost lookups. This avoids us allocating and freeing on every single lookup. */ vec *name_lookup::shared_scopes; /* Currently active lookup. */ name_lookup *name_lookup::active; /* Name lookup is recursive, becase ADL can cause template instatiation. This is of course a rare event, so we optimize for it not happening. When we discover an active name-lookup, which must be an ADL lookup, we need to unmark the marked scopes and also unmark the lookup we might have been accumulating. */ void name_lookup::preserve_state () { previous = active; if (previous) { unsigned length = vec_safe_length (previous->scopes); vec_safe_reserve (previous->scopes, length * 2); for (unsigned ix = length; ix--;) { tree decl = (*previous->scopes)[ix]; gcc_checking_assert (LOOKUP_SEEN_P (decl)); LOOKUP_SEEN_P (decl) = false; /* Preserve the FOUND_P state on the interrupted lookup's stack. */ if (LOOKUP_FOUND_P (decl)) { LOOKUP_FOUND_P (decl) = false; previous->scopes->quick_push (decl); } } /* Unmark the outer partial lookup. */ if (previous->deduping) lookup_mark (previous->value, false); } else scopes = shared_scopes; active = this; } /* Restore the marking state of a lookup we interrupted. */ void name_lookup::restore_state () { if (deduping) lookup_mark (value, false); /* Unmark and empty this lookup's scope stack. */ for (unsigned ix = vec_safe_length (scopes); ix--;) { tree decl = scopes->pop (); gcc_checking_assert (LOOKUP_SEEN_P (decl)); LOOKUP_SEEN_P (decl) = false; LOOKUP_FOUND_P (decl) = false; } active = previous; if (previous) { free (scopes); unsigned length = vec_safe_length (previous->scopes); for (unsigned ix = 0; ix != length; ix++) { tree decl = (*previous->scopes)[ix]; if (LOOKUP_SEEN_P (decl)) { /* The remainder of the scope stack must be recording FOUND_P decls, which we want to pop off. */ do { tree decl = previous->scopes->pop (); gcc_checking_assert (LOOKUP_SEEN_P (decl) && !LOOKUP_FOUND_P (decl)); LOOKUP_FOUND_P (decl) = true; } while (++ix != length); break; } gcc_checking_assert (!LOOKUP_FOUND_P (decl)); LOOKUP_SEEN_P (decl) = true; } /* Remark the outer partial lookup. */ if (previous->deduping) lookup_mark (previous->value, true); } else shared_scopes = scopes; } void name_lookup::mark_seen (tree scope) { gcc_checking_assert (!seen_p (scope)); LOOKUP_SEEN_P (scope) = true; vec_safe_push (scopes, scope); } bool name_lookup::find_and_mark (tree scope) { bool result = LOOKUP_FOUND_P (scope); if (!result) { LOOKUP_FOUND_P (scope) = true; if (!LOOKUP_SEEN_P (scope)) vec_safe_push (scopes, scope); } return result; } /* THING and CURRENT are ambiguous, concatenate them. */ tree name_lookup::ambiguous (tree thing, tree current) { if (TREE_CODE (current) != TREE_LIST) { current = build_tree_list (NULL_TREE, current); TREE_TYPE (current) = error_mark_node; } current = tree_cons (NULL_TREE, thing, current); TREE_TYPE (current) = error_mark_node; return current; } /* FNS is a new overload set to add to the exising set. */ void name_lookup::add_overload (tree fns) { if (!deduping && TREE_CODE (fns) == OVERLOAD) { tree probe = fns; if (flags & LOOKUP_HIDDEN) probe = ovl_skip_hidden (probe); if (probe && TREE_CODE (probe) == OVERLOAD && OVL_USING_P (probe)) { /* We're about to add something found by a using declaration, so need to engage deduping mode. */ lookup_mark (value, true); deduping = true; } } value = lookup_maybe_add (fns, value, deduping); } /* Add a NEW_VAL, a found value binding into the current value binding. */ void name_lookup::add_value (tree new_val) { if (OVL_P (new_val) && (!value || OVL_P (value))) add_overload (new_val); else if (!value) value = new_val; else if (value == new_val) ; else if ((TREE_CODE (value) == TYPE_DECL && TREE_CODE (new_val) == TYPE_DECL && same_type_p (TREE_TYPE (value), TREE_TYPE (new_val)))) /* Typedefs to the same type. */; else if (TREE_CODE (value) == NAMESPACE_DECL && TREE_CODE (new_val) == NAMESPACE_DECL && ORIGINAL_NAMESPACE (value) == ORIGINAL_NAMESPACE (new_val)) /* Namespace (possibly aliased) to the same namespace. Locate the namespace*/ value = ORIGINAL_NAMESPACE (value); else { if (deduping) { /* Disengage deduping mode. */ lookup_mark (value, false); deduping = false; } value = ambiguous (new_val, value); } } /* Add a NEW_TYPE, a found type binding into the current type binding. */ void name_lookup::add_type (tree new_type) { if (!type) type = new_type; else if (TREE_CODE (type) == TREE_LIST || !same_type_p (TREE_TYPE (type), TREE_TYPE (new_type))) type = ambiguous (new_type, type); } /* Process a found binding containing NEW_VAL and NEW_TYPE. Returns true if we actually found something noteworthy. */ bool name_lookup::process_binding (tree new_val, tree new_type) { /* Did we really see a type? */ if (new_type && (LOOKUP_NAMESPACES_ONLY (flags) || (!(flags & LOOKUP_HIDDEN) && DECL_LANG_SPECIFIC (new_type) && DECL_ANTICIPATED (new_type)))) new_type = NULL_TREE; if (new_val && !(flags & LOOKUP_HIDDEN)) new_val = ovl_skip_hidden (new_val); /* Do we really see a value? */ if (new_val) switch (TREE_CODE (new_val)) { case TEMPLATE_DECL: /* If we expect types or namespaces, and not templates, or this is not a template class. */ if ((LOOKUP_QUALIFIERS_ONLY (flags) && !DECL_TYPE_TEMPLATE_P (new_val))) new_val = NULL_TREE; break; case TYPE_DECL: if (LOOKUP_NAMESPACES_ONLY (flags) || (new_type && (flags & LOOKUP_PREFER_TYPES))) new_val = NULL_TREE; break; case NAMESPACE_DECL: if (LOOKUP_TYPES_ONLY (flags)) new_val = NULL_TREE; break; default: if (LOOKUP_QUALIFIERS_ONLY (flags)) new_val = NULL_TREE; } if (!new_val) { new_val = new_type; new_type = NULL_TREE; } /* Merge into the lookup */ if (new_val) add_value (new_val); if (new_type) add_type (new_type); return new_val != NULL_TREE; } /* Look in exactly namespace SCOPE. */ bool name_lookup::search_namespace_only (tree scope) { bool found = false; if (tree *binding = find_namespace_slot (scope, name)) found |= process_binding (MAYBE_STAT_DECL (*binding), MAYBE_STAT_TYPE (*binding)); return found; } /* Conditionally look in namespace SCOPE and inline children. */ bool name_lookup::search_namespace (tree scope) { if (see_and_mark (scope)) /* We've visited this scope before. Return what we found then. */ return found_p (scope); /* Look in exactly namespace. */ bool found = search_namespace_only (scope); /* Don't look into inline children, if we're looking for an anonymous name -- it must be in the current scope, if anywhere. */ if (name) /* Recursively look in its inline children. */ if (vec *inlinees = DECL_NAMESPACE_INLINEES (scope)) for (unsigned ix = inlinees->length (); ix--;) found |= search_namespace ((*inlinees)[ix]); if (found) mark_found (scope); return found; } /* Recursively follow using directives of SCOPE & its inline children. Such following is essentially a flood-fill algorithm. */ bool name_lookup::search_usings (tree scope) { /* We do not check seen_p here, as that was already set during the namespace_only walk. */ if (found_p (scope)) return true; bool found = false; if (vec *usings = DECL_NAMESPACE_USING (scope)) for (unsigned ix = usings->length (); ix--;) found |= search_qualified ((*usings)[ix], true); /* Look in its inline children. */ if (vec *inlinees = DECL_NAMESPACE_INLINEES (scope)) for (unsigned ix = inlinees->length (); ix--;) found |= search_usings ((*inlinees)[ix]); if (found) mark_found (scope); return found; } /* Qualified namespace lookup in SCOPE. 1) Look in SCOPE (+inlines). If found, we're done. 2) Otherwise, if USINGS is true, recurse for every using directive of SCOPE (+inlines). Trickiness is (a) loops and (b) multiple paths to same namespace. In both cases we want to not repeat any lookups, and know whether to stop the caller's step #2. Do this via the FOUND_P marker. */ bool name_lookup::search_qualified (tree scope, bool usings) { bool found = false; if (seen_p (scope)) found = found_p (scope); else { found = search_namespace (scope); if (!found && usings) found = search_usings (scope); } return found; } /* Add SCOPE to the unqualified search queue, recursively add its inlines and those via using directives. */ name_lookup::using_queue * name_lookup::queue_namespace (using_queue *queue, int depth, tree scope) { if (see_and_mark (scope)) return queue; /* Record it. */ tree common = scope; while (SCOPE_DEPTH (common) > depth) common = CP_DECL_CONTEXT (common); vec_safe_push (queue, using_pair (common, scope)); /* Queue its inline children. */ if (vec *inlinees = DECL_NAMESPACE_INLINEES (scope)) for (unsigned ix = inlinees->length (); ix--;) queue = queue_namespace (queue, depth, (*inlinees)[ix]); /* Queue its using targets. */ queue = queue_usings (queue, depth, DECL_NAMESPACE_USING (scope)); return queue; } /* Add the namespaces in USINGS to the unqualified search queue. */ name_lookup::using_queue * name_lookup::do_queue_usings (using_queue *queue, int depth, vec *usings) { for (unsigned ix = usings->length (); ix--;) queue = queue_namespace (queue, depth, (*usings)[ix]); return queue; } /* Unqualified namespace lookup in SCOPE. 1) add scope+inlins to worklist. 2) recursively add target of every using directive 3) for each worklist item where SCOPE is common ancestor, search it 4) if nothing find, scope=parent, goto 1. */ bool name_lookup::search_unqualified (tree scope, cp_binding_level *level) { /* Make static to avoid continual reallocation. We're not recursive. */ static using_queue *queue = NULL; bool found = false; int length = vec_safe_length (queue); /* Queue local using-directives. */ for (; level->kind != sk_namespace; level = level->level_chain) queue = queue_usings (queue, SCOPE_DEPTH (scope), level->using_directives); for (; !found; scope = CP_DECL_CONTEXT (scope)) { gcc_assert (!DECL_NAMESPACE_ALIAS (scope)); int depth = SCOPE_DEPTH (scope); /* Queue namespaces reachable from SCOPE. */ queue = queue_namespace (queue, depth, scope); /* Search every queued namespace where SCOPE is the common ancestor. Adjust the others. */ unsigned ix = length; do { using_pair &pair = (*queue)[ix]; while (pair.first == scope) { found |= search_namespace_only (pair.second); pair = queue->pop (); if (ix == queue->length ()) goto done; } /* The depth is the same as SCOPE, find the parent scope. */ if (SCOPE_DEPTH (pair.first) == depth) pair.first = CP_DECL_CONTEXT (pair.first); ix++; } while (ix < queue->length ()); done:; if (scope == global_namespace) break; /* If looking for hidden names, we only look in the innermost namespace scope. [namespace.memdef]/3 If a friend declaration in a non-local class first declares a class, function, class template or function template the friend is a member of the innermost enclosing namespace. See also [basic.lookup.unqual]/7 */ if (flags & LOOKUP_HIDDEN) break; } vec_safe_truncate (queue, length); return found; } /* FNS is a value binding. If it is a (set of overloaded) functions, add them into the current value. */ void name_lookup::add_fns (tree fns) { if (!fns) return; else if (TREE_CODE (fns) == OVERLOAD) { if (TREE_TYPE (fns) != unknown_type_node) fns = OVL_FUNCTION (fns); } else if (!DECL_DECLARES_FUNCTION_P (fns)) return; add_overload (fns); } /* Add functions of a namespace to the lookup structure. */ void name_lookup::adl_namespace_only (tree scope) { mark_seen (scope); /* Look down into inline namespaces. */ if (vec *inlinees = DECL_NAMESPACE_INLINEES (scope)) for (unsigned ix = inlinees->length (); ix--;) adl_namespace_only ((*inlinees)[ix]); if (tree fns = find_namespace_value (scope, name)) add_fns (ovl_skip_hidden (fns)); } /* Find the containing non-inlined namespace, add it and all its inlinees. */ void name_lookup::adl_namespace (tree scope) { if (seen_p (scope)) return; /* Find the containing non-inline namespace. */ while (DECL_NAMESPACE_INLINE_P (scope)) scope = CP_DECL_CONTEXT (scope); adl_namespace_only (scope); } /* Adds the class and its friends to the lookup structure. */ void name_lookup::adl_class_only (tree type) { /* Backend-built structures, such as __builtin_va_list, aren't affected by all this. */ if (!CLASS_TYPE_P (type)) return; type = TYPE_MAIN_VARIANT (type); if (see_and_mark (type)) return; tree context = decl_namespace_context (type); adl_namespace (context); complete_type (type); /* Add friends. */ for (tree list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type)); list; list = TREE_CHAIN (list)) if (name == FRIEND_NAME (list)) for (tree friends = FRIEND_DECLS (list); friends; friends = TREE_CHAIN (friends)) { tree fn = TREE_VALUE (friends); /* Only interested in global functions with potentially hidden (i.e. unqualified) declarations. */ if (CP_DECL_CONTEXT (fn) != context) continue; /* Only interested in anticipated friends. (Non-anticipated ones will have been inserted during the namespace adl.) */ if (!DECL_ANTICIPATED (fn)) continue; /* Template specializations are never found by name lookup. (Templates themselves can be found, but not template specializations.) */ if (TREE_CODE (fn) == FUNCTION_DECL && DECL_USE_TEMPLATE (fn)) continue; add_fns (fn); } } /* Adds the class and its bases to the lookup structure. Returns true on error. */ void name_lookup::adl_bases (tree type) { adl_class_only (type); /* Process baseclasses. */ if (tree binfo = TYPE_BINFO (type)) { tree base_binfo; int i; for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) adl_bases (BINFO_TYPE (base_binfo)); } } /* Adds everything associated with a class argument type to the lookup structure. Returns true on error. If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces of which its associated classes are members. Furthermore, if T is a class template specialization, its associated namespaces and classes also include: the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces of which any template template arguments are members; and the classes of which any member templates used as template template arguments are members. [ Note: non-type template arguments do not contribute to the set of associated namespaces. --end note] */ void name_lookup::adl_class (tree type) { /* Backend build structures, such as __builtin_va_list, aren't affected by all this. */ if (!CLASS_TYPE_P (type)) return; type = TYPE_MAIN_VARIANT (type); /* We don't set found here because we have to have set seen first, which is done in the adl_bases walk. */ if (found_p (type)) return; adl_bases (type); mark_found (type); if (TYPE_CLASS_SCOPE_P (type)) adl_class_only (TYPE_CONTEXT (type)); /* Process template arguments. */ if (CLASSTYPE_TEMPLATE_INFO (type) && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))) { tree list = INNERMOST_TEMPLATE_ARGS (CLASSTYPE_TI_ARGS (type)); for (int i = 0; i < TREE_VEC_LENGTH (list); ++i) adl_template_arg (TREE_VEC_ELT (list, i)); } } void name_lookup::adl_expr (tree expr) { if (!expr) return; gcc_assert (!TYPE_P (expr)); if (TREE_TYPE (expr) != unknown_type_node) { adl_type (TREE_TYPE (expr)); return; } if (TREE_CODE (expr) == ADDR_EXPR) expr = TREE_OPERAND (expr, 0); if (TREE_CODE (expr) == COMPONENT_REF || TREE_CODE (expr) == OFFSET_REF) expr = TREE_OPERAND (expr, 1); expr = MAYBE_BASELINK_FUNCTIONS (expr); if (OVL_P (expr)) for (lkp_iterator iter (expr); iter; ++iter) adl_type (TREE_TYPE (*iter)); else if (TREE_CODE (expr) == TEMPLATE_ID_EXPR) { /* The working paper doesn't currently say how to handle template-id arguments. The sensible thing would seem to be to handle the list of template candidates like a normal overload set, and handle the template arguments like we do for class template specializations. */ /* First the templates. */ adl_expr (TREE_OPERAND (expr, 0)); /* Now the arguments. */ if (tree args = TREE_OPERAND (expr, 1)) for (int ix = TREE_VEC_LENGTH (args); ix--;) adl_template_arg (TREE_VEC_ELT (args, ix)); } } void name_lookup::adl_type (tree type) { if (!type) return; if (TYPE_PTRDATAMEM_P (type)) { /* Pointer to member: associate class type and value type. */ adl_type (TYPE_PTRMEM_CLASS_TYPE (type)); adl_type (TYPE_PTRMEM_POINTED_TO_TYPE (type)); return; } switch (TREE_CODE (type)) { case RECORD_TYPE: if (TYPE_PTRMEMFUNC_P (type)) { adl_type (TYPE_PTRMEMFUNC_FN_TYPE (type)); return; } /* FALLTHRU */ case UNION_TYPE: adl_class (type); return; case METHOD_TYPE: /* The basetype is referenced in the first arg type, so just fall through. */ case FUNCTION_TYPE: /* Associate the parameter types. */ for (tree args = TYPE_ARG_TYPES (type); args; args = TREE_CHAIN (args)) adl_type (TREE_VALUE (args)); /* FALLTHROUGH */ case POINTER_TYPE: case REFERENCE_TYPE: case ARRAY_TYPE: adl_type (TREE_TYPE (type)); return; case ENUMERAL_TYPE: if (TYPE_CLASS_SCOPE_P (type)) adl_class_only (TYPE_CONTEXT (type)); adl_namespace (decl_namespace_context (type)); return; case LANG_TYPE: gcc_assert (type == unknown_type_node || type == init_list_type_node); return; case TYPE_PACK_EXPANSION: adl_type (PACK_EXPANSION_PATTERN (type)); return; default: break; } } /* Adds everything associated with a template argument to the lookup structure. */ void name_lookup::adl_template_arg (tree arg) { /* [basic.lookup.koenig] If T is a template-id, its associated namespaces and classes are ... the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces in which any template template arguments are defined; and the classes in which any member templates used as template template arguments are defined. [Note: non-type template arguments do not contribute to the set of associated namespaces. ] */ /* Consider first template template arguments. */ if (TREE_CODE (arg) == TEMPLATE_TEMPLATE_PARM || TREE_CODE (arg) == UNBOUND_CLASS_TEMPLATE) ; else if (TREE_CODE (arg) == TEMPLATE_DECL) { tree ctx = CP_DECL_CONTEXT (arg); /* It's not a member template. */ if (TREE_CODE (ctx) == NAMESPACE_DECL) adl_namespace (ctx); /* Otherwise, it must be member template. */ else adl_class_only (ctx); } /* It's an argument pack; handle it recursively. */ else if (ARGUMENT_PACK_P (arg)) { tree args = ARGUMENT_PACK_ARGS (arg); int i, len = TREE_VEC_LENGTH (args); for (i = 0; i < len; ++i) adl_template_arg (TREE_VEC_ELT (args, i)); } /* It's not a template template argument, but it is a type template argument. */ else if (TYPE_P (arg)) adl_type (arg); } /* Perform ADL lookup. FNS is the existing lookup result and ARGS are the call arguments. */ tree name_lookup::search_adl (tree fns, vec *args) { if (fns) { deduping = true; lookup_mark (fns, true); } value = fns; unsigned ix; tree arg; FOR_EACH_VEC_ELT_REVERSE (*args, ix, arg) /* OMP reduction operators put an ADL-significant type as the first arg. */ if (TYPE_P (arg)) adl_type (arg); else adl_expr (arg); fns = value; return fns; } static bool qualified_namespace_lookup (tree, name_lookup *); static void consider_binding_level (tree name, best_match &bm, cp_binding_level *lvl, bool look_within_fields, enum lookup_name_fuzzy_kind kind); static void diagnose_name_conflict (tree, tree); /* ADL lookup of NAME. FNS is the result of regular lookup, and we don't add duplicates to it. ARGS is the vector of call arguments (which will not be empty). */ tree lookup_arg_dependent (tree name, tree fns, vec *args) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); name_lookup lookup (name); fns = lookup.search_adl (fns, args); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return fns; } /* FNS is an overload set of conversion functions. Return the overloads converting to TYPE. */ static tree extract_conversion_operator (tree fns, tree type) { tree convs = NULL_TREE; tree tpls = NULL_TREE; for (ovl_iterator iter (fns); iter; ++iter) { if (same_type_p (DECL_CONV_FN_TYPE (*iter), type)) convs = lookup_add (*iter, convs); if (TREE_CODE (*iter) == TEMPLATE_DECL) tpls = lookup_add (*iter, tpls); } if (!convs) convs = tpls; return convs; } /* Binary search of (ordered) MEMBER_VEC for NAME. */ static tree member_vec_binary_search (vec *member_vec, tree name) { for (unsigned lo = 0, hi = member_vec->length (); lo < hi;) { unsigned mid = (lo + hi) / 2; tree binding = (*member_vec)[mid]; tree binding_name = OVL_NAME (binding); if (binding_name > name) hi = mid; else if (binding_name < name) lo = mid + 1; else return binding; } return NULL_TREE; } /* Linear search of (unordered) MEMBER_VEC for NAME. */ static tree member_vec_linear_search (vec *member_vec, tree name) { for (int ix = member_vec->length (); ix--;) if (tree binding = (*member_vec)[ix]) if (OVL_NAME (binding) == name) return binding; return NULL_TREE; } /* Linear search of (partially ordered) fields of KLASS for NAME. */ static tree fields_linear_search (tree klass, tree name, bool want_type) { for (tree fields = TYPE_FIELDS (klass); fields; fields = DECL_CHAIN (fields)) { tree decl = fields; if (TREE_CODE (decl) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (decl))) { if (tree temp = search_anon_aggr (TREE_TYPE (decl), name, want_type)) return temp; } if (DECL_NAME (decl) != name) continue; if (TREE_CODE (decl) == USING_DECL) { decl = strip_using_decl (decl); if (is_overloaded_fn (decl)) continue; } if (DECL_DECLARES_FUNCTION_P (decl)) /* Functions are found separately. */ continue; if (!want_type || DECL_DECLARES_TYPE_P (decl)) return decl; } return NULL_TREE; } /* Look for NAME member inside of anonymous aggregate ANON. Although such things should only contain FIELD_DECLs, we check that too late, and would give very confusing errors if we weren't permissive here. */ tree search_anon_aggr (tree anon, tree name, bool want_type) { gcc_assert (COMPLETE_TYPE_P (anon)); tree ret = get_class_binding_direct (anon, name, want_type); return ret; } /* Look for NAME as an immediate member of KLASS (including anon-members or unscoped enum member). TYPE_OR_FNS is zero for regular search. >0 to get a type binding (if there is one) and <0 if you want (just) the member function binding. Use this if you do not want lazy member creation. */ tree get_class_binding_direct (tree klass, tree name, int type_or_fns) { gcc_checking_assert (RECORD_OR_UNION_TYPE_P (klass)); /* Conversion operators can only be found by the marker conversion operator name. */ bool conv_op = IDENTIFIER_CONV_OP_P (name); tree lookup = conv_op ? conv_op_identifier : name; tree val = NULL_TREE; vec *member_vec = CLASSTYPE_MEMBER_VEC (klass); if (COMPLETE_TYPE_P (klass) && member_vec) { val = member_vec_binary_search (member_vec, lookup); if (!val) ; else if (type_or_fns > 0) { if (STAT_HACK_P (val)) val = STAT_TYPE (val); else if (!DECL_DECLARES_TYPE_P (val)) val = NULL_TREE; } else if (STAT_HACK_P (val)) val = STAT_DECL (val); } else { if (member_vec && type_or_fns <= 0) val = member_vec_linear_search (member_vec, lookup); if (type_or_fns < 0) /* Don't bother looking for field. We don't want it. */; else if (!val || (TREE_CODE (val) == OVERLOAD && OVL_USING_P (val))) /* Dependent using declarations are a 'field', make sure we return that even if we saw an overload already. */ if (tree field_val = fields_linear_search (klass, lookup, type_or_fns > 0)) if (!val || TREE_CODE (field_val) == USING_DECL) val = field_val; } /* Extract the conversion operators asked for, unless the general conversion operator was requested. */ if (val && conv_op) { gcc_checking_assert (OVL_FUNCTION (val) == conv_op_marker); val = OVL_CHAIN (val); if (tree type = TREE_TYPE (name)) val = extract_conversion_operator (val, type); } return val; } /* Look for NAME's binding in exactly KLASS. See get_class_binding_direct for argument description. Does lazy special function creation as necessary. */ tree get_class_binding (tree klass, tree name, int type_or_fns) { klass = complete_type (klass); if (COMPLETE_TYPE_P (klass)) { /* Lazily declare functions, if we're going to search these. */ if (IDENTIFIER_CTOR_P (name)) { if (CLASSTYPE_LAZY_DEFAULT_CTOR (klass)) lazily_declare_fn (sfk_constructor, klass); if (CLASSTYPE_LAZY_COPY_CTOR (klass)) lazily_declare_fn (sfk_copy_constructor, klass); if (CLASSTYPE_LAZY_MOVE_CTOR (klass)) lazily_declare_fn (sfk_move_constructor, klass); } else if (IDENTIFIER_DTOR_P (name)) { if (CLASSTYPE_LAZY_DESTRUCTOR (klass)) lazily_declare_fn (sfk_destructor, klass); } else if (name == assign_op_identifier) { if (CLASSTYPE_LAZY_COPY_ASSIGN (klass)) lazily_declare_fn (sfk_copy_assignment, klass); if (CLASSTYPE_LAZY_MOVE_ASSIGN (klass)) lazily_declare_fn (sfk_move_assignment, klass); } } return get_class_binding_direct (klass, name, type_or_fns); } /* Find the slot containing overloads called 'NAME'. If there is no such slot and the class is complete, create an empty one, at the correct point in the sorted member vector. Otherwise return NULL. Deals with conv_op marker handling. */ tree * find_member_slot (tree klass, tree name) { bool complete_p = COMPLETE_TYPE_P (klass); vec *member_vec = CLASSTYPE_MEMBER_VEC (klass); if (!member_vec) { vec_alloc (member_vec, 8); CLASSTYPE_MEMBER_VEC (klass) = member_vec; if (complete_p) { /* If the class is complete but had no member_vec, we need to add the TYPE_FIELDS into it. We're also most likely to be adding ctors & dtors, so ask for 6 spare slots (the abstract cdtors and their clones). */ set_class_bindings (klass, 6); member_vec = CLASSTYPE_MEMBER_VEC (klass); } } if (IDENTIFIER_CONV_OP_P (name)) name = conv_op_identifier; unsigned ix, length = member_vec->length (); for (ix = 0; ix < length; ix++) { tree *slot = &(*member_vec)[ix]; tree fn_name = OVL_NAME (*slot); if (fn_name == name) { /* If we found an existing slot, it must be a function set. Even with insertion after completion, because those only happen with artificial fns that have unspellable names. This means we do not have to deal with the stat hack either. */ gcc_checking_assert (OVL_P (*slot)); if (name == conv_op_identifier) { gcc_checking_assert (OVL_FUNCTION (*slot) == conv_op_marker); /* Skip the conv-op marker. */ slot = &OVL_CHAIN (*slot); } return slot; } if (complete_p && fn_name > name) break; } /* No slot found, add one if the class is complete. */ if (complete_p) { /* Do exact allocation, as we don't expect to add many. */ gcc_assert (name != conv_op_identifier); vec_safe_reserve_exact (member_vec, 1); CLASSTYPE_MEMBER_VEC (klass) = member_vec; member_vec->quick_insert (ix, NULL_TREE); return &(*member_vec)[ix]; } return NULL; } /* KLASS is an incomplete class to which we're adding a method NAME. Add a slot and deal with conv_op marker handling. */ tree * add_member_slot (tree klass, tree name) { gcc_assert (!COMPLETE_TYPE_P (klass)); vec *member_vec = CLASSTYPE_MEMBER_VEC (klass); vec_safe_push (member_vec, NULL_TREE); CLASSTYPE_MEMBER_VEC (klass) = member_vec; tree *slot = &member_vec->last (); if (IDENTIFIER_CONV_OP_P (name)) { /* Install the marker prefix. */ *slot = ovl_make (conv_op_marker, NULL_TREE); slot = &OVL_CHAIN (*slot); } return slot; } /* Comparison function to compare two MEMBER_VEC entries by name. Because we can have duplicates during insertion of TYPE_FIELDS, we do extra checking so deduping doesn't have to deal with so many cases. */ static int member_name_cmp (const void *a_p, const void *b_p) { tree a = *(const tree *)a_p; tree b = *(const tree *)b_p; tree name_a = DECL_NAME (TREE_CODE (a) == OVERLOAD ? OVL_FUNCTION (a) : a); tree name_b = DECL_NAME (TREE_CODE (b) == OVERLOAD ? OVL_FUNCTION (b) : b); gcc_checking_assert (name_a && name_b); if (name_a != name_b) return name_a < name_b ? -1 : +1; if (name_a == conv_op_identifier) { /* Strip the conv-op markers. */ gcc_checking_assert (OVL_FUNCTION (a) == conv_op_marker && OVL_FUNCTION (b) == conv_op_marker); a = OVL_CHAIN (a); b = OVL_CHAIN (b); } if (TREE_CODE (a) == OVERLOAD) a = OVL_FUNCTION (a); if (TREE_CODE (b) == OVERLOAD) b = OVL_FUNCTION (b); /* We're in STAT_HACK or USING_DECL territory (or possibly error-land). */ if (TREE_CODE (a) != TREE_CODE (b)) { /* If one of them is a TYPE_DECL, it loses. */ if (TREE_CODE (a) == TYPE_DECL) return +1; else if (TREE_CODE (b) == TYPE_DECL) return -1; /* If one of them is a USING_DECL, it loses. */ if (TREE_CODE (a) == USING_DECL) return +1; else if (TREE_CODE (b) == USING_DECL) return -1; /* There are no other cases with different kinds of decls, as duplicate detection should have kicked in earlier. However, some erroneous cases get though. */ gcc_assert (errorcount); } /* Using source location would be the best thing here, but we can get identically-located decls in the following circumstances: 1) duplicate artificial type-decls for the same type. 2) pack expansions of using-decls. We should not be doing #1, but in either case it doesn't matter how we order these. Use UID as a proxy for source ordering, so that identically-located decls still have a well-defined stable ordering. */ if (DECL_UID (a) != DECL_UID (b)) return DECL_UID (a) < DECL_UID (b) ? -1 : +1; gcc_assert (a == b); return 0; } static struct { gt_pointer_operator new_value; void *cookie; } resort_data; /* This routine compares two fields like member_name_cmp but using the pointer operator in resort_field_decl_data. We don't have to deal with duplicates here. */ static int resort_member_name_cmp (const void *a_p, const void *b_p) { tree a = *(const tree *)a_p; tree b = *(const tree *)b_p; tree name_a = OVL_NAME (a); tree name_b = OVL_NAME (b); resort_data.new_value (&name_a, resort_data.cookie); resort_data.new_value (&name_b, resort_data.cookie); gcc_checking_assert (name_a != name_b); return name_a < name_b ? -1 : +1; } /* Resort CLASSTYPE_MEMBER_VEC because pointers have been reordered. */ void resort_type_member_vec (void *obj, void */*orig_obj*/, gt_pointer_operator new_value, void* cookie) { if (vec *member_vec = (vec *) obj) { resort_data.new_value = new_value; resort_data.cookie = cookie; member_vec->qsort (resort_member_name_cmp); } } /* Recursively count the number of fields in KLASS, including anonymous union members. */ static unsigned count_class_fields (tree klass) { unsigned n_fields = 0; for (tree fields = TYPE_FIELDS (klass); fields; fields = DECL_CHAIN (fields)) if (DECL_DECLARES_FUNCTION_P (fields)) /* Functions are dealt with separately. */; else if (TREE_CODE (fields) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (fields))) n_fields += count_class_fields (TREE_TYPE (fields)); else if (DECL_NAME (fields)) n_fields += 1; return n_fields; } /* Append all the nonfunction members fields of KLASS to MEMBER_VEC. Recurse for anonymous members. MEMBER_VEC must have space. */ static void member_vec_append_class_fields (vec *member_vec, tree klass) { for (tree fields = TYPE_FIELDS (klass); fields; fields = DECL_CHAIN (fields)) if (DECL_DECLARES_FUNCTION_P (fields)) /* Functions are handled separately. */; else if (TREE_CODE (fields) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (fields))) member_vec_append_class_fields (member_vec, TREE_TYPE (fields)); else if (DECL_NAME (fields)) { tree field = fields; /* Mark a conv-op USING_DECL with the conv-op-marker. */ if (TREE_CODE (field) == USING_DECL && IDENTIFIER_CONV_OP_P (DECL_NAME (field))) field = ovl_make (conv_op_marker, field); member_vec->quick_push (field); } } /* Append all of the enum values of ENUMTYPE to MEMBER_VEC. MEMBER_VEC must have space. */ static void member_vec_append_enum_values (vec *member_vec, tree enumtype) { for (tree values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values)) member_vec->quick_push (TREE_VALUE (values)); } /* MEMBER_VEC has just had new DECLs added to it, but is sorted. DeDup adjacent DECLS of the same name. We already dealt with conflict resolution when adding the fields or methods themselves. There are three cases (which could all be combined): 1) a TYPE_DECL and non TYPE_DECL. Deploy STAT_HACK as appropriate. 2) a USING_DECL and an overload. If the USING_DECL is dependent, it wins. Otherwise the OVERLOAD does. 3) two USING_DECLS. ... member_name_cmp will have ordered duplicates as */ static void member_vec_dedup (vec *member_vec) { unsigned len = member_vec->length (); unsigned store = 0; if (!len) return; tree name = OVL_NAME ((*member_vec)[0]); for (unsigned jx, ix = 0; ix < len; ix = jx) { tree current = NULL_TREE; tree to_type = NULL_TREE; tree to_using = NULL_TREE; tree marker = NULL_TREE; for (jx = ix; jx < len; jx++) { tree next = (*member_vec)[jx]; if (jx != ix) { tree next_name = OVL_NAME (next); if (next_name != name) { name = next_name; break; } } if (IDENTIFIER_CONV_OP_P (name)) { marker = next; next = OVL_CHAIN (next); } if (TREE_CODE (next) == USING_DECL) { if (IDENTIFIER_CTOR_P (name)) /* Dependent inherited ctor. */ continue; next = strip_using_decl (next); if (TREE_CODE (next) == USING_DECL) { to_using = next; continue; } if (is_overloaded_fn (next)) continue; } if (DECL_DECLARES_TYPE_P (next)) { to_type = next; continue; } if (!current) current = next; } if (to_using) { if (!current) current = to_using; else current = ovl_make (to_using, current); } if (to_type) { if (!current) current = to_type; else current = stat_hack (current, to_type); } if (current) { if (marker) { OVL_CHAIN (marker) = current; current = marker; } (*member_vec)[store++] = current; } } while (store++ < len) member_vec->pop (); } /* Add the non-function members to CLASSTYPE_MEMBER_VEC. If there is no existing MEMBER_VEC and fewer than 8 fields, do nothing. We know there must be at least 1 field -- the self-reference TYPE_DECL, except for anon aggregates, which will have at least one field. */ void set_class_bindings (tree klass, unsigned extra) { unsigned n_fields = count_class_fields (klass); vec *member_vec = CLASSTYPE_MEMBER_VEC (klass); if (member_vec || n_fields >= 8) { /* Append the new fields. */ vec_safe_reserve_exact (member_vec, extra + n_fields); member_vec_append_class_fields (member_vec, klass); } if (member_vec) { CLASSTYPE_MEMBER_VEC (klass) = member_vec; member_vec->qsort (member_name_cmp); member_vec_dedup (member_vec); } } /* Insert lately defined enum ENUMTYPE into KLASS for the sorted case. */ void insert_late_enum_def_bindings (tree klass, tree enumtype) { int n_fields; vec *member_vec = CLASSTYPE_MEMBER_VEC (klass); /* The enum bindings will already be on the TYPE_FIELDS, so don't count them twice. */ if (!member_vec) n_fields = count_class_fields (klass); else n_fields = list_length (TYPE_VALUES (enumtype)); if (member_vec || n_fields >= 8) { vec_safe_reserve_exact (member_vec, n_fields); if (CLASSTYPE_MEMBER_VEC (klass)) member_vec_append_enum_values (member_vec, enumtype); else member_vec_append_class_fields (member_vec, klass); CLASSTYPE_MEMBER_VEC (klass) = member_vec; member_vec->qsort (member_name_cmp); member_vec_dedup (member_vec); } } /* Compute the chain index of a binding_entry given the HASH value of its name and the total COUNT of chains. COUNT is assumed to be a power of 2. */ #define ENTRY_INDEX(HASH, COUNT) (((HASH) >> 3) & ((COUNT) - 1)) /* A free list of "binding_entry"s awaiting for re-use. */ static GTY((deletable)) binding_entry free_binding_entry = NULL; /* The binding oracle; see cp-tree.h. */ cp_binding_oracle_function *cp_binding_oracle; /* If we have a binding oracle, ask it for all namespace-scoped definitions of NAME. */ static inline void query_oracle (tree name) { if (!cp_binding_oracle) return; /* LOOKED_UP holds the set of identifiers that we have already looked up with the oracle. */ static hash_set looked_up; if (looked_up.add (name)) return; cp_binding_oracle (CP_ORACLE_IDENTIFIER, name); } /* Create a binding_entry object for (NAME, TYPE). */ static inline binding_entry binding_entry_make (tree name, tree type) { binding_entry entry; if (free_binding_entry) { entry = free_binding_entry; free_binding_entry = entry->chain; } else entry = ggc_alloc (); entry->name = name; entry->type = type; entry->chain = NULL; return entry; } /* Put ENTRY back on the free list. */ #if 0 static inline void binding_entry_free (binding_entry entry) { entry->name = NULL; entry->type = NULL; entry->chain = free_binding_entry; free_binding_entry = entry; } #endif /* The datatype used to implement the mapping from names to types at a given scope. */ struct GTY(()) binding_table_s { /* Array of chains of "binding_entry"s */ binding_entry * GTY((length ("%h.chain_count"))) chain; /* The number of chains in this table. This is the length of the member "chain" considered as an array. */ size_t chain_count; /* Number of "binding_entry"s in this table. */ size_t entry_count; }; /* Construct TABLE with an initial CHAIN_COUNT. */ static inline void binding_table_construct (binding_table table, size_t chain_count) { table->chain_count = chain_count; table->entry_count = 0; table->chain = ggc_cleared_vec_alloc (table->chain_count); } /* Make TABLE's entries ready for reuse. */ #if 0 static void binding_table_free (binding_table table) { size_t i; size_t count; if (table == NULL) return; for (i = 0, count = table->chain_count; i < count; ++i) { binding_entry temp = table->chain[i]; while (temp != NULL) { binding_entry entry = temp; temp = entry->chain; binding_entry_free (entry); } table->chain[i] = NULL; } table->entry_count = 0; } #endif /* Allocate a table with CHAIN_COUNT, assumed to be a power of two. */ static inline binding_table binding_table_new (size_t chain_count) { binding_table table = ggc_alloc (); table->chain = NULL; binding_table_construct (table, chain_count); return table; } /* Expand TABLE to twice its current chain_count. */ static void binding_table_expand (binding_table table) { const size_t old_chain_count = table->chain_count; const size_t old_entry_count = table->entry_count; const size_t new_chain_count = 2 * old_chain_count; binding_entry *old_chains = table->chain; size_t i; binding_table_construct (table, new_chain_count); for (i = 0; i < old_chain_count; ++i) { binding_entry entry = old_chains[i]; for (; entry != NULL; entry = old_chains[i]) { const unsigned int hash = IDENTIFIER_HASH_VALUE (entry->name); const size_t j = ENTRY_INDEX (hash, new_chain_count); old_chains[i] = entry->chain; entry->chain = table->chain[j]; table->chain[j] = entry; } } table->entry_count = old_entry_count; } /* Insert a binding for NAME to TYPE into TABLE. */ static void binding_table_insert (binding_table table, tree name, tree type) { const unsigned int hash = IDENTIFIER_HASH_VALUE (name); const size_t i = ENTRY_INDEX (hash, table->chain_count); binding_entry entry = binding_entry_make (name, type); entry->chain = table->chain[i]; table->chain[i] = entry; ++table->entry_count; if (3 * table->chain_count < 5 * table->entry_count) binding_table_expand (table); } /* Return the binding_entry, if any, that maps NAME. */ binding_entry binding_table_find (binding_table table, tree name) { const unsigned int hash = IDENTIFIER_HASH_VALUE (name); binding_entry entry = table->chain[ENTRY_INDEX (hash, table->chain_count)]; while (entry != NULL && entry->name != name) entry = entry->chain; return entry; } /* Apply PROC -- with DATA -- to all entries in TABLE. */ void binding_table_foreach (binding_table table, bt_foreach_proc proc, void *data) { size_t chain_count; size_t i; if (!table) return; chain_count = table->chain_count; for (i = 0; i < chain_count; ++i) { binding_entry entry = table->chain[i]; for (; entry != NULL; entry = entry->chain) proc (entry, data); } } #ifndef ENABLE_SCOPE_CHECKING # define ENABLE_SCOPE_CHECKING 0 #else # define ENABLE_SCOPE_CHECKING 1 #endif /* A free list of "cxx_binding"s, connected by their PREVIOUS. */ static GTY((deletable)) cxx_binding *free_bindings; /* Initialize VALUE and TYPE field for BINDING, and set the PREVIOUS field to NULL. */ static inline void cxx_binding_init (cxx_binding *binding, tree value, tree type) { binding->value = value; binding->type = type; binding->previous = NULL; } /* (GC)-allocate a binding object with VALUE and TYPE member initialized. */ static cxx_binding * cxx_binding_make (tree value, tree type) { cxx_binding *binding; if (free_bindings) { binding = free_bindings; free_bindings = binding->previous; } else binding = ggc_alloc (); cxx_binding_init (binding, value, type); return binding; } /* Put BINDING back on the free list. */ static inline void cxx_binding_free (cxx_binding *binding) { binding->scope = NULL; binding->previous = free_bindings; free_bindings = binding; } /* Create a new binding for NAME (with the indicated VALUE and TYPE bindings) in the class scope indicated by SCOPE. */ static cxx_binding * new_class_binding (tree name, tree value, tree type, cp_binding_level *scope) { cp_class_binding cb = {cxx_binding_make (value, type), name}; cxx_binding *binding = cb.base; vec_safe_push (scope->class_shadowed, cb); binding->scope = scope; return binding; } /* Make DECL the innermost binding for ID. The LEVEL is the binding level at which this declaration is being bound. */ void push_binding (tree id, tree decl, cp_binding_level* level) { cxx_binding *binding; if (level != class_binding_level) { binding = cxx_binding_make (decl, NULL_TREE); binding->scope = level; } else binding = new_class_binding (id, decl, /*type=*/NULL_TREE, level); /* Now, fill in the binding information. */ binding->previous = IDENTIFIER_BINDING (id); INHERITED_VALUE_BINDING_P (binding) = 0; LOCAL_BINDING_P (binding) = (level != class_binding_level); /* And put it on the front of the list of bindings for ID. */ IDENTIFIER_BINDING (id) = binding; } /* Remove the binding for DECL which should be the innermost binding for ID. */ void pop_local_binding (tree id, tree decl) { cxx_binding *binding; if (id == NULL_TREE) /* It's easiest to write the loops that call this function without checking whether or not the entities involved have names. We get here for such an entity. */ return; /* Get the innermost binding for ID. */ binding = IDENTIFIER_BINDING (id); /* The name should be bound. */ gcc_assert (binding != NULL); /* The DECL will be either the ordinary binding or the type binding for this identifier. Remove that binding. */ if (binding->value == decl) binding->value = NULL_TREE; else { gcc_assert (binding->type == decl); binding->type = NULL_TREE; } if (!binding->value && !binding->type) { /* We're completely done with the innermost binding for this identifier. Unhook it from the list of bindings. */ IDENTIFIER_BINDING (id) = binding->previous; /* Add it to the free list. */ cxx_binding_free (binding); } } /* Remove the bindings for the decls of the current level and leave the current scope. */ void pop_bindings_and_leave_scope (void) { for (tree t = get_local_decls (); t; t = DECL_CHAIN (t)) { tree decl = TREE_CODE (t) == TREE_LIST ? TREE_VALUE (t) : t; tree name = OVL_NAME (decl); pop_local_binding (name, decl); } leave_scope (); } /* Strip non dependent using declarations. If DECL is dependent, surreptitiously create a typename_type and return it. */ tree strip_using_decl (tree decl) { if (decl == NULL_TREE) return NULL_TREE; while (TREE_CODE (decl) == USING_DECL && !DECL_DEPENDENT_P (decl)) decl = USING_DECL_DECLS (decl); if (TREE_CODE (decl) == USING_DECL && DECL_DEPENDENT_P (decl) && USING_DECL_TYPENAME_P (decl)) { /* We have found a type introduced by a using declaration at class scope that refers to a dependent type. using typename :: [opt] nested-name-specifier unqualified-id ; */ decl = make_typename_type (TREE_TYPE (decl), DECL_NAME (decl), typename_type, tf_error); if (decl != error_mark_node) decl = TYPE_NAME (decl); } return decl; } /* Return true if OVL is an overload for an anticipated builtin. */ static bool anticipated_builtin_p (tree ovl) { if (TREE_CODE (ovl) != OVERLOAD) return false; if (!OVL_HIDDEN_P (ovl)) return false; tree fn = OVL_FUNCTION (ovl); gcc_checking_assert (DECL_ANTICIPATED (fn)); if (DECL_HIDDEN_FRIEND_P (fn)) return false; return true; } /* BINDING records an existing declaration for a name in the current scope. But, DECL is another declaration for that same identifier in the same scope. This is the `struct stat' hack whereby a non-typedef class name or enum-name can be bound at the same level as some other kind of entity. 