/* Copyright (C) 2012-2018 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers before using them for virtual method dispatches. */ /* This file is part of the vtable security feature implementation. The vtable security feature is designed to detect when a virtual call is about to be made through an invalid vtable pointer (possibly due to data corruption or malicious attacks). The compiler finds every virtual call, and inserts a verification call before the virtual call. The verification call takes the actual vtable pointer value in the object through which the virtual call is being made, and compares the vtable pointer against a set of all valid vtable pointers that the object could contain (this set is based on the declared type of the object). If the pointer is in the valid set, execution is allowed to continue; otherwise the program is halted. There are several pieces needed in order to make this work: 1. For every virtual class in the program (i.e. a class that contains virtual methods), we need to build the set of all possible valid vtables that an object of that class could point to. This includes vtables for any class(es) that inherit from the class under consideration. 2. For every such data set we build up, we need a way to find and reference the data set. This is complicated by the fact that the real vtable addresses are not known until runtime, when the program is loaded into memory, but we need to reference the sets at compile time when we are inserting verification calls into the program. 3. We need to find every virtual call in the program, and insert the verification call (with the appropriate arguments) before the virtual call. 4. We need some runtime library pieces: the code to build up the data sets at runtime; the code to actually perform the verification using the data sets; and some code to set protections on the data sets, so they themselves do not become hacker targets. To find and reference the set of valid vtable pointers for any given virtual class, we create a special global varible for each virtual class. We refer to this as the "vtable map variable" for that class. The vtable map variable has the type "void *", and is initialized by the compiler to NULL. At runtime when the set of valid vtable pointers for a virtual class, e.g. class Foo, is built, the vtable map variable for class Foo is made to point to the set. During compile time, when the compiler is inserting verification calls into the program, it passes the vtable map variable for the appropriate class to the verification call, so that at runtime the verification call can find the appropriate data set. The actual set of valid vtable pointers for a virtual class, e.g. class Foo, cannot be built until runtime, when the vtables get loaded into memory and their addresses are known. But the knowledge about which vtables belong in which class' hierarchy is only known at compile time. Therefore at compile time we collect class hierarchy and vtable information about every virtual class, and we generate calls to build up the data sets at runtime. To build the data sets, we call one of the functions we add to the runtime library, __VLTRegisterPair. __VLTRegisterPair takes two arguments, a vtable map variable and the address of a vtable. If the vtable map variable is currently NULL, it creates a new data set (hash table), makes the vtable map variable point to the new data set, and inserts the vtable address into the data set. If the vtable map variable is not NULL, it just inserts the vtable address into the data set. In order to make sure that our data sets are built before any verification calls happen, we create a special constructor initialization function for each compilation unit, give it a very high initialization priority, and insert all of our calls to __VLTRegisterPair into our special constructor initialization function. The vtable verification feature is controlled by the flag '-fvtable-verify='. There are three flavors of this: '-fvtable-verify=std', '-fvtable-verify=preinit', and '-fvtable-verify=none'. If the option '-fvtable-verfy=preinit' is used, then our constructor initialization function gets put into the preinit array. This is necessary if there are data sets that need to be built very early in execution. If the constructor initialization function gets put into the preinit array, the we also add calls to __VLTChangePermission at the beginning and end of the function. The call at the beginning sets the permissions on the data sets and vtable map variables to read/write, and the one at the end makes them read-only. If the '-fvtable-verify=std' option is used, the constructor initialization functions are executed at their normal time, and the __VLTChangePermission calls are handled differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc). The option '-fvtable-verify=none' turns off vtable verification. This file contains code to find and record the class hierarchies for the virtual classes in a program, and all the vtables associated with each such class; to generate the vtable map variables; and to generate the constructor initialization function (with the calls to __VLTRegisterPair, and __VLTChangePermission). The main data structures used for collecting the class hierarchy data and building/maintaining the vtable map variable data are defined in gcc/vtable-verify.h, because they are used both here and in gcc/vtable-verify.c. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "vtable-verify.h" #include "cp-tree.h" #include "stringpool.h" #include "cgraph.h" #include "output.h" #include "tree-iterator.h" #include "gimplify.h" #include "stor-layout.h" static int num_calls_to_regset = 0; static int num_calls_to_regpair = 0; static int current_set_size; /* Mark these specially since they need to be stored in precompiled header IR. */ static GTY (()) vec *vlt_saved_class_info; static GTY (()) tree vlt_register_pairs_fndecl = NULL_TREE; static GTY (()) tree vlt_register_set_fndecl = NULL_TREE; struct work_node { struct vtv_graph_node *node; struct work_node *next; }; struct vtbl_map_node *vtable_find_or_create_map_decl (tree); /* As part of vtable verification the compiler generates and inserts calls to __VLTVerifyVtablePointer, which is in libstdc++. This function builds and initializes the function decl that is used in generating those function calls. In addition to __VLTVerifyVtablePointer there is also __VLTVerifyVtablePointerDebug which can be used in place of __VLTVerifyVtablePointer, and which takes extra parameters and outputs extra information, to help debug problems. The debug version of this function is generated and used if flag_vtv_debug is true. The signatures for these functions are: void * __VLTVerifyVtablePointer (void **, void*); void * __VLTVerifyVtablePointerDebug (void**, void *, char *, char *); */ void vtv_build_vtable_verify_fndecl (void) { tree func_type = NULL_TREE; if (verify_vtbl_ptr_fndecl != NULL_TREE && TREE_CODE (verify_vtbl_ptr_fndecl) != ERROR_MARK) return; if (flag_vtv_debug) { func_type = build_function_type_list (const_ptr_type_node, build_pointer_type (ptr_type_node), const_ptr_type_node, const_string_type_node, const_string_type_node, NULL_TREE); verify_vtbl_ptr_fndecl = build_lang_decl (FUNCTION_DECL, get_identifier ("__VLTVerifyVtablePointerDebug"), func_type); } else { func_type = build_function_type_list (const_ptr_type_node, build_pointer_type (ptr_type_node), const_ptr_type_node, NULL_TREE); verify_vtbl_ptr_fndecl = build_lang_decl (FUNCTION_DECL, get_identifier ("__VLTVerifyVtablePointer"), func_type); } TREE_NOTHROW (verify_vtbl_ptr_fndecl) = 1; DECL_ATTRIBUTES (verify_vtbl_ptr_fndecl) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (verify_vtbl_ptr_fndecl)); DECL_PURE_P (verify_vtbl_ptr_fndecl) = 1; TREE_PUBLIC (verify_vtbl_ptr_fndecl) = 1; DECL_PRESERVE_P (verify_vtbl_ptr_fndecl) = 1; } /* As part of vtable verification the compiler generates and inserts calls to __VLTRegisterSet and __VLTRegisterPair, which are in libsupc++. This function builds and initializes the function decls that are used in generating those function calls. The signatures for these functions are: void __VLTRegisterSetDebug (void **, const void *, std::size_t, size_t, void **); void __VLTRegisterSet (void **, const void *, std::size_t, size_t, void **); void __VLTRegisterPairDebug (void **, const void *, size_t, const void *, const char *, const char *); void __VLTRegisterPair (void **, const void *, size_t, const void *); */ static void init_functions (void) { tree register_set_type; tree register_pairs_type; if (vlt_register_set_fndecl != NULL_TREE) return; gcc_assert (vlt_register_pairs_fndecl == NULL_TREE); gcc_assert (vlt_register_set_fndecl == NULL_TREE); /* Build function decl for __VLTRegisterSet*. */ register_set_type = build_function_type_list (void_type_node, build_pointer_type (ptr_type_node), const_ptr_type_node, size_type_node, size_type_node, build_pointer_type (ptr_type_node), NULL_TREE); if (flag_vtv_debug) vlt_register_set_fndecl = build_lang_decl (FUNCTION_DECL, get_identifier ("__VLTRegisterSetDebug"), register_set_type); else vlt_register_set_fndecl = build_lang_decl (FUNCTION_DECL, get_identifier ("__VLTRegisterSet"), register_set_type); TREE_NOTHROW (vlt_register_set_fndecl) = 1; DECL_ATTRIBUTES (vlt_register_set_fndecl) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (vlt_register_set_fndecl)); DECL_EXTERNAL(vlt_register_set_fndecl) = 1; TREE_PUBLIC (vlt_register_set_fndecl) = 1; DECL_PRESERVE_P (vlt_register_set_fndecl) = 1; SET_DECL_LANGUAGE (vlt_register_set_fndecl, lang_cplusplus); /* Build function decl for __VLTRegisterPair*. */ if (flag_vtv_debug) { register_pairs_type = build_function_type_list (void_type_node, build_pointer_type (ptr_type_node), const_ptr_type_node, size_type_node, const_ptr_type_node, const_string_type_node, const_string_type_node, NULL_TREE); vlt_register_pairs_fndecl = build_lang_decl (FUNCTION_DECL, get_identifier ("__VLTRegisterPairDebug"), register_pairs_type); } else { register_pairs_type = build_function_type_list (void_type_node, build_pointer_type (ptr_type_node), const_ptr_type_node, size_type_node, const_ptr_type_node, NULL_TREE); vlt_register_pairs_fndecl = build_lang_decl (FUNCTION_DECL, get_identifier ("__VLTRegisterPair"), register_pairs_type); } TREE_NOTHROW (vlt_register_pairs_fndecl) = 1; DECL_ATTRIBUTES (vlt_register_pairs_fndecl) = tree_cons (get_identifier ("leaf"), NULL, DECL_ATTRIBUTES (vlt_register_pairs_fndecl)); DECL_EXTERNAL(vlt_register_pairs_fndecl) = 1; TREE_PUBLIC (vlt_register_pairs_fndecl) = 1; DECL_PRESERVE_P (vlt_register_pairs_fndecl) = 1; SET_DECL_LANGUAGE (vlt_register_pairs_fndecl, lang_cplusplus); } /* This is a helper function for vtv_compute_class_hierarchy_transitive_closure. It adds a vtv_graph_node to the WORKLIST, which is a linked list of seen-but-not-yet-processed nodes. INSERTED is a bitmap, one bit per node, to help make sure that we don't insert a node into the worklist more than once. Each node represents a class somewhere in our class hierarchy information. Every node in the graph gets added to the worklist exactly once and removed from the worklist exactly once (when all of its children have been processed). */ static void add_to_worklist (struct work_node **worklist, struct vtv_graph_node *node, sbitmap inserted) { struct work_node *new_work_node; if (bitmap_bit_p (inserted, node->class_uid)) return; new_work_node = XNEW (struct work_node); new_work_node->next = *worklist; new_work_node->node = node; *worklist = new_work_node; bitmap_set_bit (inserted, node->class_uid); } /* This is a helper function for vtv_compute_class_hierarchy_transitive_closure. It goes through the WORKLIST of class hierarchy nodes looking for a "leaf" node, i.e. a node whose children in the hierarchy have all been processed. When it finds the next leaf node, it removes it from the linked list (WORKLIST) and returns the node. */ static struct vtv_graph_node * find_and_remove_next_leaf_node (struct work_node **worklist) { struct work_node *prev, *cur; struct vtv_graph_node *ret_val = NULL; for (prev = NULL, cur = *worklist; cur; prev = cur, cur = cur->next) { if ((cur->node->children).length() == cur->node->num_processed_children) { if (prev == NULL) (*worklist) = cur->next; else prev->next = cur->next; cur->next = NULL; ret_val = cur->node; free (cur); return ret_val; } } return NULL; } /* In our class hierarchy graph, each class node contains a bitmap, with one bit for each class in the hierarchy. The bits are set for classes that are descendants in the graph of the current node. Initially the descendants bitmap is only set for immediate descendants. This function traverses the class hierarchy graph, bottom up, filling in the transitive closures for the descendants as we rise up the graph. */ void vtv_compute_class_hierarchy_transitive_closure (void) { struct work_node *worklist = NULL; sbitmap inserted = sbitmap_alloc (num_vtable_map_nodes); unsigned i; unsigned j; /* Note: Every node in the graph gets added to the worklist exactly once and removed from the worklist exactly once (when all of its children have been processed). Each node's children edges are followed exactly once, and each node's parent edges are followed exactly once. So this algorithm is roughly O(V + 2E), i.e. O(E + V). */ /* Set-up: */ /* Find all the "leaf" nodes in the graph, and add them to the worklist. */ bitmap_clear (inserted); for (j = 0; j < num_vtable_map_nodes; ++j) { struct vtbl_map_node *cur = vtbl_map_nodes_vec[j]; if (cur->class_info && ((cur->class_info->children).length() == 0) && ! (bitmap_bit_p (inserted, cur->class_info->class_uid))) add_to_worklist (&worklist, cur->class_info, inserted); } /* Main work: pull next leaf node off work list, process it, add its parents to the worklist, where a 'leaf' node is one that has no children, or all of its children have been processed. */ while (worklist) { struct vtv_graph_node *temp_node = find_and_remove_next_leaf_node (&worklist); gcc_assert (temp_node != NULL); temp_node->descendants = sbitmap_alloc (num_vtable_map_nodes); bitmap_clear (temp_node->descendants); bitmap_set_bit (temp_node->descendants, temp_node->class_uid); for (i = 0; i < (temp_node->children).length(); ++i) bitmap_ior (temp_node->descendants, temp_node->descendants, temp_node->children[i]->descendants); for (i = 0; i < (temp_node->parents).length(); ++i) { temp_node->parents[i]->num_processed_children = temp_node->parents[i]->num_processed_children + 1; if (!bitmap_bit_p (inserted, temp_node->parents[i]->class_uid)) add_to_worklist (&worklist, temp_node->parents[i], inserted); } } } /* Keep track of which pairs we have already created __VLTRegisterPair calls for, to prevent creating duplicate calls within the same compilation unit. VTABLE_DECL is the var decl for the vtable of the (descendant) class that we are adding to our class hierarchy data. VPTR_ADDRESS is an expression for calculating the correct offset