3.3.7/1 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumerator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are declared in the same scope (in any order) with the same name, the class or enumeration name is hidden wherever the object, function, or enumerator name is visible. It's the responsibility of the caller to check that inserting this name is valid here. Returns nonzero if the new binding was successful. */ static bool supplement_binding_1 (cxx_binding *binding, tree decl) { tree bval = binding->value; bool ok = true; tree target_bval = strip_using_decl (bval); tree target_decl = strip_using_decl (decl); if (TREE_CODE (target_decl) == TYPE_DECL && DECL_ARTIFICIAL (target_decl) && target_decl != target_bval && (TREE_CODE (target_bval) != TYPE_DECL /* We allow pushing an enum multiple times in a class template in order to handle late matching of underlying type on an opaque-enum-declaration followed by an enum-specifier. */ || (processing_template_decl && TREE_CODE (TREE_TYPE (target_decl)) == ENUMERAL_TYPE && TREE_CODE (TREE_TYPE (target_bval)) == ENUMERAL_TYPE && (dependent_type_p (ENUM_UNDERLYING_TYPE (TREE_TYPE (target_decl))) || dependent_type_p (ENUM_UNDERLYING_TYPE (TREE_TYPE (target_bval))))))) /* The new name is the type name. */ binding->type = decl; else if (/* TARGET_BVAL is null when push_class_level_binding moves an inherited type-binding out of the way to make room for a new value binding. */ !target_bval /* TARGET_BVAL is error_mark_node when TARGET_DECL's name has been used in a non-class scope prior declaration. In that case, we should have already issued a diagnostic; for graceful error recovery purpose, pretend this was the intended declaration for that name. */ || target_bval == error_mark_node /* If TARGET_BVAL is anticipated but has not yet been declared, pretend it is not there at all. */ || anticipated_builtin_p (target_bval)) binding->value = decl; else if (TREE_CODE (target_bval) == TYPE_DECL && DECL_ARTIFICIAL (target_bval) && target_decl != target_bval && (TREE_CODE (target_decl) != TYPE_DECL || same_type_p (TREE_TYPE (target_decl), TREE_TYPE (target_bval)))) { /* The old binding was a type name. It was placed in VALUE field because it was thought, at the point it was declared, to be the only entity with such a name. Move the type name into the type slot; it is now hidden by the new binding. */ binding->type = bval; binding->value = decl; binding->value_is_inherited = false; } else if (TREE_CODE (target_bval) == TYPE_DECL && TREE_CODE (target_decl) == TYPE_DECL && DECL_NAME (target_decl) == DECL_NAME (target_bval) && binding->scope->kind != sk_class && (same_type_p (TREE_TYPE (target_decl), TREE_TYPE (target_bval)) /* If either type involves template parameters, we must wait until instantiation. */ || uses_template_parms (TREE_TYPE (target_decl)) || uses_template_parms (TREE_TYPE (target_bval)))) /* We have two typedef-names, both naming the same type to have the same name. In general, this is OK because of: [dcl.typedef] In a given scope, a typedef specifier can be used to redefine the name of any type declared in that scope to refer to the type to which it already refers. However, in class scopes, this rule does not apply due to the stricter language in [class.mem] prohibiting redeclarations of members. */ ok = false; /* There can be two block-scope declarations of the same variable, so long as they are `extern' declarations. However, there cannot be two declarations of the same static data member: [class.mem] A member shall not be declared twice in the member-specification. */ else if (VAR_P (target_decl) && VAR_P (target_bval) && DECL_EXTERNAL (target_decl) && DECL_EXTERNAL (target_bval) && !DECL_CLASS_SCOPE_P (target_decl)) { duplicate_decls (decl, binding->value, /*newdecl_is_friend=*/false); ok = false; } else if (TREE_CODE (decl) == NAMESPACE_DECL && TREE_CODE (bval) == NAMESPACE_DECL && DECL_NAMESPACE_ALIAS (decl) && DECL_NAMESPACE_ALIAS (bval) && ORIGINAL_NAMESPACE (bval) == ORIGINAL_NAMESPACE (decl)) /* [namespace.alias] In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in that declarative region to refer only to the namespace to which it already refers. */ ok = false; else { if (!error_operand_p (bval)) diagnose_name_conflict (decl, bval); ok = false; } return ok; } /* Diagnose a name conflict between DECL and BVAL. */ static void diagnose_name_conflict (tree decl, tree bval) { if (TREE_CODE (decl) == TREE_CODE (bval) && TREE_CODE (decl) != NAMESPACE_DECL && !DECL_DECLARES_FUNCTION_P (decl) && (TREE_CODE (decl) != TYPE_DECL || DECL_ARTIFICIAL (decl) == DECL_ARTIFICIAL (bval)) && CP_DECL_CONTEXT (decl) == CP_DECL_CONTEXT (bval)) error ("redeclaration of %q#D", decl); else error ("%q#D conflicts with a previous declaration", decl); inform (location_of (bval), "previous declaration %q#D", bval); } /* Wrapper for supplement_binding_1. */ static bool supplement_binding (cxx_binding *binding, tree decl) { bool ret; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); ret = supplement_binding_1 (binding, decl); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } /* Replace BINDING's current value on its scope's name list with NEWVAL. */ static void update_local_overload (cxx_binding *binding, tree newval) { tree *d; for (d = &binding->scope->names; ; d = &TREE_CHAIN (*d)) if (*d == binding->value) { /* Stitch new list node in. */ *d = tree_cons (NULL_TREE, NULL_TREE, TREE_CHAIN (*d)); break; } else if (TREE_CODE (*d) == TREE_LIST && TREE_VALUE (*d) == binding->value) break; TREE_VALUE (*d) = newval; } /* Compares the parameter-type-lists of ONE and TWO and returns false if they are different. If the DECLs are template functions, the return types and the template parameter lists are compared too (DR 565). */ static bool matching_fn_p (tree one, tree two) { if (!compparms (TYPE_ARG_TYPES (TREE_TYPE (one)), TYPE_ARG_TYPES (TREE_TYPE (two)))) return false; if (TREE_CODE (one) == TEMPLATE_DECL && TREE_CODE (two) == TEMPLATE_DECL) { /* Compare template parms. */ if (!comp_template_parms (DECL_TEMPLATE_PARMS (one), DECL_TEMPLATE_PARMS (two))) return false; /* And return type. */ if (!same_type_p (TREE_TYPE (TREE_TYPE (one)), TREE_TYPE (TREE_TYPE (two)))) return false; } return true; } /* Push DECL into nonclass LEVEL BINDING or SLOT. OLD is the current binding value (possibly with anticipated builtins stripped). Diagnose conflicts and return updated decl. */ static tree update_binding (cp_binding_level *level, cxx_binding *binding, tree *slot, tree old, tree decl, bool is_friend) { tree to_val = decl; tree old_type = slot ? MAYBE_STAT_TYPE (*slot) : binding->type; tree to_type = old_type; gcc_assert (level->kind == sk_namespace ? !binding : level->kind != sk_class && !slot); if (old == error_mark_node) old = NULL_TREE; if (TREE_CODE (decl) == TYPE_DECL && DECL_ARTIFICIAL (decl)) { tree other = to_type; if (old && TREE_CODE (old) == TYPE_DECL && DECL_ARTIFICIAL (old)) other = old; /* Pushing an artificial typedef. See if this matches either the type slot or the old value slot. */ if (!other) ; else if (same_type_p (TREE_TYPE (other), TREE_TYPE (decl))) /* Two artificial decls to same type. Do nothing. */ return other; else goto conflict; if (old) { /* Slide decl into the type slot, keep old unaltered */ to_type = decl; to_val = old; goto done; } } if (old && TREE_CODE (old) == TYPE_DECL && DECL_ARTIFICIAL (old)) { /* Slide old into the type slot. */ to_type = old; old = NULL_TREE; } if (DECL_DECLARES_FUNCTION_P (decl)) { if (!old) ; else if (OVL_P (old)) { for (ovl_iterator iter (old); iter; ++iter) { tree fn = *iter; if (iter.using_p () && matching_fn_p (fn, decl)) { /* If a function declaration in namespace scope or block scope has the same name and the same parameter-type- list (8.3.5) as a function introduced by a using-declaration, and the declarations do not declare the same function, the program is ill-formed. [namespace.udecl]/14 */ if (tree match = duplicate_decls (decl, fn, is_friend)) return match; else /* FIXME: To preserve existing error behavior, we still push the decl. This might change. */ diagnose_name_conflict (decl, fn); } } } else goto conflict; if (to_type != old_type && warn_shadow && MAYBE_CLASS_TYPE_P (TREE_TYPE (to_type)) && !(DECL_IN_SYSTEM_HEADER (decl) && DECL_IN_SYSTEM_HEADER (to_type))) warning (OPT_Wshadow, "%q#D hides constructor for %q#D", decl, to_type); to_val = ovl_insert (decl, old); } else if (!old) ; else if (TREE_CODE (old) != TREE_CODE (decl)) /* Different kinds of decls conflict. */ goto conflict; else if (TREE_CODE (old) == TYPE_DECL) { if (same_type_p (TREE_TYPE (old), TREE_TYPE (decl))) /* Two type decls to the same type. Do nothing. */ return old; else goto conflict; } else if (TREE_CODE (old) == NAMESPACE_DECL) { /* Two maybe-aliased namespaces. If they're to the same target namespace, that's ok. */ if (ORIGINAL_NAMESPACE (old) != ORIGINAL_NAMESPACE (decl)) goto conflict; /* The new one must be an alias at this point. */ gcc_assert (DECL_NAMESPACE_ALIAS (decl)); return old; } else if (TREE_CODE (old) == VAR_DECL) { /* There can be two block-scope declarations of the same variable, so long as they are `extern' declarations. */ if (!DECL_EXTERNAL (old) || !DECL_EXTERNAL (decl)) goto conflict; else if (tree match = duplicate_decls (decl, old, false)) return match; else goto conflict; } else { conflict: diagnose_name_conflict (decl, old); to_val = NULL_TREE; } done: if (to_val) { if (level->kind == sk_namespace || to_type == decl || to_val == decl) add_decl_to_level (level, decl); else { gcc_checking_assert (binding->value && OVL_P (binding->value)); update_local_overload (binding, to_val); } if (slot) { if (STAT_HACK_P (*slot)) { STAT_TYPE (*slot) = to_type; STAT_DECL (*slot) = to_val; } else if (to_type) *slot = stat_hack (to_val, to_type); else *slot = to_val; } else { binding->type = to_type; binding->value = to_val; } } return decl; } /* Table of identifiers to extern C declarations (or LISTS thereof). */ static GTY(()) hash_table *extern_c_decls; /* DECL has C linkage. If we have an existing instance, make sure the new one is compatible. Make sure it has the same exception specification [7.5, 7.6]. Add DECL to the map. */ static void check_extern_c_conflict (tree decl) { /* Ignore artificial or system header decls. */ if (DECL_ARTIFICIAL (decl) || DECL_IN_SYSTEM_HEADER (decl)) return; /* This only applies to decls at namespace scope. */ if (!DECL_NAMESPACE_SCOPE_P (decl)) return; if (!extern_c_decls) extern_c_decls = hash_table::create_ggc (127); tree *slot = extern_c_decls ->find_slot_with_hash (DECL_NAME (decl), IDENTIFIER_HASH_VALUE (DECL_NAME (decl)), INSERT); if (tree old = *slot) { if (TREE_CODE (old) == OVERLOAD) old = OVL_FUNCTION (old); int mismatch = 0; if (DECL_CONTEXT (old) == DECL_CONTEXT (decl)) ; /* If they're in the same context, we'll have already complained about a (possible) mismatch, when inserting the decl. */ else if (!decls_match (decl, old)) mismatch = 1; else if (TREE_CODE (decl) == FUNCTION_DECL && !comp_except_specs (TYPE_RAISES_EXCEPTIONS (TREE_TYPE (old)), TYPE_RAISES_EXCEPTIONS (TREE_TYPE (decl)), ce_normal)) mismatch = -1; else if (DECL_ASSEMBLER_NAME_SET_P (old)) SET_DECL_ASSEMBLER_NAME (decl, DECL_ASSEMBLER_NAME (old)); if (mismatch) { pedwarn (input_location, 0, "conflicting C language linkage declaration %q#D", decl); inform (DECL_SOURCE_LOCATION (old), "previous declaration %q#D", old); if (mismatch < 0) inform (input_location, "due to different exception specifications"); } else { if (old == *slot) /* The hash table expects OVERLOADS, so construct one with OLD as both the function and the chain. This allocate an excess OVERLOAD node, but it's rare to have multiple extern "C" decls of the same name. And we save complicating the hash table logic (which is used elsewhere). */ *slot = ovl_make (old, old); slot = &OVL_CHAIN (*slot); /* Chain it on for c_linkage_binding's use. */ *slot = tree_cons (NULL_TREE, decl, *slot); } } else *slot = decl; } /* Returns a list of C-linkage decls with the name NAME. Used in c-family/c-pragma.c to implement redefine_extname pragma. */ tree c_linkage_bindings (tree name) { if (extern_c_decls) if (tree *slot = extern_c_decls ->find_slot_with_hash (name, IDENTIFIER_HASH_VALUE (name), NO_INSERT)) { tree result = *slot; if (TREE_CODE (result) == OVERLOAD) result = OVL_CHAIN (result); return result; } return NULL_TREE; } /* DECL is being declared at a local scope. Emit suitable shadow warnings. */ static void check_local_shadow (tree decl) { /* Don't complain about the parms we push and then pop while tentatively parsing a function declarator. */ if (TREE_CODE (decl) == PARM_DECL && !DECL_CONTEXT (decl)) return; /* Inline decls shadow nothing. */ if (DECL_FROM_INLINE (decl)) return; /* External decls are something else. */ if (DECL_EXTERNAL (decl)) return; tree old = NULL_TREE; cp_binding_level *old_scope = NULL; if (cxx_binding *binding = outer_binding (DECL_NAME (decl), NULL, true)) { old = binding->value; old_scope = binding->scope; } while (old && VAR_P (old) && DECL_DEAD_FOR_LOCAL (old)) old = DECL_SHADOWED_FOR_VAR (old); tree shadowed = NULL_TREE; if (old && (TREE_CODE (old) == PARM_DECL || VAR_P (old) || (TREE_CODE (old) == TYPE_DECL && (!DECL_ARTIFICIAL (old) || TREE_CODE (decl) == TYPE_DECL))) && (!DECL_ARTIFICIAL (decl) || DECL_IMPLICIT_TYPEDEF_P (decl) || (VAR_P (decl) && DECL_ANON_UNION_VAR_P (decl)))) { /* DECL shadows a local thing possibly of interest. */ /* Don't complain if it's from an enclosing function. */ if (DECL_CONTEXT (old) == current_function_decl && TREE_CODE (decl) != PARM_DECL && TREE_CODE (old) == PARM_DECL) { /* Go to where the parms should be and see if we find them there. */ cp_binding_level *b = current_binding_level->level_chain; if (FUNCTION_NEEDS_BODY_BLOCK (current_function_decl)) /* Skip the ctor/dtor cleanup level. */ b = b->level_chain; /* ARM $8.3 */ if (b->kind == sk_function_parms) { error ("declaration of %q#D shadows a parameter", decl); return; } } /* The local structure or class can't use parameters of the containing function anyway. */ if (DECL_CONTEXT (old) != current_function_decl) { for (cp_binding_level *scope = current_binding_level; scope != old_scope; scope = scope->level_chain) if (scope->kind == sk_class && !LAMBDA_TYPE_P (scope->this_entity)) return; } /* Error if redeclaring a local declared in a init-statement or in the condition of an if or switch statement when the new declaration is in the outermost block of the controlled statement. Redeclaring a variable from a for or while condition is detected elsewhere. */ else if (VAR_P (old) && old_scope == current_binding_level->level_chain && (old_scope->kind == sk_cond || old_scope->kind == sk_for)) { error ("redeclaration of %q#D", decl); inform (DECL_SOURCE_LOCATION (old), "%q#D previously declared here", old); return; } /* C++11: 3.3.3/3: The name declared in an exception-declaration (...) shall not be redeclared in the outermost block of the handler. 3.3.3/2: A parameter name shall not be redeclared (...) in the outermost block of any handler associated with a function-try-block. 3.4.1/15: The function parameter names shall not be redeclared in the exception-declaration nor in the outermost block of a handler for the function-try-block. */ else if ((TREE_CODE (old) == VAR_DECL && old_scope == current_binding_level->level_chain && old_scope->kind == sk_catch) || (TREE_CODE (old) == PARM_DECL && (current_binding_level->kind == sk_catch || current_binding_level->level_chain->kind == sk_catch) && in_function_try_handler)) { if (permerror (input_location, "redeclaration of %q#D", decl)) inform (DECL_SOURCE_LOCATION (old), "%q#D previously declared here", old); return; } /* If '-Wshadow=compatible-local' is specified without other -Wshadow= flags, we will warn only when the type of the shadowing variable (DECL) can be converted to that of the shadowed parameter (OLD_LOCAL). The reason why we only check if DECL's type can be converted to OLD_LOCAL's type (but not the other way around) is because when users accidentally shadow a parameter, more than often they would use the variable thinking (mistakenly) it's still the parameter. It would be rare that users would use the variable in the place that expects the parameter but thinking it's a new decl. */ enum opt_code warning_code; if (warn_shadow) warning_code = OPT_Wshadow; else if (warn_shadow_local) warning_code = OPT_Wshadow_local; else if (warn_shadow_compatible_local && (same_type_p (TREE_TYPE (old), TREE_TYPE (decl)) || (!dependent_type_p (TREE_TYPE (decl)) && !dependent_type_p (TREE_TYPE (old)) /* If the new decl uses auto, we don't yet know its type (the old type cannot be using auto at this point, without also being dependent). This is an indication we're (now) doing the shadow checking too early. */ && !type_uses_auto (TREE_TYPE (decl)) && can_convert (TREE_TYPE (old), TREE_TYPE (decl), tf_none)))) warning_code = OPT_Wshadow_compatible_local; else return; const char *msg; if (TREE_CODE (old) == PARM_DECL) msg = "declaration of %q#D shadows a parameter"; else if (is_capture_proxy (old)) msg = "declaration of %qD shadows a lambda capture"; else msg = "declaration of %qD shadows a previous local"; if (warning_at (input_location, warning_code, msg, decl)) { shadowed = old; goto inform_shadowed; } return; } if (!warn_shadow) return; /* Don't warn for artificial things that are not implicit typedefs. */ if (DECL_ARTIFICIAL (decl) && !DECL_IMPLICIT_TYPEDEF_P (decl)) return; if (nonlambda_method_basetype ()) if (tree member = lookup_member (current_nonlambda_class_type (), DECL_NAME (decl), /*protect=*/0, /*want_type=*/false, tf_warning_or_error)) { member = MAYBE_BASELINK_FUNCTIONS (member); /* Warn if a variable shadows a non-function, or the variable is a function or a pointer-to-function. */ if (!OVL_P (member) || TREE_CODE (decl) == FUNCTION_DECL || TYPE_PTRFN_P (TREE_TYPE (decl)) || TYPE_PTRMEMFUNC_P (TREE_TYPE (decl))) { if (warning_at (input_location, OPT_Wshadow, "declaration of %qD shadows a member of %qT", decl, current_nonlambda_class_type ()) && DECL_P (member)) { shadowed = member; goto inform_shadowed; } } return; } /* Now look for a namespace shadow. */ old = find_namespace_value (current_namespace, DECL_NAME (decl)); if (old && (VAR_P (old) || (TREE_CODE (old) == TYPE_DECL && (!DECL_ARTIFICIAL (old) || TREE_CODE (decl) == TYPE_DECL))) && !instantiating_current_function_p ()) /* XXX shadow warnings in outer-more namespaces */ { if (warning_at (input_location, OPT_Wshadow, "declaration of %qD shadows a global declaration", decl)) { shadowed = old; goto inform_shadowed; } return; } return; inform_shadowed: inform (DECL_SOURCE_LOCATION (shadowed), "shadowed declaration is here"); } /* DECL is being pushed inside function CTX. Set its context, if needed. */ static void set_decl_context_in_fn (tree ctx, tree decl) { if (!DECL_CONTEXT (decl) /* A local declaration for a function doesn't constitute nesting. */ && TREE_CODE (decl) != FUNCTION_DECL /* A local declaration for an `extern' variable is in the scope of the current namespace, not the current function. */ && !(VAR_P (decl) && DECL_EXTERNAL (decl)) /* When parsing the parameter list of a function declarator, don't set DECL_CONTEXT to an enclosing function. When we push the PARM_DECLs in order to process the function body, current_binding_level->this_entity will be set. */ && !(TREE_CODE (decl) == PARM_DECL && current_binding_level->kind == sk_function_parms && current_binding_level->this_entity == NULL)) DECL_CONTEXT (decl) = ctx; /* If this is the declaration for a namespace-scope function, but the declaration itself is in a local scope, mark the declaration. */ if (TREE_CODE (decl) == FUNCTION_DECL && DECL_NAMESPACE_SCOPE_P (decl)) DECL_LOCAL_FUNCTION_P (decl) = 1; } /* DECL is a local-scope decl with linkage. SHADOWED is true if the name is already bound at the current level. [basic.link] If there is a visible declaration of an entity with linkage having the same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block scope declaration declares that same entity and receives the linkage of the previous declaration. Also, make sure that this decl matches any existing external decl in the enclosing namespace. */ static void set_local_extern_decl_linkage (tree decl, bool shadowed) { tree ns_value = decl; /* Unique marker. */ if (!shadowed) { tree loc_value = innermost_non_namespace_value (DECL_NAME (decl)); if (!loc_value) { ns_value = find_namespace_value (current_namespace, DECL_NAME (decl)); loc_value = ns_value; } if (loc_value == error_mark_node /* An ambiguous lookup. */ || (loc_value && TREE_CODE (loc_value) == TREE_LIST)) loc_value = NULL_TREE; for (ovl_iterator iter (loc_value); iter; ++iter) if (!iter.hidden_p () && (TREE_STATIC (*iter) || DECL_EXTERNAL (*iter)) && decls_match (*iter, decl)) { /* The standard only says that the local extern inherits linkage from the previous decl; in particular, default args are not shared. Add the decl into a hash table to make sure only the previous decl in this case is seen by the middle end. */ struct cxx_int_tree_map *h; /* We inherit the outer decl's linkage. But we're a different decl. */ TREE_PUBLIC (decl) = TREE_PUBLIC (*iter); if (cp_function_chain->extern_decl_map == NULL) cp_function_chain->extern_decl_map = hash_table::create_ggc (20); h = ggc_alloc (); h->uid = DECL_UID (decl); h->to = *iter; cxx_int_tree_map **loc = cp_function_chain->extern_decl_map ->find_slot (h, INSERT); *loc = h; break; } } if (TREE_PUBLIC (decl)) { /* DECL is externally visible. Make sure it matches a matching decl in the namespace scope. We only really need to check this when inserting the decl, not when we find an existing match in the current scope. However, in practice we're going to be inserting a new decl in the majority of cases -- who writes multiple extern decls for the same thing in the same local scope? Doing it here often avoids a duplicate namespace lookup. */ /* Avoid repeating a lookup. */ if (ns_value == decl) ns_value = find_namespace_value (current_namespace, DECL_NAME (decl)); if (ns_value == error_mark_node || (ns_value && TREE_CODE (ns_value) == TREE_LIST)) ns_value = NULL_TREE; for (ovl_iterator iter (ns_value); iter; ++iter) { tree other = *iter; if (!(TREE_PUBLIC (other) || DECL_EXTERNAL (other))) ; /* Not externally visible. */ else if (DECL_EXTERN_C_P (decl) && DECL_EXTERN_C_P (other)) ; /* Both are extern "C", we'll check via that mechanism. */ else if (TREE_CODE (other) != TREE_CODE (decl) || ((VAR_P (decl) || matching_fn_p (other, decl)) && !comptypes (TREE_TYPE (decl), TREE_TYPE (other), COMPARE_REDECLARATION))) { if (permerror (DECL_SOURCE_LOCATION (decl), "local external declaration %q#D", decl)) inform (DECL_SOURCE_LOCATION (other), "does not match previous declaration %q#D", other); break; } } } } /* Record DECL as belonging to the current lexical scope. Check for errors (such as an incompatible declaration for the same name already seen in the same scope). IS_FRIEND is true if DECL is declared as a friend. Returns either DECL or an old decl for the same name. If an old decl is returned, it may have been smashed to agree with what DECL says. */ static tree do_pushdecl (tree decl, bool is_friend) { if (decl == error_mark_node) return error_mark_node; if (!DECL_TEMPLATE_PARM_P (decl) && current_function_decl) set_decl_context_in_fn (current_function_decl, decl); /* The binding level we will be pushing into. During local class pushing, we want to push to the containing scope. */ cp_binding_level *level = current_binding_level; while (level->kind == sk_class) level = level->level_chain; /* An anonymous namespace has a NULL DECL_NAME, but we still want to insert it. Other NULL-named decls, not so much. */ tree name = DECL_NAME (decl); if (name || TREE_CODE (decl) == NAMESPACE_DECL) { cxx_binding *binding = NULL; /* Local scope binding. */ tree ns = NULL_TREE; /* Searched namespace. */ tree *slot = NULL; /* Binding slot in namespace. */ tree old = NULL_TREE; if (level->kind == sk_namespace) { /* We look in the decl's namespace for an existing declaration, even though we push into the current namespace. */ ns = (DECL_NAMESPACE_SCOPE_P (decl) ? CP_DECL_CONTEXT (decl) : current_namespace); /* Create the binding, if this is current namespace, because that's where we'll be pushing anyway. */ slot = find_namespace_slot (ns, name, ns == current_namespace); if (slot) old = MAYBE_STAT_DECL (*slot); } else { binding = find_local_binding (level, name); if (binding) old = binding->value; } if (current_function_decl && VAR_OR_FUNCTION_DECL_P (decl) && DECL_EXTERNAL (decl)) set_local_extern_decl_linkage (decl, old != NULL_TREE); if (old == error_mark_node) old = NULL_TREE; for (ovl_iterator iter (old); iter; ++iter) if (iter.using_p ()) ; /* Ignore using decls here. */ else if (tree match = duplicate_decls (decl, *iter, is_friend)) { if (match == error_mark_node) ; else if (TREE_CODE (match) == TYPE_DECL) /* The IDENTIFIER will have the type referring to the now-smashed TYPE_DECL, because ...? Reset it. */ SET_IDENTIFIER_TYPE_VALUE (name, TREE_TYPE (match)); else if (iter.hidden_p () && !DECL_HIDDEN_P (match)) { /* Unhiding a previously hidden decl. */ tree head = iter.reveal_node (old); if (head != old) { if (!ns) { update_local_overload (binding, head); binding->value = head; } else if (STAT_HACK_P (*slot)) STAT_DECL (*slot) = head; else *slot = head; } if (DECL_EXTERN_C_P (match)) /* We need to check and register the decl now. */ check_extern_c_conflict (match); } return match; } /* We are pushing a new decl. */ /* Skip a hidden builtin we failed to match already. There can only be one. */ if (old && anticipated_builtin_p (old)) old = OVL_CHAIN (old); check_template_shadow (decl); bool visible_injection = false; if (DECL_DECLARES_FUNCTION_P (decl)) { check_default_args (decl); if (is_friend) { if (level->kind != sk_namespace) { /* In a local class, a friend function declaration must find a matching decl in the innermost non-class scope. [class.friend/11] */ error ("friend declaration %qD in local class without " "prior local declaration", decl); /* Don't attempt to push it. */ return error_mark_node; } if (!flag_friend_injection) /* Hide it from ordinary lookup. */ DECL_ANTICIPATED (decl) = DECL_HIDDEN_FRIEND_P (decl) = true; else visible_injection = true; } } if (level->kind != sk_namespace) { check_local_shadow (decl); if (TREE_CODE (decl) == NAMESPACE_DECL) /* A local namespace alias. */ set_identifier_type_value (name, NULL_TREE); if (!binding) binding = create_local_binding (level, name); } else if (!slot) { ns = current_namespace; slot = find_namespace_slot (ns, name, true); /* Update OLD to reflect the namespace we're going to be pushing into. */ old = MAYBE_STAT_DECL (*slot); } old = update_binding (level, binding, slot, old, decl, is_friend); if (old != decl) /* An existing decl matched, use it. */ decl = old; else if (TREE_CODE (decl) == TYPE_DECL) { tree type = TREE_TYPE (decl); if (type != error_mark_node) { if (TYPE_NAME (type) != decl) set_underlying_type (decl); if (!ns) set_identifier_type_value_with_scope (name, decl, level); else SET_IDENTIFIER_TYPE_VALUE (name, global_type_node); } /* If this is a locally defined typedef in a function that is not a template instantation, record it to implement -Wunused-local-typedefs. */ if (!instantiating_current_function_p ()) record_locally_defined_typedef (decl); } else if (VAR_P (decl)) maybe_register_incomplete_var (decl); else if (visible_injection) warning (0, "injected friend %qD is visible" " due to %<-ffriend-injection%>", decl); if ((VAR_P (decl) || TREE_CODE (decl) == FUNCTION_DECL) && DECL_EXTERN_C_P (decl)) check_extern_c_conflict (decl); } else add_decl_to_level (level, decl); return decl; } /* Record a decl-node X as belonging to the current lexical scope. It's a friend if IS_FRIEND is true -- which affects exactly where we push it. */ tree pushdecl (tree x, bool is_friend) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); tree ret = do_pushdecl (x, is_friend); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } /* Enter DECL into the symbol table, if that's appropriate. Returns DECL, or a modified version thereof. */ tree maybe_push_decl (tree decl) { tree type = TREE_TYPE (decl); /* Add this decl to the current binding level, but not if it comes from another scope, e.g. a static member variable. TEM may equal DECL or it may be a previous decl of the same name. */ if (decl == error_mark_node || (TREE_CODE (decl) != PARM_DECL && DECL_CONTEXT (decl) != NULL_TREE /* Definitions of namespace members outside their namespace are possible. */ && !DECL_NAMESPACE_SCOPE_P (decl)) || (TREE_CODE (decl) == TEMPLATE_DECL && !namespace_bindings_p ()) || type == unknown_type_node /* The declaration of a template specialization does not affect the functions available for overload resolution, so we do not call pushdecl. */ || (TREE_CODE (decl) == FUNCTION_DECL && DECL_TEMPLATE_SPECIALIZATION (decl))) return decl; else return pushdecl (decl); } /* Bind DECL to ID in the current_binding_level, assumed to be a local binding level. If IS_USING is true, DECL got here through a using-declaration. */ static void push_local_binding (tree id, tree decl, bool is_using) { /* Skip over any local classes. This makes sense if we call push_local_binding with a friend decl of a local class. */ cp_binding_level *b = innermost_nonclass_level (); gcc_assert (b->kind != sk_namespace); if (find_local_binding (b, id)) { /* Supplement the existing binding. */ if (!supplement_binding (IDENTIFIER_BINDING (id), decl)) /* It didn't work. Something else must be bound at this level. Do not add DECL to the list of things to pop later. */ return; } else /* Create a new binding. */ push_binding (id, decl, b); if (TREE_CODE (decl) == OVERLOAD || is_using) /* We must put the OVERLOAD or using into a TREE_LIST since we cannot use the decl's chain itself. */ decl = build_tree_list (NULL_TREE, decl); /* And put DECL on the list of things declared by the current binding level. */ add_decl_to_level (b, decl); } /* Check to see whether or not DECL is a variable that would have been in scope under the ARM, but is not in scope under the ANSI/ISO standard. If so, issue an error message. If name lookup would work in both cases, but return a different result, this function returns the result of ANSI/ISO lookup. Otherwise, it returns DECL. FIXME: Scheduled for removal after GCC-8 is done. */ tree check_for_out_of_scope_variable (tree decl) { tree shadowed; /* We only care about out of scope variables. */ if (!(VAR_P (decl) && DECL_DEAD_FOR_LOCAL (decl))) return decl; shadowed = DECL_HAS_SHADOWED_FOR_VAR_P (decl) ? DECL_SHADOWED_FOR_VAR (decl) : NULL_TREE ; while (shadowed != NULL_TREE && VAR_P (shadowed) && DECL_DEAD_FOR_LOCAL (shadowed)) shadowed = DECL_HAS_SHADOWED_FOR_VAR_P (shadowed) ? DECL_SHADOWED_FOR_VAR (shadowed) : NULL_TREE; if (!shadowed) shadowed = find_namespace_value (current_namespace, DECL_NAME (decl)); if (shadowed) { if (!DECL_ERROR_REPORTED (decl) && flag_permissive && warning (0, "name lookup of %qD changed", DECL_NAME (decl))) { inform (DECL_SOURCE_LOCATION (shadowed), "matches this %qD under ISO standard rules", shadowed); inform (DECL_SOURCE_LOCATION (decl), " matches this %qD under old rules", decl); } DECL_ERROR_REPORTED (decl) = 1; return shadowed; } /* If we have already complained about this declaration, there's no need to do it again. */ if (DECL_ERROR_REPORTED (decl)) return decl; DECL_ERROR_REPORTED (decl) = 1; if (TREE_TYPE (decl) == error_mark_node) return decl; if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (decl))) { error ("name lookup of %qD changed for ISO % scoping", DECL_NAME (decl)); inform (DECL_SOURCE_LOCATION (decl), "cannot use obsolete binding %qD because it has a destructor", decl); return error_mark_node; } else { permerror (input_location, "name lookup of %qD changed for ISO % scoping", DECL_NAME (decl)); if (flag_permissive) inform (DECL_SOURCE_LOCATION (decl), "using obsolete binding %qD", decl); static bool hint; if (!hint) inform (input_location, flag_permissive ? "this flexibility is deprecated and will be removed" : "if you use %<-fpermissive%> G++ will accept your code"); hint = true; } return decl; } /* true means unconditionally make a BLOCK for the next level pushed. */ static bool keep_next_level_flag; static int binding_depth = 0; static void indent (int depth) { int i; for (i = 0; i < depth * 2; i++) putc (' ', stderr); } /* Return a string describing the kind of SCOPE we have. */ static const char * cp_binding_level_descriptor (cp_binding_level *scope) { /* The order of this table must match the "scope_kind" enumerators. */ static const char* scope_kind_names[] = { "block-scope", "cleanup-scope", "try-scope", "catch-scope", "for-scope", "function-parameter-scope", "class-scope", "namespace-scope", "template-parameter-scope", "template-explicit-spec-scope" }; const scope_kind kind = scope->explicit_spec_p ? sk_template_spec : scope->kind; return scope_kind_names[kind]; } /* Output a debugging information about SCOPE when performing ACTION at LINE. */ static void cp_binding_level_debug (cp_binding_level *scope, int line, const char *action) { const char *desc = cp_binding_level_descriptor (scope); if (scope->this_entity) verbatim ("%s %<%s(%E)%> %p %d\n", action, desc, scope->this_entity, (void *) scope, line); else verbatim ("%s %s %p %d\n", action, desc, (void *) scope, line); } /* Return the estimated initial size of the hashtable of a NAMESPACE scope. */ static inline size_t namespace_scope_ht_size (tree ns) { tree name = DECL_NAME (ns); return name == std_identifier ? NAMESPACE_STD_HT_SIZE : (name == global_identifier ? GLOBAL_SCOPE_HT_SIZE : NAMESPACE_ORDINARY_HT_SIZE); } /* A chain of binding_level structures awaiting reuse. */ static GTY((deletable)) cp_binding_level *free_binding_level; /* Insert SCOPE as the innermost binding level. */ void push_binding_level (cp_binding_level *scope) { /* Add it to the front of currently active scopes stack. */ scope->level_chain = current_binding_level; current_binding_level = scope; keep_next_level_flag = false; if (ENABLE_SCOPE_CHECKING) { scope->binding_depth = binding_depth; indent (binding_depth); cp_binding_level_debug (scope, LOCATION_LINE (input_location), "push"); binding_depth++; } } /* Create a new KIND scope and make it the top of the active scopes stack. ENTITY is the scope of the associated C++ entity (namespace, class, function, C++0x enumeration); it is NULL otherwise. */ cp_binding_level * begin_scope (scope_kind kind, tree entity) { cp_binding_level *scope; /* Reuse or create a struct for this binding level. */ if (!ENABLE_SCOPE_CHECKING && free_binding_level) { scope = free_binding_level; free_binding_level = scope->level_chain; memset (scope, 0, sizeof (cp_binding_level)); } else scope = ggc_cleared_alloc (); scope->this_entity = entity; scope->more_cleanups_ok = true; switch (kind) { case sk_cleanup: scope->keep = true; break; case sk_template_spec: scope->explicit_spec_p = true; kind = sk_template_parms; /* Fall through. */ case sk_template_parms: case sk_block: case sk_try: case sk_catch: case sk_for: case sk_cond: case sk_class: case sk_scoped_enum: case sk_function_parms: case sk_transaction: case sk_omp: scope->keep = keep_next_level_flag; break; case sk_namespace: NAMESPACE_LEVEL (entity) = scope; break; default: /* Should not happen. */ gcc_unreachable (); break; } scope->kind = kind; push_binding_level (scope); return scope; } /* We're about to leave current scope. Pop the top of the stack of currently active scopes. Return the enclosing scope, now active. */ cp_binding_level * leave_scope (void) { cp_binding_level *scope = current_binding_level; if (scope->kind == sk_namespace && class_binding_level) current_binding_level = class_binding_level; /* We cannot leave a scope, if there are none left. */ if (NAMESPACE_LEVEL (global_namespace)) gcc_assert (!global_scope_p (scope)); if (ENABLE_SCOPE_CHECKING) { indent (--binding_depth); cp_binding_level_debug (scope, LOCATION_LINE (input_location), "leave"); } /* Move one nesting level up. */ current_binding_level = scope->level_chain; /* Namespace-scopes are left most probably temporarily, not completely; they can be reopened later, e.g. in namespace-extension or any name binding activity that requires us to resume a namespace. For classes, we cache some binding levels. For other scopes, we just make the structure available for reuse. */ if (scope->kind != sk_namespace && scope->kind != sk_class) { scope->level_chain = free_binding_level; gcc_assert (!ENABLE_SCOPE_CHECKING || scope->binding_depth == binding_depth); free_binding_level = scope; } if (scope->kind == sk_class) { /* Reset DEFINING_CLASS_P to allow for reuse of a class-defining scope in a non-defining context. */ scope->defining_class_p = 0; /* Find the innermost enclosing class scope, and reset CLASS_BINDING_LEVEL appropriately. */ class_binding_level = NULL; for (scope = current_binding_level; scope; scope = scope->level_chain) if (scope->kind == sk_class) { class_binding_level = scope; break; } } return current_binding_level; } static void resume_scope (cp_binding_level* b) { /* Resuming binding levels is meant only for namespaces, and those cannot nest into classes. */ gcc_assert (!class_binding_level); /* Also, resuming a non-directly nested namespace is a no-no. */ gcc_assert (b->level_chain == current_binding_level); current_binding_level = b; if (ENABLE_SCOPE_CHECKING) { b->binding_depth = binding_depth; indent (binding_depth); cp_binding_level_debug (b, LOCATION_LINE (input_location), "resume"); binding_depth++; } } /* Return the innermost binding level that is not for a class scope. */ static cp_binding_level * innermost_nonclass_level (void) { cp_binding_level *b; b = current_binding_level; while (b->kind == sk_class) b = b->level_chain; return b; } /* We're defining an object of type TYPE. If it needs a cleanup, but we're not allowed to add any more objects with cleanups to the current scope, create a new binding level. */ void maybe_push_cleanup_level (tree type) { if (type != error_mark_node && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) && current_binding_level->more_cleanups_ok == 0) { begin_scope (sk_cleanup, NULL); current_binding_level->statement_list = push_stmt_list (); } } /* Return true if we are in the global binding level. */ bool global_bindings_p (void) { return global_scope_p (current_binding_level); } /* True if we are currently in a toplevel binding level. This means either the global binding level or a namespace in a toplevel binding level. Since there are no non-toplevel namespace levels, this really means any namespace or template parameter level. We also include a class whose context is toplevel. */ bool toplevel_bindings_p (void) { cp_binding_level *b = innermost_nonclass_level (); return b->kind == sk_namespace || b->kind == sk_template_parms; } /* True if this is a namespace scope, or if we are defining a class which is itself at namespace scope, or whose enclosing class is such a class, etc. */ bool namespace_bindings_p (void) { cp_binding_level *b = innermost_nonclass_level (); return b->kind == sk_namespace; } /* True if the innermost non-class scope is a block scope. */ bool local_bindings_p (void) { cp_binding_level *b = innermost_nonclass_level (); return b->kind < sk_function_parms || b->kind == sk_omp; } /* True if the current level needs to have a BLOCK made. */ bool kept_level_p (void) { return (current_binding_level->blocks != NULL_TREE || current_binding_level->keep || current_binding_level->kind == sk_cleanup || current_binding_level->names != NULL_TREE || current_binding_level->using_directives); } /* Returns the kind of the innermost scope. */ scope_kind innermost_scope_kind (void) { return current_binding_level->kind; } /* Returns true if this scope was created to store template parameters. */ bool template_parm_scope_p (void) { return innermost_scope_kind () == sk_template_parms; } /* If KEEP is true, make a BLOCK node for the next binding level, unconditionally. Otherwise, use the normal logic to decide whether or not to create a BLOCK. */ void keep_next_level (bool keep) { keep_next_level_flag = keep; } /* Return the list of declarations of the current local scope. */ tree get_local_decls (void) { gcc_assert (current_binding_level->kind != sk_namespace && current_binding_level->kind != sk_class); return current_binding_level->names; } /* Return how many function prototypes we are currently nested inside. */ int function_parm_depth (void) { int level = 0; cp_binding_level *b; for (b = current_binding_level; b->kind == sk_function_parms; b = b->level_chain) ++level; return level; } /* For debugging. */ static int no_print_functions = 0; static int no_print_builtins = 0; static void print_binding_level (cp_binding_level* lvl) { tree t; int i = 0, len; fprintf (stderr, " blocks=%p", (void *) lvl->blocks); if (lvl->more_cleanups_ok) fprintf (stderr, " more-cleanups-ok"); if (lvl->have_cleanups) fprintf (stderr, " have-cleanups"); fprintf (stderr, "\n"); if (lvl->names) { fprintf (stderr, " names:\t"); /* We can probably fit 3 names to a line? */ for (t = lvl->names; t; t = TREE_CHAIN (t)) { if (no_print_functions && (TREE_CODE (t) == FUNCTION_DECL)) continue; if (no_print_builtins && (TREE_CODE (t) == TYPE_DECL) && DECL_IS_BUILTIN (t)) continue; /* Function decls tend to have longer names. */ if (TREE_CODE (t) == FUNCTION_DECL) len = 3; else len = 2; i += len; if (i > 6) { fprintf (stderr, "\n\t"); i = len; } print_node_brief (stderr, "", t, 0); if (t == error_mark_node) break; } if (i) fprintf (stderr, "\n"); } if (vec_safe_length (lvl->class_shadowed)) { size_t i; cp_class_binding *b; fprintf (stderr, " class-shadowed:"); FOR_EACH_VEC_ELT (*lvl->class_shadowed, i, b) fprintf (stderr, " %s ", IDENTIFIER_POINTER (b->identifier)); fprintf (stderr, "\n"); } if (lvl->type_shadowed) { fprintf (stderr, " type-shadowed:"); for (t = lvl->type_shadowed; t; t = TREE_CHAIN (t)) { fprintf (stderr, " %s ", IDENTIFIER_POINTER (TREE_PURPOSE (t))); } fprintf (stderr, "\n"); } } DEBUG_FUNCTION void debug (cp_binding_level &ref) { print_binding_level (&ref); } DEBUG_FUNCTION void debug (cp_binding_level *ptr) { if (ptr) debug (*ptr); else fprintf (stderr, "\n"); } void print_other_binding_stack (cp_binding_level *stack) { cp_binding_level *level; for (level = stack; !global_scope_p (level); level = level->level_chain) { fprintf (stderr, "binding level %p\n", (void *) level); print_binding_level (level); } } void print_binding_stack (void) { cp_binding_level *b; fprintf (stderr, "current_binding_level=%p\n" "class_binding_level=%p\n" "NAMESPACE_LEVEL (global_namespace)=%p\n", (void *) current_binding_level, (void *) class_binding_level, (void *) NAMESPACE_LEVEL (global_namespace)); if (class_binding_level) { for (b = class_binding_level; b; b = b->level_chain) if (b == current_binding_level) break; if (b) b = class_binding_level; else b = current_binding_level; } else b = current_binding_level; print_other_binding_stack (b); fprintf (stderr, "global:\n"); print_binding_level (NAMESPACE_LEVEL (global_namespace)); } /* Return the type associated with ID. */ static tree identifier_type_value_1 (tree id) { /* There is no type with that name, anywhere. */ if (REAL_IDENTIFIER_TYPE_VALUE (id) == NULL_TREE) return NULL_TREE; /* This is not the type marker, but the real thing. */ if (REAL_IDENTIFIER_TYPE_VALUE (id) != global_type_node) return REAL_IDENTIFIER_TYPE_VALUE (id); /* Have to search for it. It must be on the global level, now. Ask lookup_name not to return non-types. */ id = lookup_name_real (id, 2, 1, /*block_p=*/true, 0, 0); if (id) return TREE_TYPE (id); return NULL_TREE; } /* Wrapper for identifier_type_value_1. */ tree identifier_type_value (tree id) { tree ret; timevar_start (TV_NAME_LOOKUP); ret = identifier_type_value_1 (id); timevar_stop (TV_NAME_LOOKUP); return ret; } /* Push a definition of struct, union or enum tag named ID. into binding_level B. DECL is a TYPE_DECL for the type. We assume that the tag ID is not already defined. */ static void set_identifier_type_value_with_scope (tree id, tree decl, cp_binding_level *b) { tree type; if (b->kind != sk_namespace) { /* Shadow the marker, not the real thing, so that the marker gets restored later. */ tree old_type_value = REAL_IDENTIFIER_TYPE_VALUE (id); b->type_shadowed = tree_cons (id, old_type_value, b->type_shadowed); type = decl ? TREE_TYPE (decl) : NULL_TREE; TREE_TYPE (b->type_shadowed) = type; } else { tree *slot = find_namespace_slot (current_namespace, id, true); gcc_assert (decl); update_binding (b, NULL, slot, MAYBE_STAT_DECL (*slot), decl, false); /* Store marker instead of real type. */ type = global_type_node; } SET_IDENTIFIER_TYPE_VALUE (id, type); } /* As set_identifier_type_value_with_scope, but using current_binding_level. */ void set_identifier_type_value (tree id, tree decl) { set_identifier_type_value_with_scope (id, decl, current_binding_level); } /* Return the name for the constructor (or destructor) for the specified class. */ tree constructor_name (tree type) { tree decl = TYPE_NAME (TYPE_MAIN_VARIANT (type)); return decl ? DECL_NAME (decl) : NULL_TREE; } /* Returns TRUE if NAME is the name for the constructor for TYPE, which must be a class type. */ bool constructor_name_p (tree name, tree type) { gcc_assert (MAYBE_CLASS_TYPE_P (type)); /* These don't have names. */ if (TREE_CODE (type) == DECLTYPE_TYPE || TREE_CODE (type) == TYPEOF_TYPE) return false; if (name && name == constructor_name (type)) return true; return false; } /* Counter used to create anonymous type names. */ static GTY(()) int anon_cnt; /* Return an IDENTIFIER which can be used as a name for unnamed structs and unions. */ tree make_anon_name (void) { char buf[32]; sprintf (buf, anon_aggrname_format (), anon_cnt++); return get_identifier (buf); } /* This code is practically identical to that for creating anonymous names, but is just used for lambdas instead. This isn't really necessary, but it's convenient to avoid treating lambdas like other unnamed types. */ static GTY(()) int lambda_cnt = 0; tree make_lambda_name (void) { char buf[32]; sprintf (buf, LAMBDANAME_FORMAT, lambda_cnt++); return get_identifier (buf); } /* Insert another USING_DECL into the current binding level, returning this declaration. If this is a redeclaration, do nothing, and return NULL_TREE if this not in namespace scope (in namespace scope, a using decl might extend any previous bindings). */ static tree push_using_decl_1 (tree scope, tree name) { tree decl; gcc_assert (TREE_CODE (scope) == NAMESPACE_DECL); gcc_assert (identifier_p (name)); for (decl = current_binding_level->usings; decl; decl = DECL_CHAIN (decl)) if (USING_DECL_SCOPE (decl) == scope && DECL_NAME (decl) == name) break; if (decl) return namespace_bindings_p () ? decl : NULL_TREE; decl = build_lang_decl (USING_DECL, name, NULL_TREE); USING_DECL_SCOPE (decl) = scope; DECL_CHAIN (decl) = current_binding_level->usings; current_binding_level->usings = decl; return decl; } /* Wrapper for push_using_decl_1. */ static tree push_using_decl (tree scope, tree name) { tree ret; timevar_start (TV_NAME_LOOKUP); ret = push_using_decl_1 (scope, name); timevar_stop (TV_NAME_LOOKUP); return ret; } /* Same as pushdecl, but define X in binding-level LEVEL. We rely on the caller to set DECL_CONTEXT properly. Note that this must only be used when X will be the new innermost binding for its name, as we tack it onto the front of IDENTIFIER_BINDING without checking to see if the current IDENTIFIER_BINDING comes from a closer binding level than LEVEL. */ static tree do_pushdecl_with_scope (tree x, cp_binding_level *level, bool is_friend) { cp_binding_level *b; if (level->kind == sk_class) { b = class_binding_level; class_binding_level = level; pushdecl_class_level (x); class_binding_level = b; } else { tree function_decl = current_function_decl; if (level->kind == sk_namespace) current_function_decl = NULL_TREE; b = current_binding_level; current_binding_level = level; x = pushdecl (x, is_friend); current_binding_level = b; current_function_decl = function_decl; } return x; } /* Inject X into the local scope just before the function parms. */ tree pushdecl_outermost_localscope (tree x) { cp_binding_level *b = NULL; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); /* Find the scope just inside the function parms. */ for (cp_binding_level *n = current_binding_level; n->kind != sk_function_parms; n = b->level_chain) b = n; tree ret = b ? do_pushdecl_with_scope (x, b, false) : error_mark_node; timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } /* Check a non-member using-declaration. Return the name and scope being used, and the USING_DECL, or NULL_TREE on failure. */ static tree validate_nonmember_using_decl (tree decl, tree scope, tree name) { /* [namespace.udecl] A using-declaration for a class member shall be a member-declaration. */ if (TYPE_P (scope)) { error ("%qT is not a namespace or unscoped enum", scope); return NULL_TREE; } else if (scope == error_mark_node) return NULL_TREE; if (TREE_CODE (decl) == TEMPLATE_ID_EXPR) { /* 7.3.3/5 A using-declaration shall not name a template-id. */ error ("a using-declaration cannot specify a template-id. " "Try %", name); return NULL_TREE; } if (TREE_CODE (decl) == NAMESPACE_DECL) { error ("namespace %qD not allowed in using-declaration", decl); return NULL_TREE; } if (TREE_CODE (decl) == SCOPE_REF) { /* It's a nested name with template parameter dependent scope. This can only be using-declaration for class member. */ error ("%qT is not a namespace", TREE_OPERAND (decl, 0)); return NULL_TREE; } decl = OVL_FIRST (decl); /* Make a USING_DECL. */ tree using_decl = push_using_decl (scope, name); if (using_decl == NULL_TREE && at_function_scope_p () && VAR_P (decl)) /* C++11 7.3.3/10. */ error ("%qD is already declared in this scope", name); return using_decl; } /* Process a local-scope or namespace-scope using declaration. SCOPE is the nominated scope to search for NAME. VALUE_P and TYPE_P point to the binding for NAME in the current scope and are updated. */ static void do_nonmember_using_decl (tree scope, tree name, tree *value_p, tree *type_p) { name_lookup lookup (name, 0); if (!qualified_namespace_lookup (scope, &lookup)) { error ("%qD not declared", name); return; } else if (TREE_CODE (lookup.value) == TREE_LIST) { error ("reference to %qD is ambiguous", name); print_candidates (lookup.value); lookup.value = NULL_TREE; } if (lookup.type && TREE_CODE (lookup.type) == TREE_LIST) { error ("reference to %qD is ambiguous", name); print_candidates (lookup.type); lookup.type = NULL_TREE; } tree value = *value_p; tree type = *type_p; /* Shift the old and new bindings around so we're comparing class and enumeration names to each other. */ if (value && DECL_IMPLICIT_TYPEDEF_P (value)) { type = value; value = NULL_TREE; } if (lookup.value && DECL_IMPLICIT_TYPEDEF_P (lookup.value)) { lookup.type = lookup.value; lookup.value = NULL_TREE; } if (lookup.value && lookup.value != value) { /* Check for using functions. */ if (OVL_P (lookup.value) && (!value || OVL_P (value))) { for (lkp_iterator usings (lookup.value); usings; ++usings) { tree new_fn = *usings; /* [namespace.udecl] If a function declaration in namespace scope or block scope has the same name and the same parameter types as a function introduced by a using declaration the program is ill-formed. */ bool found = false; for (ovl_iterator old (value); !found && old; ++old) { tree old_fn = *old; if (new_fn == old_fn) /* The function already exists in the current namespace. */ found = true; else if (old.using_p ()) continue; /* This is a using decl. */ else if (old.hidden_p () && !DECL_HIDDEN_FRIEND_P (old_fn)) continue; /* This is an anticipated builtin. */ else if (!matching_fn_p (new_fn, old_fn)) continue; /* Parameters do not match. */ else if (decls_match (new_fn, old_fn)) found = true; else { diagnose_name_conflict (new_fn, old_fn); found = true; } } if (!found) /* Unlike the overload case we don't drop anticipated builtins here. They don't cause a problem, and we'd like to match them with a future declaration. */ value = ovl_insert (new_fn, value, true); } } else if (value /* Ignore anticipated builtins. */ && !anticipated_builtin_p (value) && !decls_match (lookup.value, value)) diagnose_name_conflict (lookup.value, value); else value = lookup.value; } if (lookup.type && lookup.type != type) { if (type && !decls_match (lookup.type, type)) diagnose_name_conflict (lookup.type, type); else type = lookup.type; } /* If bind->value is empty, shift any class or enumeration name back. */ if (!value) { value = type; type = NULL_TREE; } *value_p = value; *type_p = type; } /* Returns true if ANCESTOR encloses DESCENDANT, including matching. Both are namespaces. */ bool is_nested_namespace (tree ancestor, tree descendant, bool inline_only) { int depth = SCOPE_DEPTH (ancestor); if (!depth && !inline_only) /* The global namespace encloses everything. */ return true; while (SCOPE_DEPTH (descendant) > depth && (!inline_only || DECL_NAMESPACE_INLINE_P (descendant))) descendant = CP_DECL_CONTEXT (descendant); return ancestor == descendant; } /* Returns true if ROOT (a namespace, class, or function) encloses CHILD. CHILD may be either a class type or a namespace. */ bool is_ancestor (tree root, tree child) { gcc_assert ((TREE_CODE (root) == NAMESPACE_DECL || TREE_CODE (root) == FUNCTION_DECL || CLASS_TYPE_P (root))); gcc_assert ((TREE_CODE (child) == NAMESPACE_DECL || CLASS_TYPE_P (child))); /* The global namespace encloses everything. */ if (root == global_namespace) return true; /* Search until we reach namespace scope. */ while (TREE_CODE (child) != NAMESPACE_DECL) { /* If we've reached the ROOT, it encloses CHILD. */ if (root == child) return true; /* Go out one level. */ if (TYPE_P (child)) child = TYPE_NAME (child); child = CP_DECL_CONTEXT (child); } if (TREE_CODE (root) == NAMESPACE_DECL) return is_nested_namespace (root, child); return false; } /* Enter the class or namespace scope indicated by T suitable for name lookup. T can be arbitrary scope, not necessary nested inside the current scope. Returns a non-null scope to pop iff pop_scope should be called later to exit this scope. */ tree push_scope (tree t) { if (TREE_CODE (t) == NAMESPACE_DECL) push_decl_namespace (t); else if (CLASS_TYPE_P (t)) { if (!at_class_scope_p () || !same_type_p (current_class_type, t)) push_nested_class (t); else /* T is the same as the current scope. There is therefore no need to re-enter the scope. Since we are not actually pushing a new scope, our caller should not call pop_scope. */ t = NULL_TREE; } return t; } /* Leave scope pushed by push_scope. */ void pop_scope (tree t) { if (t == NULL_TREE) return; if (TREE_CODE (t) == NAMESPACE_DECL) pop_decl_namespace (); else if CLASS_TYPE_P (t) pop_nested_class (); } /* Subroutine of push_inner_scope. */ static void push_inner_scope_r (tree outer, tree inner) { tree prev; if (outer == inner || (TREE_CODE (inner) != NAMESPACE_DECL && !CLASS_TYPE_P (inner))) return; prev = CP_DECL_CONTEXT (TREE_CODE (inner) == NAMESPACE_DECL ? inner : TYPE_NAME (inner)); if (outer != prev) push_inner_scope_r (outer, prev); if (TREE_CODE (inner) == NAMESPACE_DECL) { cp_binding_level *save_template_parm = 0; /* Temporary take out template parameter scopes. They are saved in reversed order in save_template_parm. */ while (current_binding_level->kind == sk_template_parms) { cp_binding_level *b = current_binding_level; current_binding_level = b->level_chain; b->level_chain = save_template_parm; save_template_parm = b; } resume_scope (NAMESPACE_LEVEL (inner)); current_namespace = inner; /* Restore template parameter scopes. */ while (save_template_parm) { cp_binding_level *b = save_template_parm; save_template_parm = b->level_chain; b->level_chain = current_binding_level; current_binding_level = b; } } else pushclass (inner); } /* Enter the scope INNER from current scope. INNER must be a scope nested inside current scope. This works with both name lookup and pushing name into scope. In case a template parameter scope is present, namespace is pushed under the template parameter scope according to name lookup rule in 14.6.1/6. Return the former current scope suitable for pop_inner_scope. */ tree push_inner_scope (tree inner) { tree outer = current_scope (); if (!outer) outer = current_namespace; push_inner_scope_r (outer, inner); return outer; } /* Exit the current scope INNER back to scope OUTER. */ void pop_inner_scope (tree outer, tree inner) { if (outer == inner || (TREE_CODE (inner) != NAMESPACE_DECL && !CLASS_TYPE_P (inner))) return; while (outer != inner) { if (TREE_CODE (inner) == NAMESPACE_DECL) { cp_binding_level *save_template_parm = 0; /* Temporary take out template parameter scopes. They are saved in reversed order in save_template_parm. */ while (current_binding_level->kind == sk_template_parms) { cp_binding_level *b = current_binding_level; current_binding_level = b->level_chain; b->level_chain = save_template_parm; save_template_parm = b; } pop_namespace (); /* Restore template parameter scopes. */ while (save_template_parm) { cp_binding_level *b = save_template_parm; save_template_parm = b->level_chain; b->level_chain = current_binding_level; current_binding_level = b; } } else popclass (); inner = CP_DECL_CONTEXT (TREE_CODE (inner) == NAMESPACE_DECL ? inner : TYPE_NAME (inner)); } } /* Do a pushlevel for class declarations. */ void pushlevel_class (void) { class_binding_level = begin_scope (sk_class, current_class_type); } /* ...and a poplevel for class declarations. */ void poplevel_class (void) { cp_binding_level *level = class_binding_level; cp_class_binding *cb; size_t i; tree shadowed; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); gcc_assert (level != 0); /* If we're leaving a toplevel class, cache its binding level. */ if (current_class_depth == 1) previous_class_level = level; for (shadowed = level->type_shadowed; shadowed; shadowed = TREE_CHAIN (shadowed)) SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (shadowed), TREE_VALUE (shadowed)); /* Remove the bindings for all of the class-level declarations. */ if (level->class_shadowed) { FOR_EACH_VEC_ELT (*level->class_shadowed, i, cb) { IDENTIFIER_BINDING (cb->identifier) = cb->base->previous; cxx_binding_free (cb->base); } ggc_free (level->class_shadowed); level->class_shadowed = NULL; } /* Now, pop out of the binding level which we created up in the `pushlevel_class' routine. */ gcc_assert (current_binding_level == level); leave_scope (); timevar_cond_stop (TV_NAME_LOOKUP, subtime); } /* Set INHERITED_VALUE_BINDING_P on BINDING to true or false, as appropriate. DECL is the value to which a name has just been bound. CLASS_TYPE is the class in which the lookup occurred. */ static void set_inherited_value_binding_p (cxx_binding *binding, tree decl, tree class_type) { if (binding->value == decl && TREE_CODE (decl) != TREE_LIST) { tree context; if (TREE_CODE (decl) == OVERLOAD) context = ovl_scope (decl); else { gcc_assert (DECL_P (decl)); context = context_for_name_lookup (decl); } if (is_properly_derived_from (class_type, context)) INHERITED_VALUE_BINDING_P (binding) = 1; else INHERITED_VALUE_BINDING_P (binding) = 0; } else if (binding->value == decl) /* We only encounter a TREE_LIST when there is an ambiguity in the base classes. Such an ambiguity can be overridden by a definition in this class. */ INHERITED_VALUE_BINDING_P (binding) = 1; else INHERITED_VALUE_BINDING_P (binding) = 0; } /* Make the declaration of X appear in CLASS scope. */ bool pushdecl_class_level (tree x) { bool is_valid = true; bool subtime; /* Do nothing if we're adding to an outer lambda closure type, outer_binding will add it later if it's needed. */ if (current_class_type != class_binding_level->this_entity) return true; subtime = timevar_cond_start (TV_NAME_LOOKUP); /* Get the name of X. */ tree name = OVL_NAME (x); if (name) { is_valid = push_class_level_binding (name, x); if (TREE_CODE (x) == TYPE_DECL) set_identifier_type_value (name, x); } else if (ANON_AGGR_TYPE_P (TREE_TYPE (x))) { /* If X is an anonymous aggregate, all of its members are treated as if they were members of the class containing the aggregate, for naming purposes. */ location_t save_location = input_location; tree anon = TREE_TYPE (x); if (vec *member_vec = CLASSTYPE_MEMBER_VEC (anon)) for (unsigned ix = member_vec->length (); ix--;) { tree binding = (*member_vec)[ix]; if (STAT_HACK_P (binding)) { if (!pushdecl_class_level (STAT_TYPE (binding))) is_valid = false; binding = STAT_DECL (binding); } if (!pushdecl_class_level (binding)) is_valid = false; } else for (tree f = TYPE_FIELDS (anon); f; f = DECL_CHAIN (f)) if (TREE_CODE (f) == FIELD_DECL) { input_location = DECL_SOURCE_LOCATION (f); if (!pushdecl_class_level (f)) is_valid = false; } input_location = save_location; } timevar_cond_stop (TV_NAME_LOOKUP, subtime); return is_valid; } /* Return the BINDING (if any) for NAME in SCOPE, which is a class scope. If the value returned is non-NULL, and the PREVIOUS field is not set, callers must set the PREVIOUS field explicitly. */ static cxx_binding * get_class_binding (tree name, cp_binding_level *scope) { tree class_type; tree type_binding; tree value_binding; cxx_binding *binding; class_type = scope->this_entity; /* Get the type binding. */ type_binding = lookup_member (class_type, name, /*protect=*/2, /*want_type=*/true, tf_warning_or_error); /* Get the value binding. */ value_binding = lookup_member (class_type, name, /*protect=*/2, /*want_type=*/false, tf_warning_or_error); if (value_binding && (TREE_CODE (value_binding) == TYPE_DECL || DECL_CLASS_TEMPLATE_P (value_binding) || (TREE_CODE (value_binding) == TREE_LIST && TREE_TYPE (value_binding) == error_mark_node && (TREE_CODE (TREE_VALUE (value_binding)) == TYPE_DECL)))) /* We found a type binding, even when looking for a non-type binding. This means that we already processed this binding above. */ ; else if (value_binding) { if (TREE_CODE (value_binding) == TREE_LIST && TREE_TYPE (value_binding) == error_mark_node) /* NAME is ambiguous. */ ; else if (BASELINK_P (value_binding)) /* NAME is some overloaded functions. */ value_binding = BASELINK_FUNCTIONS (value_binding); } /* If we found either a type binding or a value binding, create a new binding object. */ if (type_binding || value_binding) { binding = new_class_binding (name, value_binding, type_binding, scope); /* This is a class-scope binding, not a block-scope binding. */ LOCAL_BINDING_P (binding) = 0; set_inherited_value_binding_p (binding, value_binding, class_type); } else binding = NULL; return binding; } /* Make the declaration(s) of X appear in CLASS scope under the name NAME. Returns true if the binding is valid. */ static bool push_class_level_binding_1 (tree name, tree x) { cxx_binding *binding; tree decl = x; bool ok; /* The class_binding_level will be NULL if x is a template parameter name in a member template. */ if (!class_binding_level) return true; if (name == error_mark_node) return false; /* Can happen for an erroneous declaration (c++/60384). */ if (!identifier_p (name)) { gcc_assert (errorcount || sorrycount); return false; } /* Check for invalid member names. But don't worry about a default argument-scope lambda being pushed after the class is complete. */ gcc_assert (TYPE_BEING_DEFINED (current_class_type) || LAMBDA_TYPE_P (TREE_TYPE (decl))); /* Check that we're pushing into the right binding level. */ gcc_assert (current_class_type == class_binding_level->this_entity); /* We could have been passed a tree list if this is an ambiguous declaration. If so, pull the declaration out because check_template_shadow will not handle a TREE_LIST. */ if (TREE_CODE (decl) == TREE_LIST && TREE_TYPE (decl) == error_mark_node) decl = TREE_VALUE (decl); if (!check_template_shadow (decl)) return false; /* [class.mem] If T is the name of a class, then each of the following shall have a name different from T: -- every static data member of class T; -- every member of class T that is itself a type; -- every enumerator of every member of class T that is an enumerated type; -- every member of every anonymous union that is a member of class T. (Non-static data members were also forbidden to have the same name as T until TC1.) */ if ((VAR_P (x) || TREE_CODE (x) == CONST_DECL || (TREE_CODE (x) == TYPE_DECL && !DECL_SELF_REFERENCE_P (x)) /* A data member of an anonymous union. */ || (TREE_CODE (x) == FIELD_DECL && DECL_CONTEXT (x) != current_class_type)) && DECL_NAME (x) == DECL_NAME (TYPE_NAME (current_class_type))) { tree scope = context_for_name_lookup (x); if (TYPE_P (scope) && same_type_p (scope, current_class_type)) { error ("%qD has the same name as the class in which it is " "declared", x); return false; } } /* Get the current binding for NAME in this class, if any. */ binding = IDENTIFIER_BINDING (name); if (!binding || binding->scope != class_binding_level) { binding = get_class_binding (name, class_binding_level); /* If a new binding was created, put it at the front of the IDENTIFIER_BINDING list. */ if (binding) { binding->previous = IDENTIFIER_BINDING (name); IDENTIFIER_BINDING (name) = binding; } } /* If there is already a binding, then we may need to update the current value. */ if (binding && binding->value) { tree bval = binding->value; tree old_decl = NULL_TREE; tree target_decl = strip_using_decl (decl); tree target_bval = strip_using_decl (bval); if (INHERITED_VALUE_BINDING_P (binding)) { /* If the old binding was from a base class, and was for a tag name, slide it over to make room for the new binding. The old binding is still visible if explicitly qualified with a class-key. */ if (TREE_CODE (target_bval) == TYPE_DECL && DECL_ARTIFICIAL (target_bval) && !(TREE_CODE (target_decl) == TYPE_DECL && DECL_ARTIFICIAL (target_decl))) { old_decl = binding->type; binding->type = bval; binding->value = NULL_TREE; INHERITED_VALUE_BINDING_P (binding) = 0; } else { old_decl = bval; /* Any inherited type declaration is hidden by the type declaration in the derived class. */ if (TREE_CODE (target_decl) == TYPE_DECL && DECL_ARTIFICIAL (target_decl)) binding->type = NULL_TREE; } } else if (TREE_CODE (target_decl) == OVERLOAD && OVL_P (target_bval)) old_decl = bval; else if (TREE_CODE (decl) == USING_DECL && TREE_CODE (bval) == USING_DECL && same_type_p (USING_DECL_SCOPE (decl), USING_DECL_SCOPE (bval))) /* This is a using redeclaration that will be diagnosed later in supplement_binding */ ; else if (TREE_CODE (decl) == USING_DECL && TREE_CODE (bval) == USING_DECL && DECL_DEPENDENT_P (decl) && DECL_DEPENDENT_P (bval)) return true; else if (TREE_CODE (decl) == USING_DECL && OVL_P (target_bval)) old_decl = bval; else if (TREE_CODE (bval) == USING_DECL && OVL_P (target_decl)) return true; if (old_decl && binding->scope == class_binding_level) { binding->value = x; /* It is always safe to clear INHERITED_VALUE_BINDING_P here. This function is only used to register bindings from with the class definition itself. */ INHERITED_VALUE_BINDING_P (binding) = 0; return true; } } /* Note that we declared this value so that we can issue an error if this is an invalid redeclaration of a name already used for some other purpose. */ note_name_declared_in_class (name, decl); /* If we didn't replace an existing binding, put the binding on the stack of bindings for the identifier, and update the shadowed list. */ if (binding && binding->scope == class_binding_level) /* Supplement the existing binding. */ ok = supplement_binding (binding, decl); else { /* Create a new binding. */ push_binding (name, decl, class_binding_level); ok = true; } return ok; } /* Wrapper for push_class_level_binding_1. */ bool push_class_level_binding (tree name, tree x) { bool ret; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); ret = push_class_level_binding_1 (name, x); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } /* Process "using SCOPE::NAME" in a class scope. Return the USING_DECL created. */ tree do_class_using_decl (tree scope, tree name) { if (name == error_mark_node) return NULL_TREE; if (!scope || !TYPE_P (scope)) { error ("using-declaration for non-member at class scope"); return NULL_TREE; } /* Make sure the name is not invalid */ if (TREE_CODE (name) == BIT_NOT_EXPR) { error ("%<%T::%D%> names destructor", scope, name); return NULL_TREE; } /* Using T::T declares inheriting ctors, even if T is a typedef. */ if (MAYBE_CLASS_TYPE_P (scope) && (name == TYPE_IDENTIFIER (scope) || constructor_name_p (name, scope))) { maybe_warn_cpp0x (CPP0X_INHERITING_CTORS); name = ctor_identifier; CLASSTYPE_NON_AGGREGATE (current_class_type) = true; } /* Cannot introduce a constructor name. */ if (constructor_name_p (name, current_class_type)) { error ("%<%T::%D%> names constructor in %qT", scope, name, current_class_type); return NULL_TREE; } /* From [namespace.udecl]: A using-declaration used as a member-declaration shall refer to a member of a base class of the class being defined. In general, we cannot check this constraint in a template because we do not know the entire set of base classes of the current class type. Morover, if SCOPE is dependent, it might match a non-dependent base. */ tree decl = NULL_TREE; if (!dependent_scope_p (scope)) { base_kind b_kind; tree binfo = lookup_base (current_class_type, scope, ba_any, &b_kind, tf_warning_or_error); if (b_kind < bk_proper_base) { /* If there are dependent bases, scope might resolve at instantiation time, even if it isn't exactly one of the dependent bases. */ if (b_kind == bk_same_type || !any_dependent_bases_p ()) { error_not_base_type (scope, current_class_type); return NULL_TREE; } } else if (name == ctor_identifier && !binfo_direct_p (binfo)) { error ("cannot inherit constructors from indirect base %qT", scope); return NULL_TREE; } else if (!IDENTIFIER_CONV_OP_P (name) || !dependent_type_p (TREE_TYPE (name))) { decl = lookup_member (binfo, name, 0, false, tf_warning_or_error); if (!decl) { error ("no members matching %<%T::%D%> in %q#T", scope, name, scope); return NULL_TREE; } /* The binfo from which the functions came does not matter. */ if (BASELINK_P (decl)) decl = BASELINK_FUNCTIONS (decl); } } tree value = build_lang_decl (USING_DECL, name, NULL_TREE); USING_DECL_DECLS (value) = decl; USING_DECL_SCOPE (value) = scope; DECL_DEPENDENT_P (value) = !decl; return value; } /* Return the binding for NAME in NS. If NS is NULL, look in global_namespace. */ tree get_namespace_binding (tree ns, tree name) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); if (!ns) ns = global_namespace; gcc_checking_assert (!DECL_NAMESPACE_ALIAS (ns)); tree ret = find_namespace_value (ns, name); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } /* Push internal DECL into the global namespace. Does not do the full overload fn handling and does not add it to the list of things in the namespace. */ void set_global_binding (tree decl) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); tree *slot = find_namespace_slot (global_namespace, DECL_NAME (decl), true); if (*slot) /* The user's placed something in the implementor's namespace. */ diagnose_name_conflict (decl, MAYBE_STAT_DECL (*slot)); /* Force the binding, so compiler internals continue to work. */ *slot = decl; timevar_cond_stop (TV_NAME_LOOKUP, subtime); } /* Set the context of a declaration to scope. Complain if we are not outside scope. */ void set_decl_namespace (tree decl, tree scope, bool friendp) { /* Get rid of namespace aliases. */ scope = ORIGINAL_NAMESPACE (scope); /* It is ok for friends to be qualified in parallel space. */ if (!friendp && !is_nested_namespace (current_namespace, scope)) error ("declaration of %qD not in a namespace surrounding %qD", decl, scope); DECL_CONTEXT (decl) = FROB_CONTEXT (scope); /* See whether this has been declared in the namespace or inline children. */ tree old = NULL_TREE; { name_lookup lookup (DECL_NAME (decl), LOOKUP_HIDDEN); if (!lookup.search_qualified (scope, /*usings=*/false)) /* No old declaration at all. */ goto not_found; old = lookup.value; } /* If it's a TREE_LIST, the result of the lookup was ambiguous. */ if (TREE_CODE (old) == TREE_LIST) { ambiguous: DECL_CONTEXT (decl) = FROB_CONTEXT (scope); error ("reference to %qD is ambiguous", decl); print_candidates (old); return; } if (!DECL_DECLARES_FUNCTION_P (decl)) { /* Don't compare non-function decls with decls_match here, since it can't check for the correct constness at this point. pushdecl will find those errors later. */ /* We might have found it in an inline namespace child of SCOPE. */ if (TREE_CODE (decl) == TREE_CODE (old)) DECL_CONTEXT (decl) = DECL_CONTEXT (old); found: /* Writing "N::i" to declare something directly in "N" is invalid. */ if (CP_DECL_CONTEXT (decl) == current_namespace && at_namespace_scope_p ()) error ("explicit qualification in declaration of %qD", decl); return; } /* Since decl is a function, old should contain a function decl. */ if (!OVL_P (old)) goto not_found; /* We handle these in check_explicit_instantiation_namespace. */ if (processing_explicit_instantiation) return; if (processing_template_decl || processing_specialization) /* We have not yet called push_template_decl to turn a FUNCTION_DECL into a TEMPLATE_DECL, so the declarations won't match. But, we'll check later, when we construct the template. */ return; /* Instantiations or specializations of templates may be declared as friends in any namespace. */ if (friendp && DECL_USE_TEMPLATE (decl)) return; tree found; found = NULL_TREE; for (lkp_iterator iter (old); iter; ++iter) { if (iter.using_p ()) continue; tree ofn = *iter; /* Adjust DECL_CONTEXT first so decls_match will return true if DECL will match a declaration in an inline namespace. */ DECL_CONTEXT (decl) = DECL_CONTEXT (ofn); if (decls_match (decl, ofn)) { if (found) { /* We found more than one matching declaration. */ DECL_CONTEXT (decl) = FROB_CONTEXT (scope); goto ambiguous; } found = ofn; } } if (found) { if (DECL_HIDDEN_FRIEND_P (found)) { pedwarn (DECL_SOURCE_LOCATION (decl), 0, "%qD has not been declared within %qD", decl, scope); inform (DECL_SOURCE_LOCATION (found), "only here as a %"); } DECL_CONTEXT (decl) = DECL_CONTEXT (found); goto found; } not_found: /* It didn't work, go back to the explicit scope. */ DECL_CONTEXT (decl) = FROB_CONTEXT (scope); error ("%qD should have been declared inside %qD", decl, scope); } /* Return the namespace where the current declaration is declared. */ tree current_decl_namespace (void) { tree result; /* If we have been pushed into a different namespace, use it. */ if (!vec_safe_is_empty (decl_namespace_list)) return decl_namespace_list->last (); if (current_class_type) result = decl_namespace_context (current_class_type); else if (current_function_decl) result = decl_namespace_context (current_function_decl); else result = current_namespace; return result; } /* Process any ATTRIBUTES on a namespace definition. Returns true if attribute visibility is seen. */ bool handle_namespace_attrs (tree ns, tree attributes) { tree d; bool saw_vis = false; if (attributes == error_mark_node) return false; for (d = attributes; d; d = TREE_CHAIN (d)) { tree name = get_attribute_name (d); tree args = TREE_VALUE (d); if (is_attribute_p ("visibility", name)) { /* attribute visibility is a property of the syntactic block rather than the namespace as a whole, so we don't touch the NAMESPACE_DECL at all. */ tree x = args ? TREE_VALUE (args) : NULL_TREE; if (x == NULL_TREE || TREE_CODE (x) != STRING_CST || TREE_CHAIN (args)) { warning (OPT_Wattributes, "%qD attribute requires a single NTBS argument", name); continue; } if (!TREE_PUBLIC (ns)) warning (OPT_Wattributes, "%qD attribute is meaningless since members of the " "anonymous namespace get local symbols", name); push_visibility (TREE_STRING_POINTER (x), 1); saw_vis = true; } else if (is_attribute_p ("abi_tag", name)) { if (!DECL_NAME (ns)) { warning (OPT_Wattributes, "ignoring %qD attribute on anonymous " "namespace", name); continue; } if (!DECL_NAMESPACE_INLINE_P (ns)) { warning (OPT_Wattributes, "ignoring %qD attribute on non-inline " "namespace", name); continue; } if (!args) { tree dn = DECL_NAME (ns); args = build_string (IDENTIFIER_LENGTH (dn) + 1, IDENTIFIER_POINTER (dn)); TREE_TYPE (args) = char_array_type_node; args = fix_string_type (args); args = build_tree_list (NULL_TREE, args); } if (check_abi_tag_args (args, name)) DECL_ATTRIBUTES (ns) = tree_cons (name, args, DECL_ATTRIBUTES (ns)); } else { warning (OPT_Wattributes, "%qD attribute directive ignored", name); continue; } } return saw_vis; } /* Temporarily set the namespace for the current declaration. */ void push_decl_namespace (tree decl) { if (TREE_CODE (decl) != NAMESPACE_DECL) decl = decl_namespace_context (decl); vec_safe_push (decl_namespace_list, ORIGINAL_NAMESPACE (decl)); } /* [namespace.memdef]/2 */ void pop_decl_namespace (void) { decl_namespace_list->pop (); } /* Process a namespace-alias declaration. */ void do_namespace_alias (tree alias, tree name_space) { if (name_space == error_mark_node) return; gcc_assert (TREE_CODE (name_space) == NAMESPACE_DECL); name_space = ORIGINAL_NAMESPACE (name_space); /* Build the alias. */ alias = build_lang_decl (NAMESPACE_DECL, alias, void_type_node); DECL_NAMESPACE_ALIAS (alias) = name_space; DECL_EXTERNAL (alias) = 1; DECL_CONTEXT (alias) = FROB_CONTEXT (current_scope ()); pushdecl (alias); /* Emit debug info for namespace alias. */ if (!building_stmt_list_p ()) (*debug_hooks->early_global_decl) (alias); } /* Like pushdecl, only it places X in the current namespace, if appropriate. */ tree pushdecl_namespace_level (tree x, bool is_friend) { cp_binding_level *b = current_binding_level; tree t; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); t = do_pushdecl_with_scope (x, NAMESPACE_LEVEL (current_namespace), is_friend); /* Now, the type_shadowed stack may screw us. Munge it so it does what we want. */ if (TREE_CODE (t) == TYPE_DECL) { tree name = DECL_NAME (t); tree newval; tree *ptr = (tree *)0; for (; !global_scope_p (b); b = b->level_chain) { tree shadowed = b->type_shadowed; for (; shadowed; shadowed = TREE_CHAIN (shadowed)) if (TREE_PURPOSE (shadowed) == name) { ptr = &TREE_VALUE (shadowed); /* Can't break out of the loop here because sometimes a binding level will have duplicate bindings for PT names. It's gross, but I haven't time to fix it. */ } } newval = TREE_TYPE (t); if (ptr == (tree *)0) { /* @@ This shouldn't be needed. My test case "zstring.cc" trips up here if this is changed to an assertion. --KR */ SET_IDENTIFIER_TYPE_VALUE (name, t); } else { *ptr = newval; } } timevar_cond_stop (TV_NAME_LOOKUP, subtime); return t; } /* Process a using-declaration appearing in namespace scope. */ void finish_namespace_using_decl (tree decl, tree scope, tree name) { tree orig_decl = decl; gcc_checking_assert (current_binding_level->kind == sk_namespace && !processing_template_decl); decl = validate_nonmember_using_decl (decl, scope, name); if (decl == NULL_TREE) return; tree *slot = find_namespace_slot (current_namespace, name, true); tree val = slot ? MAYBE_STAT_DECL (*slot) : NULL_TREE; tree type = slot ? MAYBE_STAT_TYPE (*slot) : NULL_TREE; do_nonmember_using_decl (scope, name, &val, &type); if (STAT_HACK_P (*slot)) { STAT_DECL (*slot) = val; STAT_TYPE (*slot) = type; } else if (type) *slot = stat_hack (val, type); else *slot = val; /* Emit debug info. */ cp_emit_debug_info_for_using (orig_decl, current_namespace); } /* Process a using-declaration at function scope. */ void finish_local_using_decl (tree decl, tree scope, tree name) { tree orig_decl = decl; gcc_checking_assert (current_binding_level->kind != sk_class && current_binding_level->kind != sk_namespace); decl = validate_nonmember_using_decl (decl, scope, name); if (decl == NULL_TREE) return; add_decl_expr (decl); cxx_binding *binding = find_local_binding (current_binding_level, name); tree value = binding ? binding->value : NULL_TREE; tree type = binding ? binding->type : NULL_TREE; do_nonmember_using_decl (scope, name, &value, &type); if (!value) ; else if (binding && value == binding->value) ; else if (binding && binding->value && TREE_CODE (value) == OVERLOAD) { update_local_overload (IDENTIFIER_BINDING (name), value); IDENTIFIER_BINDING (name)->value = value; } else /* Install the new binding. */ push_local_binding (name, value, true); if (!type) ; else if (binding && type == binding->type) ; else { push_local_binding (name, type, true); set_identifier_type_value (name, type); } /* Emit debug info. */ if (!processing_template_decl) cp_emit_debug_info_for_using (orig_decl, current_scope ()); } /* Return the declarations that are members of the namespace NS. */ tree cp_namespace_decls (tree ns) { return NAMESPACE_LEVEL (ns)->names; } /* Combine prefer_type and namespaces_only into flags. */ static int lookup_flags (int prefer_type, int namespaces_only) { if (namespaces_only) return LOOKUP_PREFER_NAMESPACES; if (prefer_type > 1) return LOOKUP_PREFER_TYPES; if (prefer_type > 0) return LOOKUP_PREFER_BOTH; return 0; } /* Given a lookup that returned VAL, use FLAGS to decide if we want to ignore it or not. Subroutine of lookup_name_real and lookup_type_scope. */ static bool qualify_lookup (tree val, int flags) { if (val == NULL_TREE) return false; if ((flags & LOOKUP_PREFER_NAMESPACES) && TREE_CODE (val) == NAMESPACE_DECL) return true; if (flags & LOOKUP_PREFER_TYPES) { tree target_val = strip_using_decl (val); if (TREE_CODE (target_val) == TYPE_DECL || TREE_CODE (target_val) == TEMPLATE_DECL) return true; } if (flags & (LOOKUP_PREFER_NAMESPACES | LOOKUP_PREFER_TYPES)) return false; /* Look through lambda things that we shouldn't be able to see. */ if (!(flags & LOOKUP_HIDDEN) && is_lambda_ignored_entity (val)) return false; return true; } /* Is there a "using namespace std;" directive within USINGS? */ static bool using_directives_contain_std_p (vec *usings) { if (!usings) return false; for (unsigned ix = usings->length (); ix--;) if ((*usings)[ix] == std_node) return true; return false; } /* Is there a "using namespace std;" directive within the current namespace (or its ancestors)? Compare with name_lookup::search_unqualified. */ static bool has_using_namespace_std_directive_p () { /* Look at local using-directives. */ for (cp_binding_level *level = current_binding_level; level->kind != sk_namespace; level = level->level_chain) if (using_directives_contain_std_p (level->using_directives)) return true; /* Look at this namespace and its ancestors. */ for (tree scope = current_namespace; scope; scope = CP_DECL_CONTEXT (scope)) { if (using_directives_contain_std_p (DECL_NAMESPACE_USING (scope))) return true; if (scope == global_namespace) break; } return false; } /* Suggest alternatives for NAME, an IDENTIFIER_NODE for which name lookup failed. Search through all available namespaces and print out possible candidates. If no exact matches are found, and SUGGEST_MISSPELLINGS is true, then also look for near-matches and suggest the best near-match, if there is one. */ void suggest_alternatives_for (location_t location, tree name, bool suggest_misspellings) { vec candidates = vNULL; vec worklist = vNULL; unsigned limit = PARAM_VALUE (CXX_MAX_NAMESPACES_FOR_DIAGNOSTIC_HELP); bool limited = false; /* Breadth-first search of namespaces. Up to limit namespaces searched (limit zero == unlimited). */ worklist.safe_push (global_namespace); for (unsigned ix = 0; ix != worklist.length (); ix++) { tree ns = worklist[ix]; name_lookup lookup (name); if (lookup.search_qualified (ns, false)) candidates.safe_push (lookup.value); if (!limited) { /* Look for child namespaces. We have to do this indirectly because they are chained in reverse order, which is confusing to the user. */ vec children = vNULL; for (tree decl = NAMESPACE_LEVEL (ns)->names; decl; decl = TREE_CHAIN (decl)) if (TREE_CODE (decl) == NAMESPACE_DECL && !DECL_NAMESPACE_ALIAS (decl) && !DECL_NAMESPACE_INLINE_P (decl)) children.safe_push (decl); while (!limited && !children.is_empty ()) { if (worklist.length () == limit) { /* Unconditionally warn that the search was truncated. */ inform (location, "maximum limit of %d namespaces searched for %qE", limit, name); limited = true; } else worklist.safe_push (children.pop ()); } children.release (); } } worklist.release (); if (candidates.length ()) { inform_n (location, candidates.length (), "suggested alternative:", "suggested alternatives:"); for (unsigned ix = 0; ix != candidates.length (); ix++) { tree val = candidates[ix]; inform (location_of (val), " %qE", val); } candidates.release (); return; } /* No candidates were found in the available namespaces. */ /* If there's a "using namespace std;" active, and this is one of the most common "std::" names, then it's probably a missing #include. */ if (has_using_namespace_std_directive_p ()) if (maybe_suggest_missing_std_header (location, name)) return; /* Otherwise, consider misspellings. */ if (!suggest_misspellings) return; if (name_hint hint = lookup_name_fuzzy (name, FUZZY_LOOKUP_NAME, location)) { /* Show a spelling correction. */ gcc_rich_location richloc (location); richloc.add_fixit_replace (hint.suggestion ()); inform (&richloc, "suggested alternative: %qs", hint.suggestion ()); } } /* A well-known name within the C++ standard library, returned by get_std_name_hint. */ struct std_name_hint { /* A name within "std::". */ const char *name; /* The header name defining it within the C++ Standard Library (with '<' and '>'). */ const char *header; /* The dialect of C++ in which this was added. */ enum cxx_dialect min_dialect; }; /* Subroutine of maybe_suggest_missing_header for handling unrecognized names for some of the most common names within "std::". Given non-NULL NAME, return the std_name_hint for it, or NULL. */ static const std_name_hint * get_std_name_hint (const char *name) { static const std_name_hint hints[] = { /* . */ {"any", "", cxx17}, {"any_cast", "", cxx17}, {"make_any", "", cxx17}, /* . */ {"array", "", cxx11}, /* . */ {"atomic", "", cxx11}, {"atomic_flag", "", cxx11}, /* . */ {"bitset", "", cxx11}, /* . */ {"complex", "", cxx98}, {"complex_literals", "", cxx98}, /* . */ {"condition_variable", "", cxx11}, {"condition_variable_any", "", cxx11}, /* . */ {"deque", "", cxx98}, /* . */ {"forward_list", "", cxx11}, /* . */ {"basic_filebuf", "", cxx98}, {"basic_ifstream", "", cxx98}, {"basic_ofstream", "", cxx98}, {"basic_fstream", "", cxx98}, {"fstream", "", cxx98}, {"ifstream", "", cxx98}, {"ofstream", "", cxx98}, /* . */ {"bind", "", cxx11}, {"function", "", cxx11}, {"hash", "", cxx11}, {"mem_fn", "", cxx11}, /* . */ {"async", "", cxx11}, {"future", "", cxx11}, {"packaged_task", "", cxx11}, {"promise", "", cxx11}, /* . */ {"cin", "", cxx98}, {"cout", "", cxx98}, {"cerr", "", cxx98}, {"clog", "", cxx98}, {"wcin", "", cxx98}, {"wcout", "", cxx98}, {"wclog", "", cxx98}, /* . */ {"istream", "", cxx98}, /* . */ {"advance", "", cxx98}, {"back_inserter", "", cxx98}, {"begin", "", cxx11}, {"distance", "", cxx98}, {"end", "", cxx11}, {"front_inserter", "", cxx98}, {"inserter", "", cxx98}, {"istream_iterator", "", cxx98}, {"istreambuf_iterator", "", cxx98}, {"iterator_traits", "", cxx98}, {"move_iterator", "", cxx11}, {"next", "", cxx11}, {"ostream_iterator", "", cxx98}, {"ostreambuf_iterator", "", cxx98}, {"prev", "", cxx11}, {"reverse_iterator", "", cxx98}, /* . */ {"ostream", "", cxx98}, /* . */ {"list", "", cxx98}, /* . */ {"map", "", cxx98}, {"multimap", "", cxx98}, /* . */ {"make_shared", "", cxx11}, {"make_unique", "", cxx11}, {"shared_ptr", "", cxx11}, {"unique_ptr", "", cxx11}, {"weak_ptr", "", cxx11}, /* . */ {"mutex", "", cxx11}, {"timed_mutex", "", cxx11}, {"recursive_mutex", "", cxx11}, {"recursive_timed_mutex", "", cxx11}, {"once_flag", "", cxx11}, {"call_once,", "", cxx11}, {"lock", "", cxx11}, {"scoped_lock", "", cxx17}, {"try_lock", "", cxx11}, {"lock_guard", "", cxx11}, {"unique_lock", "", cxx11}, /* . */ {"optional", "", cxx17}, {"make_optional", "", cxx17}, /* . */ {"ostream", "", cxx98}, {"wostream", "", cxx98}, {"ends", "", cxx98}, {"flush", "", cxx98}, {"endl", "", cxx98}, /* . */ {"queue", "", cxx98}, {"priority_queue", "", cxx98}, /* . */ {"set", "", cxx98}, {"multiset", "", cxx98}, /* . */ {"shared_lock", "", cxx14}, {"shared_mutex", "", cxx17}, {"shared_timed_mutex", "", cxx14}, /* . */ {"basic_stringbuf", "", cxx98}, {"basic_istringstream", "", cxx98}, {"basic_ostringstream", "", cxx98}, {"basic_stringstream", "", cxx98}, {"istringstream", "", cxx98}, {"ostringstream", "", cxx98}, {"stringstream", "", cxx98}, /* . */ {"stack", "", cxx98}, /* . */ {"basic_string", "", cxx98}, {"string", "", cxx98}, {"wstring", "", cxx98}, {"u16string", "", cxx11}, {"u32string", "", cxx11}, /* . */ {"string_view", "", cxx17}, /* . */ {"thread", "", cxx11}, /* . */ {"make_tuple", "", cxx11}, {"tuple", "", cxx11}, {"tuple_element", "", cxx11}, {"tuple_size", "", cxx11}, /* . */ {"unordered_map", "", cxx11}, {"unordered_multimap", "", cxx11}, /* . */ {"unordered_set", "", cxx11}, {"unordered_multiset", "", cxx11}, /* . */ {"declval", "", cxx11}, {"forward", "", cxx11}, {"make_pair", "", cxx98}, {"move", "", cxx11}, {"pair", "", cxx98}, /* . */ {"variant", "", cxx17}, {"visit", "", cxx17}, /* . */ {"vector", "", cxx98}, }; const size_t num_hints = sizeof (hints) / sizeof (hints[0]); for (size_t i = 0; i < num_hints; i++) { if (strcmp (name, hints[i].name) == 0) return &hints[i]; } return NULL; } /* Describe DIALECT. */ static const char * get_cxx_dialect_name (enum cxx_dialect dialect) { switch (dialect) { default: gcc_unreachable (); case cxx98: return "C++98"; case cxx11: return "C++11"; case cxx14: return "C++14"; case cxx17: return "C++17"; case cxx2a: return "C++2a"; } } /* Suggest pertinent header files for NAME at LOCATION, for common names within the "std" namespace. Return true iff a suggestion was offered. */ static bool maybe_suggest_missing_std_header (location_t location, tree name) { gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); const char *name_str = IDENTIFIER_POINTER (name); const std_name_hint *header_hint = get_std_name_hint (name_str); if (!header_hint) return false; gcc_rich_location richloc (location); if (cxx_dialect >= header_hint->min_dialect) { const char *header = header_hint->header; maybe_add_include_fixit (&richloc, header); inform (&richloc, "% is defined in header %qs;" " did you forget to %<#include %s%>?", name_str, header, header); } else { inform (&richloc, "% is only available from %s onwards", name_str, get_cxx_dialect_name (header_hint->min_dialect)); } return true; } /* If SCOPE is the "std" namespace, then suggest pertinent header files for NAME at LOCATION. Return true iff a suggestion was offered. */ static bool maybe_suggest_missing_header (location_t location, tree name, tree scope) { if (scope == NULL_TREE) return false; if (TREE_CODE (scope) != NAMESPACE_DECL) return false; /* We only offer suggestions for the "std" namespace. */ if (scope != std_node) return false; return maybe_suggest_missing_std_header (location, name); } /* Look for alternatives for NAME, an IDENTIFIER_NODE for which name lookup failed within the explicitly provided SCOPE. Suggest the the best meaningful candidates (if any) as a fix-it hint. Return true iff a suggestion was provided. */ bool suggest_alternative_in_explicit_scope (location_t location, tree name, tree scope) { /* Something went very wrong; don't suggest anything. */ if (name == error_mark_node) return false; /* Resolve any namespace aliases. */ scope = ORIGINAL_NAMESPACE (scope); if (maybe_suggest_missing_header (location, name, scope)) return true; cp_binding_level *level = NAMESPACE_LEVEL (scope); best_match bm (name); consider_binding_level (name, bm, level, false, FUZZY_LOOKUP_NAME); /* See if we have a good suggesion for the user. */ const char *fuzzy_name = bm.get_best_meaningful_candidate (); if (fuzzy_name) { gcc_rich_location richloc (location); richloc.add_fixit_replace (fuzzy_name); inform (&richloc, "suggested alternative: %qs", fuzzy_name); return true; } return false; } /* Look up NAME (an IDENTIFIER_NODE) in SCOPE (either a NAMESPACE_DECL or a class TYPE). If PREFER_TYPE is > 0, we only return TYPE_DECLs or namespaces. If PREFER_TYPE is > 1, we only return TYPE_DECLs. Returns a DECL (or OVERLOAD, or BASELINK) representing the declaration found. If no suitable declaration can be found, ERROR_MARK_NODE is returned. If COMPLAIN is true and SCOPE is neither a class-type nor a namespace a diagnostic is issued. */ tree lookup_qualified_name (tree scope, tree name, int prefer_type, bool complain, bool find_hidden) { tree t = NULL_TREE; if (TREE_CODE (scope) == NAMESPACE_DECL) { int flags = lookup_flags (prefer_type, /*namespaces_only*/false); if (find_hidden) flags |= LOOKUP_HIDDEN; name_lookup lookup (name, flags); if (qualified_namespace_lookup (scope, &lookup)) t = lookup.value; } else if (cxx_dialect != cxx98 && TREE_CODE (scope) == ENUMERAL_TYPE) t = lookup_enumerator (scope, name); else if (is_class_type (scope, complain)) t = lookup_member (scope, name, 2, prefer_type, tf_warning_or_error); if (!t) return error_mark_node; return t; } /* [namespace.qual] Accepts the NAME to lookup and its qualifying SCOPE. Returns the name/type pair found into the cxx_binding *RESULT, or false on error. */ static bool qualified_namespace_lookup (tree scope, name_lookup *lookup) { timevar_start (TV_NAME_LOOKUP); query_oracle (lookup->name); bool found = lookup->search_qualified (ORIGINAL_NAMESPACE (scope)); timevar_stop (TV_NAME_LOOKUP); return found; } /* Helper function for lookup_name_fuzzy. Traverse binding level LVL, looking for good name matches for NAME (and BM). */ static void consider_binding_level (tree name, best_match &bm, cp_binding_level *lvl, bool look_within_fields, enum lookup_name_fuzzy_kind kind) { if (look_within_fields) if (lvl->this_entity && TREE_CODE (lvl->this_entity) == RECORD_TYPE) { tree type = lvl->this_entity; bool want_type_p = (kind == FUZZY_LOOKUP_TYPENAME); tree best_matching_field = lookup_member_fuzzy (type, name, want_type_p); if (best_matching_field) bm.consider (IDENTIFIER_POINTER (best_matching_field)); } /* Only suggest names reserved for the implementation if NAME begins with an underscore. */ bool consider_implementation_names = (IDENTIFIER_POINTER (name)[0] == '_'); for (tree t = lvl->names; t; t = TREE_CHAIN (t)) { tree d = t; /* OVERLOADs or decls from using declaration are wrapped into TREE_LIST. */ if (TREE_CODE (d) == TREE_LIST) d = OVL_FIRST (TREE_VALUE (d)); /* Don't use bindings from implicitly declared functions, as they were likely misspellings themselves. */ if (TREE_TYPE (d) == error_mark_node) continue; /* Skip anticipated decls of builtin functions. */ if (TREE_CODE (d) == FUNCTION_DECL && DECL_BUILT_IN (d) && DECL_ANTICIPATED (d)) continue; /* Skip compiler-generated variables (e.g. __for_begin/__for_end within range for). */ if (TREE_CODE (d) == VAR_DECL && DECL_ARTIFICIAL (d)) continue; tree suggestion = DECL_NAME (d); if (!suggestion) continue; /* Don't suggest names that are for anonymous aggregate types, as they are an implementation detail generated by the compiler. */ if (anon_aggrname_p (suggestion)) continue; const char *suggestion_str = IDENTIFIER_POINTER (suggestion); /* Ignore internal names with spaces in them. */ if (strchr (suggestion_str, ' ')) continue; /* Don't suggest names that are reserved for use by the implementation, unless NAME began with an underscore. */ if (name_reserved_for_implementation_p (suggestion_str) && !consider_implementation_names) continue; bm.consider (suggestion_str); } } /* Subclass of deferred_diagnostic. Notify the user that the given macro was used before it was defined. This can be done in the C++ frontend since tokenization happens upfront. */ class macro_use_before_def : public deferred_diagnostic { public: /* Factory function. Return a new macro_use_before_def instance if appropriate, or return NULL. */ static macro_use_before_def * maybe_make (location_t use_loc, cpp_hashnode *macro) { source_location def_loc = cpp_macro_definition_location (macro); if (def_loc == UNKNOWN_LOCATION) return NULL; /* We only want to issue a note if the macro was used *before* it was defined. We don't want to issue a note for cases where a macro was incorrectly used, leaving it unexpanded (e.g. by using the wrong argument count). */ if (!linemap_location_before_p (line_table, use_loc, def_loc)) return NULL; return new macro_use_before_def (use_loc, macro); } private: /* Ctor. LOC is the location of the usage. MACRO is the macro that was used. */ macro_use_before_def (location_t loc, cpp_hashnode *macro) : deferred_diagnostic (loc), m_macro (macro) { gcc_assert (macro); } ~macro_use_before_def () { if (is_suppressed_p ()) return; inform (get_location (), "the macro %qs had not yet been defined", (const char *)m_macro->ident.str); inform (cpp_macro_definition_location (m_macro), "it was later defined here"); } private: cpp_hashnode *m_macro; }; /* Determine if it can ever make sense to offer RID as a suggestion for a misspelling. Subroutine of lookup_name_fuzzy. */ static bool suggest_rid_p (enum rid rid) { switch (rid) { /* Support suggesting function-like keywords. */ case RID_STATIC_ASSERT: return true; default: /* Support suggesting the various decl-specifier words, to handle e.g. "singed" vs "signed" typos. */ if (cp_keyword_starts_decl_specifier_p (rid)) return true; /* Otherwise, don't offer it. This avoids suggesting e.g. "if" and "do" for short misspellings, which are likely to lead to nonsensical results. */ return false; } } /* Search for near-matches for NAME within the current bindings, and within macro names, returning the best match as a const char *, or NULL if no reasonable match is found. Use LOC for any deferred diagnostics. */ name_hint lookup_name_fuzzy (tree name, enum lookup_name_fuzzy_kind kind, location_t loc) { gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE); /* First, try some well-known names in the C++ standard library, in case the user forgot a #include. */ const char *header_hint = get_cp_stdlib_header_for_name (IDENTIFIER_POINTER (name)); if (header_hint) return name_hint (NULL, new suggest_missing_header (loc, IDENTIFIER_POINTER (name), header_hint)); best_match bm (name); cp_binding_level *lvl; for (lvl = scope_chain->class_bindings; lvl; lvl = lvl->level_chain) consider_binding_level (name, bm, lvl, true, kind); for (lvl = current_binding_level; lvl; lvl = lvl->level_chain) consider_binding_level (name, bm, lvl, false, kind); /* Consider macros: if the user misspelled a macro name e.g. "SOME_MACRO" as: x = SOME_OTHER_MACRO (y); then "SOME_OTHER_MACRO" will survive to the frontend and show up as a misspelled identifier. Use the best distance so far so that a candidate is only set if a macro is better than anything so far. This allows early rejection (without calculating the edit distance) of macro names that must have distance >= bm.get_best_distance (), and means that we only get a non-NULL result for best_macro_match if it's better than any of the identifiers already checked. */ best_macro_match bmm (name, bm.get_best_distance (), parse_in); cpp_hashnode *best_macro = bmm.get_best_meaningful_candidate (); /* If a macro is the closest so far to NAME, consider it. */ if (best_macro) bm.consider ((const char *)best_macro->ident.str); else if (bmm.get_best_distance () == 0) { /* If we have an exact match for a macro name, then either the macro was used with the wrong argument count, or the macro has been used before it was defined. */ cpp_hashnode *macro = bmm.blithely_get_best_candidate (); if (macro && (macro->flags & NODE_BUILTIN) == 0) return name_hint (NULL, macro_use_before_def::maybe_make (loc, macro)); } /* Try the "starts_decl_specifier_p" keywords to detect "singed" vs "signed" typos. */ for (unsigned i = 0; i < num_c_common_reswords; i++) { const c_common_resword *resword = &c_common_reswords[i]; if (!suggest_rid_p (resword->rid)) continue; tree resword_identifier = ridpointers [resword->rid]; if (!resword_identifier) continue; gcc_assert (TREE_CODE (resword_identifier) == IDENTIFIER_NODE); /* Only consider reserved words that survived the filtering in init_reswords (e.g. for -std). */ if (!IDENTIFIER_KEYWORD_P (resword_identifier)) continue; bm.consider (IDENTIFIER_POINTER (resword_identifier)); } return name_hint (bm.get_best_meaningful_candidate (), NULL); } /* Subroutine of outer_binding. Returns TRUE if BINDING is a binding to a template parameter of SCOPE. In that case SCOPE is the scope of a primary template parameter -- in the sense of G++, i.e, a template that has its own template header. Returns FALSE otherwise. */ static bool binding_to_template_parms_of_scope_p (cxx_binding *binding, cp_binding_level *scope) { tree binding_value, tmpl, tinfo; int level; if (!binding || !scope || !scope->this_entity) return false; binding_value = binding->value ? binding->value : binding->type; tinfo = get_template_info (scope->this_entity); /* BINDING_VALUE must be a template parm. */ if (binding_value == NULL_TREE || (!DECL_P (binding_value) || !DECL_TEMPLATE_PARM_P (binding_value))) return false; /* The level of BINDING_VALUE. */ level = template_type_parameter_p (binding_value) ? TEMPLATE_PARM_LEVEL (TEMPLATE_TYPE_PARM_INDEX (TREE_TYPE (binding_value))) : TEMPLATE_PARM_LEVEL (DECL_INITIAL (binding_value)); /* The template of the current scope, iff said scope is a primary template. */ tmpl = (tinfo && PRIMARY_TEMPLATE_P (TI_TEMPLATE (tinfo)) ? TI_TEMPLATE (tinfo) : NULL_TREE); /* If the level of the parm BINDING_VALUE equals the depth of TMPL, then BINDING_VALUE is a parameter of TMPL. */ return (tmpl && level == TMPL_PARMS_DEPTH (DECL_TEMPLATE_PARMS (tmpl))); } /* Return the innermost non-namespace binding for NAME from a scope containing BINDING, or, if BINDING is NULL, the current scope. Please note that for a given template, the template parameters are considered to be in the scope containing the current scope. If CLASS_P is false, then class bindings are ignored. */ cxx_binding * outer_binding (tree name, cxx_binding *binding, bool class_p) { cxx_binding *outer; cp_binding_level *scope; cp_binding_level *outer_scope; if (binding) { scope = binding->scope->level_chain; outer = binding->previous; } else { scope = current_binding_level; outer = IDENTIFIER_BINDING (name); } outer_scope = outer ? outer->scope : NULL; /* Because we create class bindings lazily, we might be missing a class binding for NAME. If there are any class binding levels between the LAST_BINDING_LEVEL and the scope in which OUTER was declared, we must lookup NAME in those class scopes. */ if (class_p) while (scope && scope != outer_scope && scope->kind != sk_namespace) { if (scope->kind == sk_class) { cxx_binding *class_binding; class_binding = get_class_binding (name, scope); if (class_binding) { /* Thread this new class-scope binding onto the IDENTIFIER_BINDING list so that future lookups find it quickly. */ class_binding->previous = outer; if (binding) binding->previous = class_binding; else IDENTIFIER_BINDING (name) = class_binding; return class_binding; } } /* If we are in a member template, the template parms of the member template are considered to be inside the scope of the containing class, but within G++ the class bindings are all pushed between the template parms and the function body. So if the outer binding is a template parm for the current scope, return it now rather than look for a class binding. */ if (outer_scope && outer_scope->kind == sk_template_parms && binding_to_template_parms_of_scope_p (outer, scope)) return outer; scope = scope->level_chain; } return outer; } /* Return the innermost block-scope or class-scope value binding for NAME, or NULL_TREE if there is no such binding. */ tree innermost_non_namespace_value (tree name) { cxx_binding *binding; binding = outer_binding (name, /*binding=*/NULL, /*class_p=*/true); return binding ? binding->value : NULL_TREE; } /* Look up NAME in the current binding level and its superiors in the namespace of variables, functions and typedefs. Return a ..._DECL node of some kind representing its definition if there is only one such declaration, or return a TREE_LIST with all the overloaded definitions if there are many, or return 0 if it is undefined. Hidden name, either friend declaration or built-in function, are not ignored. If PREFER_TYPE is > 0, we prefer TYPE_DECLs or namespaces. If PREFER_TYPE is > 1, we reject non-type decls (e.g. namespaces). Otherwise we prefer non-TYPE_DECLs. If NONCLASS is nonzero, bindings in class scopes are ignored. If BLOCK_P is false, bindings in block scopes are ignored. */ static tree lookup_name_real_1 (tree name, int prefer_type, int nonclass, bool block_p, int namespaces_only, int flags) { cxx_binding *iter; tree val = NULL_TREE; query_oracle (name); /* Conversion operators are handled specially because ordinary unqualified name lookup will not find template conversion operators. */ if (IDENTIFIER_CONV_OP_P (name)) { cp_binding_level *level; for (level = current_binding_level; level && level->kind != sk_namespace; level = level->level_chain) { tree class_type; tree operators; /* A conversion operator can only be declared in a class scope. */ if (level->kind != sk_class) continue; /* Lookup the conversion operator in the class. */ class_type = level->this_entity; operators = lookup_fnfields (class_type, name, /*protect=*/0); if (operators) return operators; } return NULL_TREE; } flags |= lookup_flags (prefer_type, namespaces_only); /* First, look in non-namespace scopes. */ if (current_class_type == NULL_TREE) nonclass = 1; if (block_p || !nonclass) for (iter = outer_binding (name, NULL, !nonclass); iter; iter = outer_binding (name, iter, !nonclass)) { tree binding; /* Skip entities we don't want. */ if (LOCAL_BINDING_P (iter) ? !block_p : nonclass) continue; /* If this is the kind of thing we're looking for, we're done. */ if (qualify_lookup (iter->value, flags)) binding = iter->value; else if ((flags & LOOKUP_PREFER_TYPES) && qualify_lookup (iter->type, flags)) binding = iter->type; else binding = NULL_TREE; if (binding) { if (TREE_CODE (binding) == TYPE_DECL && DECL_HIDDEN_P (binding)) { /* A non namespace-scope binding can only be hidden in the presence of a local class, due to friend declarations. In particular, consider: struct C; void f() { struct A { friend struct B; friend struct C; void g() { B* b; // error: B is hidden C* c; // OK, finds ::C } }; B *b; // error: B is hidden C *c; // OK, finds ::C struct B {}; B *bb; // OK } The standard says that "B" is a local class in "f" (but not nested within "A") -- but that name lookup for "B" does not find this declaration until it is declared directly with "f". In particular: [class.friend] If a friend declaration appears in a local class and the name specified is an unqualified name, a prior declaration is looked up without considering scopes that are outside the innermost enclosing non-class scope. For a friend function declaration, if there is no prior declaration, the program is ill-formed. For a friend class declaration, if there is no prior declaration, the class that is specified belongs to the innermost enclosing non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a matching declaration is provided in the innermost enclosing nonclass scope. So just keep looking for a non-hidden binding. */ gcc_assert (TREE_CODE (binding) == TYPE_DECL); continue; } val = binding; break; } } /* Now lookup in namespace scopes. */ if (!val) { name_lookup lookup (name, flags); if (lookup.search_unqualified (current_decl_namespace (), current_binding_level)) val = lookup.value; } /* If we have a single function from a using decl, pull it out. */ if (val && TREE_CODE (val) == OVERLOAD && !really_overloaded_fn (val)) val = OVL_FUNCTION (val); return val; } /* Wrapper for lookup_name_real_1. */ tree lookup_name_real (tree name, int prefer_type, int nonclass, bool block_p, int namespaces_only, int flags) { tree ret; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); ret = lookup_name_real_1 (name, prefer_type, nonclass, block_p, namespaces_only, flags); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } tree lookup_name_nonclass (tree name) { return lookup_name_real (name, 0, 1, /*block_p=*/true, 0, 0); } tree lookup_name (tree name) { return lookup_name_real (name, 0, 0, /*block_p=*/true, 0, 0); } tree lookup_name_prefer_type (tree name, int prefer_type) { return lookup_name_real (name, prefer_type, 0, /*block_p=*/true, 0, 0); } /* Look up NAME for type used in elaborated name specifier in the scopes given by SCOPE. SCOPE can be either TS_CURRENT or TS_WITHIN_ENCLOSING_NON_CLASS. Although not implied by the name, more scopes are checked if cleanup or template parameter scope is encountered. Unlike lookup_name_real, we make sure that NAME is actually declared in the desired scope, not from inheritance, nor using directive. For using declaration, there is DR138 still waiting to be resolved. Hidden name coming from an earlier friend declaration is also returned. A TYPE_DECL best matching the NAME is returned. Catching error and issuing diagnostics are caller's responsibility. */ static tree lookup_type_scope_1 (tree name, tag_scope scope) { cxx_binding *iter = NULL; tree val = NULL_TREE; cp_binding_level *level = NULL; /* Look in non-namespace scope first. */ if (current_binding_level->kind != sk_namespace) iter = outer_binding (name, NULL, /*class_p=*/ true); for (; iter; iter = outer_binding (name, iter, /*class_p=*/ true)) { /* Check if this is the kind of thing we're looking for. If SCOPE is TS_CURRENT, also make sure it doesn't come from base class. For ITER->VALUE, we can simply use INHERITED_VALUE_BINDING_P. For ITER->TYPE, we have to use our own check. We check ITER->TYPE before ITER->VALUE in order to handle typedef struct C {} C; correctly. */ if (qualify_lookup (iter->type, LOOKUP_PREFER_TYPES) && (scope != ts_current || LOCAL_BINDING_P (iter) || DECL_CONTEXT (iter->type) == iter->scope->this_entity)) val = iter->type; else if ((scope != ts_current || !INHERITED_VALUE_BINDING_P (iter)) && qualify_lookup (iter->value, LOOKUP_PREFER_TYPES)) val = iter->value; if (val) break; } /* Look in namespace scope. */ if (val) level = iter->scope; else { tree ns = current_decl_namespace (); if (tree *slot = find_namespace_slot (ns, name)) { /* If this is the kind of thing we're looking for, we're done. */ if (tree type = MAYBE_STAT_TYPE (*slot)) if (qualify_lookup (type, LOOKUP_PREFER_TYPES)) val = type; if (!val) { if (tree decl = MAYBE_STAT_DECL (*slot)) if (qualify_lookup (decl, LOOKUP_PREFER_TYPES)) val = decl; } level = NAMESPACE_LEVEL (ns); } } /* Type found, check if it is in the allowed scopes, ignoring cleanup and template parameter scopes. */ if (val) { cp_binding_level *b = current_binding_level; while (b) { if (level == b) return val; if (b->kind == sk_cleanup || b->kind == sk_template_parms || b->kind == sk_function_parms) b = b->level_chain; else if (b->kind == sk_class && scope == ts_within_enclosing_non_class) b = b->level_chain; else break; } } return NULL_TREE; } /* Wrapper for lookup_type_scope_1. */ tree lookup_type_scope (tree name, tag_scope scope) { tree ret; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); ret = lookup_type_scope_1 (name, scope); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } /* Returns true iff DECL is a block-scope extern declaration of a function or variable. */ bool is_local_extern (tree decl) { cxx_binding *binding; /* For functions, this is easy. */ if (TREE_CODE (decl) == FUNCTION_DECL) return DECL_LOCAL_FUNCTION_P (decl); if (!VAR_P (decl)) return false; if (!current_function_decl) return false; /* For variables, this is not easy. We need to look at the binding stack for the identifier to see whether the decl we have is a local. */ for (binding = IDENTIFIER_BINDING (DECL_NAME (decl)); binding && binding->scope->kind != sk_namespace; binding = binding->previous) if (binding->value == decl) return LOCAL_BINDING_P (binding); return false; } /* The type TYPE is being declared. If it is a class template, or a specialization of a class template, do any processing required and perform error-checking. If IS_FRIEND is nonzero, this TYPE is being declared a friend. B is the binding level at which this TYPE should be bound. Returns the TYPE_DECL for TYPE, which may have been altered by this processing. */ static tree maybe_process_template_type_declaration (tree type, int is_friend, cp_binding_level *b) { tree decl = TYPE_NAME (type); if (processing_template_parmlist) /* You can't declare a new template type in a template parameter list. But, you can declare a non-template type: template struct S; is a forward-declaration of `A'. */ ; else if (b->kind == sk_namespace && current_binding_level->kind != sk_namespace) /* If this new type is being injected into a containing scope, then it's not a template type. */ ; else { gcc_assert (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ENUMERAL_TYPE); if (processing_template_decl) { /* This may change after the call to push_template_decl_real, but we want the original value. */ tree name = DECL_NAME (decl); decl = push_template_decl_real (decl, is_friend); if (decl == error_mark_node) return error_mark_node; /* If the current binding level is the binding level for the template parameters (see the comment in begin_template_parm_list) and the enclosing level is a class scope, and we're not looking at a friend, push the declaration of the member class into the class scope. In the friend case, push_template_decl will already have put the friend into global scope, if appropriate. */ if (TREE_CODE (type) != ENUMERAL_TYPE && !is_friend && b->kind == sk_template_parms && b->level_chain->kind == sk_class) { finish_member_declaration (CLASSTYPE_TI_TEMPLATE (type)); if (!COMPLETE_TYPE_P (current_class_type)) { maybe_add_class_template_decl_list (current_class_type, type, /*friend_p=*/0); /* Put this UTD in the table of UTDs for the class. */ if (CLASSTYPE_NESTED_UTDS (current_class_type) == NULL) CLASSTYPE_NESTED_UTDS (current_class_type) = binding_table_new (SCOPE_DEFAULT_HT_SIZE); binding_table_insert (CLASSTYPE_NESTED_UTDS (current_class_type), name, type); } } } } return decl; } /* Push a tag name NAME for struct/class/union/enum type TYPE. In case that the NAME is a class template, the tag is processed but not pushed. The pushed scope depend on the SCOPE parameter: - When SCOPE is TS_CURRENT, put it into the inner-most non-sk_cleanup scope. - When SCOPE is TS_GLOBAL, put it in the inner-most non-class and non-template-parameter scope. This case is needed for forward declarations. - When SCOPE is TS_WITHIN_ENCLOSING_NON_CLASS, this is similar to TS_GLOBAL case except that names within template-parameter scopes are not pushed at all. Returns TYPE upon success and ERROR_MARK_NODE otherwise. */ static tree do_pushtag (tree name, tree type, tag_scope scope) { tree decl; cp_binding_level *b = current_binding_level; while (/* Cleanup scopes are not scopes from the point of view of the language. */ b->kind == sk_cleanup /* Neither are function parameter scopes. */ || b->kind == sk_function_parms /* Neither are the scopes used to hold template parameters for an explicit specialization. For an ordinary template declaration, these scopes are not scopes from the point of view of the language. */ || (b->kind == sk_template_parms && (b->explicit_spec_p || scope == ts_global)) || (b->kind == sk_class && (scope != ts_current /* We may be defining a new type in the initializer of a static member variable. We allow this when not pedantic, and it is particularly useful for type punning via an anonymous union. */ || COMPLETE_TYPE_P (b->this_entity)))) b = b->level_chain; gcc_assert (identifier_p (name)); /* Do C++ gratuitous typedefing. */ if (identifier_type_value_1 (name) != type) { tree tdef; int in_class = 0; tree context = TYPE_CONTEXT (type); if (! context) { tree cs = current_scope (); /* Avoid setting the lambda context to a current_function_decl that we aren't actually inside, e.g. one set by push_access_scope during tsubst_default_argument. */ if (cs && TREE_CODE (cs) == FUNCTION_DECL && LAMBDA_TYPE_P (type) && !at_function_scope_p ()) cs = DECL_CONTEXT (cs); if (scope == ts_current || (cs && TREE_CODE (cs) == FUNCTION_DECL)) context = cs; else if (cs && TYPE_P (cs)) /* When declaring a friend class of a local class, we want to inject the newly named class into the scope containing the local class, not the namespace scope. */ context = decl_function_context (get_type_decl (cs)); } if (!context) context = current_namespace; if (b->kind == sk_class || (b->kind == sk_template_parms && b->level_chain->kind == sk_class)) in_class = 1; tdef = create_implicit_typedef (name, type); DECL_CONTEXT (tdef) = FROB_CONTEXT (context); if (scope == ts_within_enclosing_non_class) { /* This is a friend. Make this TYPE_DECL node hidden from ordinary name lookup. Its corresponding TEMPLATE_DECL will be marked in push_template_decl_real. */ retrofit_lang_decl (tdef); DECL_ANTICIPATED (tdef) = 1; DECL_FRIEND_P (tdef) = 1; } decl = maybe_process_template_type_declaration (type, scope == ts_within_enclosing_non_class, b); if (decl == error_mark_node) return decl; if (b->kind == sk_class) { if (!TYPE_BEING_DEFINED (current_class_type) && !LAMBDA_TYPE_P (type)) return error_mark_node; if (!PROCESSING_REAL_TEMPLATE_DECL_P ()) /* Put this TYPE_DECL on the TYPE_FIELDS list for the class. But if it's a member template class, we want the TEMPLATE_DECL, not the TYPE_DECL, so this is done later. */ finish_member_declaration (decl); else pushdecl_class_level (decl); } else if (b->kind != sk_template_parms) { decl = do_pushdecl_with_scope (decl, b, /*is_friend=*/false); if (decl == error_mark_node) return decl; if (DECL_CONTEXT (decl) == std_node && init_list_identifier == DECL_NAME (TYPE_NAME (type)) && !CLASSTYPE_TEMPLATE_INFO (type)) { error ("declaration of % does not match " "%<#include %>, isn't a template"); return error_mark_node; } } if (! in_class) set_identifier_type_value_with_scope (name, tdef, b); TYPE_CONTEXT (type) = DECL_CONTEXT (decl); /* If this is a local class, keep track of it. We need this information for name-mangling, and so that it is possible to find all function definitions in a translation unit in a convenient way. (It's otherwise tricky to find a member function definition it's only pointed to from within a local class.) */ if (TYPE_FUNCTION_SCOPE_P (type)) { if (processing_template_decl) { /* Push a DECL_EXPR so we call pushtag at the right time in template instantiation rather than in some nested context. */ add_decl_expr (decl); } /* Lambdas use LAMBDA_EXPR_DISCRIMINATOR instead. */ else if (!LAMBDA_TYPE_P (type)) vec_safe_push (local_classes, type); } } if (b->kind == sk_class && !COMPLETE_TYPE_P (current_class_type)) { maybe_add_class_template_decl_list (current_class_type, type, /*friend_p=*/0); if (CLASSTYPE_NESTED_UTDS (current_class_type) == NULL) CLASSTYPE_NESTED_UTDS (current_class_type) = binding_table_new (SCOPE_DEFAULT_HT_SIZE); binding_table_insert (CLASSTYPE_NESTED_UTDS (current_class_type), name, type); } decl = TYPE_NAME (type); gcc_assert (TREE_CODE (decl) == TYPE_DECL); /* Set type visibility now if this is a forward declaration. */ TREE_PUBLIC (decl) = 1; determine_visibility (decl); return type; } /* Wrapper for do_pushtag. */ tree pushtag (tree name, tree type, tag_scope scope) { tree ret; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); ret = do_pushtag (name, type, scope); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return ret; } /* Subroutines for reverting temporarily to top-level for instantiation of templates and such. We actually need to clear out the class- and local-value slots of all identifiers, so that only the global values are at all visible. Simply setting current_binding_level to the global scope isn't enough, because more binding levels may be pushed. */ struct saved_scope *scope_chain; /* Return true if ID has not already been marked. */ static inline bool store_binding_p (tree id) { if (!id || !IDENTIFIER_BINDING (id)) return false; if (IDENTIFIER_MARKED (id)) return false; return true; } /* Add an appropriate binding to *OLD_BINDINGS which needs to already have enough space reserved. */ static void store_binding (tree id, vec **old_bindings) { cxx_saved_binding saved; gcc_checking_assert (store_binding_p (id)); IDENTIFIER_MARKED (id) = 1; saved.identifier = id; saved.binding = IDENTIFIER_BINDING (id); saved.real_type_value = REAL_IDENTIFIER_TYPE_VALUE (id); (*old_bindings)->quick_push (saved); IDENTIFIER_BINDING (id) = NULL; } static void store_bindings (tree names, vec **old_bindings) { static vec bindings_need_stored; tree t, id; size_t i; bool subtime = timevar_cond_start (TV_NAME_LOOKUP); for (t = names; t; t = TREE_CHAIN (t)) { if (TREE_CODE (t) == TREE_LIST) id = TREE_PURPOSE (t); else id = DECL_NAME (t); if (store_binding_p (id)) bindings_need_stored.safe_push (id); } if (!bindings_need_stored.is_empty ()) { vec_safe_reserve_exact (*old_bindings, bindings_need_stored.length ()); for (i = 0; bindings_need_stored.iterate (i, &id); ++i) { /* We can apparently have duplicates in NAMES. */ if (store_binding_p (id)) store_binding (id, old_bindings); } bindings_need_stored.truncate (0); } timevar_cond_stop (TV_NAME_LOOKUP, subtime); } /* Like store_bindings, but NAMES is a vector of cp_class_binding objects, rather than a TREE_LIST. */ static void store_class_bindings (vec *names, vec **old_bindings) { static vec bindings_need_stored; size_t i; cp_class_binding *cb; for (i = 0; vec_safe_iterate (names, i, &cb); ++i) if (store_binding_p (cb->identifier)) bindings_need_stored.safe_push (cb->identifier); if (!bindings_need_stored.is_empty ()) { tree id; vec_safe_reserve_exact (*old_bindings, bindings_need_stored.length ()); for (i = 0; bindings_need_stored.iterate (i, &id); ++i) store_binding (id, old_bindings); bindings_need_stored.truncate (0); } } /* A chain of saved_scope structures awaiting reuse. */ static GTY((deletable)) struct saved_scope *free_saved_scope; static void do_push_to_top_level (void) { struct saved_scope *s; cp_binding_level *b; cxx_saved_binding *sb; size_t i; bool need_pop; /* Reuse or create a new structure for this saved scope. */ if (free_saved_scope != NULL) { s = free_saved_scope; free_saved_scope = s->prev; vec *old_bindings = s->old_bindings; memset (s, 0, sizeof (*s)); /* Also reuse the structure's old_bindings vector. */ vec_safe_truncate (old_bindings, 0); s->old_bindings = old_bindings; } else s = ggc_cleared_alloc (); b = scope_chain ? current_binding_level : 0; /* If we're in the middle of some function, save our state. */ if (cfun) { need_pop = true; push_function_context (); } else need_pop = false; if (scope_chain && previous_class_level) store_class_bindings (previous_class_level->class_shadowed, &s->old_bindings); /* Have to include the global scope, because class-scope decls aren't listed anywhere useful. */ for (; b; b = b->level_chain) { tree t; /* Template IDs are inserted into the global level. If they were inserted into namespace level, finish_file wouldn't find them when doing pending instantiations. Therefore, don't stop at namespace level, but continue until :: . */ if (global_scope_p (b)) break; store_bindings (b->names, &s->old_bindings); /* We also need to check class_shadowed to save class-level type bindings, since pushclass doesn't fill in b->names. */ if (b->kind == sk_class) store_class_bindings (b->class_shadowed, &s->old_bindings); /* Unwind type-value slots back to top level. */ for (t = b->type_shadowed; t; t = TREE_CHAIN (t)) SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (t), TREE_VALUE (t)); } FOR_EACH_VEC_SAFE_ELT (s->old_bindings, i, sb) IDENTIFIER_MARKED (sb->identifier) = 0; s->prev = scope_chain; s->bindings = b; s->need_pop_function_context = need_pop; s->function_decl = current_function_decl; s->unevaluated_operand = cp_unevaluated_operand; s->inhibit_evaluation_warnings = c_inhibit_evaluation_warnings; s->x_stmt_tree.stmts_are_full_exprs_p = true; scope_chain = s; current_function_decl = NULL_TREE; current_lang_base = NULL; current_lang_name = lang_name_cplusplus; current_namespace = global_namespace; push_class_stack (); cp_unevaluated_operand = 0; c_inhibit_evaluation_warnings = 0; } static void do_pop_from_top_level (void) { struct saved_scope *s = scope_chain; cxx_saved_binding *saved; size_t i; /* Clear out class-level bindings cache. */ if (previous_class_level) invalidate_class_lookup_cache (); pop_class_stack (); release_tree_vector (current_lang_base); scope_chain = s->prev; FOR_EACH_VEC_SAFE_ELT (s->old_bindings, i, saved) { tree id = saved->identifier; IDENTIFIER_BINDING (id) = saved->binding; SET_IDENTIFIER_TYPE_VALUE (id, saved->real_type_value); } /* If we were in the middle of compiling a function, restore our state. */ if (s->need_pop_function_context) pop_function_context (); current_function_decl = s->function_decl; cp_unevaluated_operand = s->unevaluated_operand; c_inhibit_evaluation_warnings = s->inhibit_evaluation_warnings; /* Make this saved_scope structure available for reuse by push_to_top_level. */ s->prev = free_saved_scope; free_saved_scope = s; } /* Push into the scope of the namespace NS, even if it is deeply nested within another namespace. */ static void do_push_nested_namespace (tree ns) { if (ns == global_namespace) do_push_to_top_level (); else { do_push_nested_namespace (CP_DECL_CONTEXT (ns)); gcc_checking_assert (find_namespace_value (current_namespace, DECL_NAME (ns)) == ns); resume_scope (NAMESPACE_LEVEL (ns)); current_namespace = ns; } } /* Pop back from the scope of the namespace NS, which was previously entered with push_nested_namespace. */ static void do_pop_nested_namespace (tree ns) { while (ns != global_namespace) { ns = CP_DECL_CONTEXT (ns); current_namespace = ns; leave_scope (); } do_pop_from_top_level (); } /* Add TARGET to USINGS, if it does not already exist there. We used to build the complete graph of usings at this point, from the POV of the source namespaces. Now we build that as we perform the unqualified search. */ static void add_using_namespace (vec *&usings, tree target) { if (usings) for (unsigned ix = usings->length (); ix--;) if ((*usings)[ix] == target) return; vec_safe_push (usings, target); } /* Tell the debug system of a using directive. */ static void emit_debug_info_using_namespace (tree from, tree target, bool implicit) { /* Emit debugging info. */ tree context = from != global_namespace ? from : NULL_TREE; debug_hooks->imported_module_or_decl (target, NULL_TREE, context, false, implicit); } /* Process a namespace-scope using directive. */ void finish_namespace_using_directive (tree target, tree attribs) { gcc_checking_assert (namespace_bindings_p ()); if (target == error_mark_node) return; add_using_namespace (DECL_NAMESPACE_USING (current_namespace), ORIGINAL_NAMESPACE (target)); emit_debug_info_using_namespace (current_namespace, ORIGINAL_NAMESPACE (target), false); if (attribs == error_mark_node) return; for (tree a = attribs; a; a = TREE_CHAIN (a)) { tree name = get_attribute_name (a); if (is_attribute_p ("strong", name)) { warning (0, "strong using directive no longer supported"); if (CP_DECL_CONTEXT (target) == current_namespace) inform (DECL_SOURCE_LOCATION (target), "you may use an inline namespace instead"); } else warning (OPT_Wattributes, "%qD attribute directive ignored", name); } } /* Process a function-scope using-directive. */ void finish_local_using_directive (tree target, tree attribs) { gcc_checking_assert (local_bindings_p ()); if (target == error_mark_node) return; if (attribs) warning (OPT_Wattributes, "attributes ignored on local using directive"); add_stmt (build_stmt (input_location, USING_STMT, target)); add_using_namespace (current_binding_level->using_directives, ORIGINAL_NAMESPACE (target)); } /* Pushes X into the global namespace. */ tree pushdecl_top_level (tree x, bool is_friend) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); do_push_to_top_level (); x = pushdecl_namespace_level (x, is_friend); do_pop_from_top_level (); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return x; } /* Pushes X into the global namespace and calls cp_finish_decl to register the variable, initializing it with INIT. */ tree pushdecl_top_level_and_finish (tree x, tree init) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); do_push_to_top_level (); x = pushdecl_namespace_level (x, false); cp_finish_decl (x, init, false, NULL_TREE, 0); do_pop_from_top_level (); timevar_cond_stop (TV_NAME_LOOKUP, subtime); return x; } /* Enter the namespaces from current_namerspace to NS. */ static int push_inline_namespaces (tree ns) { int count = 0; if (ns != current_namespace) { gcc_assert (ns != global_namespace); count += push_inline_namespaces (CP_DECL_CONTEXT (ns)); resume_scope (NAMESPACE_LEVEL (ns)); current_namespace = ns; count++; } return count; } /* Push into the scope of the NAME namespace. If NAME is NULL_TREE, then we enter an anonymous namespace. If MAKE_INLINE is true, then we create an inline namespace (it is up to the caller to check upon redefinition). Return the number of namespaces entered. */ int push_namespace (tree name, bool make_inline) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); int count = 0; /* We should not get here if the global_namespace is not yet constructed nor if NAME designates the global namespace: The global scope is constructed elsewhere. */ gcc_checking_assert (global_namespace != NULL && name != global_identifier); tree ns = NULL_TREE; { name_lookup lookup (name, 0); if (!lookup.search_qualified (current_namespace, /*usings=*/false)) ; else if (TREE_CODE (lookup.value) != NAMESPACE_DECL) ; else if (tree dna = DECL_NAMESPACE_ALIAS (lookup.value)) { /* A namespace alias is not allowed here, but if the alias is for a namespace also inside the current scope, accept it with a diagnostic. That's better than dying horribly. */ if (is_nested_namespace (current_namespace, CP_DECL_CONTEXT (dna))) { error ("namespace alias %qD not allowed here, " "assuming %qD", lookup.value, dna); ns = dna; } } else ns = lookup.value; } bool new_ns = false; if (ns) /* DR2061. NS might be a member of an inline namespace. We need to push into those namespaces. */ count += push_inline_namespaces (CP_DECL_CONTEXT (ns)); else { ns = build_lang_decl (NAMESPACE_DECL, name, void_type_node); SCOPE_DEPTH (ns) = SCOPE_DEPTH (current_namespace) + 1; if (!SCOPE_DEPTH (ns)) /* We only allow depth 255. */ sorry ("cannot nest more than %d namespaces", SCOPE_DEPTH (current_namespace)); DECL_CONTEXT (ns) = FROB_CONTEXT (current_namespace); new_ns = true; if (pushdecl (ns) == error_mark_node) ns = NULL_TREE; else { if (!name) { SET_DECL_ASSEMBLER_NAME (ns, anon_identifier); if (!make_inline) add_using_namespace (DECL_NAMESPACE_USING (current_namespace), ns); } else if (TREE_PUBLIC (current_namespace)) TREE_PUBLIC (ns) = 1; if (make_inline) { DECL_NAMESPACE_INLINE_P (ns) = true; vec_safe_push (DECL_NAMESPACE_INLINEES (current_namespace), ns); } if (!name || make_inline) emit_debug_info_using_namespace (current_namespace, ns, true); } } if (ns) { if (make_inline && !DECL_NAMESPACE_INLINE_P (ns)) { error ("inline namespace must be specified at initial definition"); inform (DECL_SOURCE_LOCATION (ns), "%qD defined here", ns); } if (new_ns) begin_scope (sk_namespace, ns); else resume_scope (NAMESPACE_LEVEL (ns)); current_namespace = ns; count++; } timevar_cond_stop (TV_NAME_LOOKUP, subtime); return count; } /* Pop from the scope of the current namespace. */ void pop_namespace (void) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); gcc_assert (current_namespace != global_namespace); current_namespace = CP_DECL_CONTEXT (current_namespace); /* The binding level is not popped, as it might be re-opened later. */ leave_scope (); timevar_cond_stop (TV_NAME_LOOKUP, subtime); } /* External entry points for do_{push_to/pop_from}_top_level. */ void push_to_top_level (void) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); do_push_to_top_level (); timevar_cond_stop (TV_NAME_LOOKUP, subtime); } void pop_from_top_level (void) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); do_pop_from_top_level (); timevar_cond_stop (TV_NAME_LOOKUP, subtime); } /* External entry points for do_{push,pop}_nested_namespace. */ void push_nested_namespace (tree ns) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); do_push_nested_namespace (ns); timevar_cond_stop (TV_NAME_LOOKUP, subtime); } void pop_nested_namespace (tree ns) { bool subtime = timevar_cond_start (TV_NAME_LOOKUP); gcc_assert (current_namespace == ns); do_pop_nested_namespace (ns); timevar_cond_stop (TV_NAME_LOOKUP, subtime); } /* Pop off extraneous binding levels left over due to syntax errors. We don't pop past namespaces, as they might be valid. */ void pop_everything (void) { if (ENABLE_SCOPE_CHECKING) verbatim ("XXX entering pop_everything ()\n"); while (!namespace_bindings_p ()) { if (current_binding_level->kind == sk_class) pop_nested_class (); else poplevel (0, 0, 0); } if (ENABLE_SCOPE_CHECKING) verbatim ("XXX leaving pop_everything ()\n"); } /* Emit debugging information for using declarations and directives. If input tree is overloaded fn then emit debug info for all candidates. */ void cp_emit_debug_info_for_using (tree t, tree context) { /* Don't try to emit any debug information if we have errors. */ if (seen_error ()) return; /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a builtin function. */ if (TREE_CODE (t) == FUNCTION_DECL && DECL_EXTERNAL (t) && DECL_BUILT_IN (t)) return; /* Do not supply context to imported_module_or_decl, if it is a global namespace. */ if (context == global_namespace) context = NULL_TREE; t = MAYBE_BASELINK_FUNCTIONS (t); /* FIXME: Handle TEMPLATE_DECLs. */ for (lkp_iterator iter (t); iter; ++iter) { tree fn = *iter; if (TREE_CODE (fn) != TEMPLATE_DECL) { if (building_stmt_list_p ()) add_stmt (build_stmt (input_location, USING_STMT, fn)); else debug_hooks->imported_module_or_decl (fn, NULL_TREE, context, false, false); } } } #include "gt-cp-name-lookup.h"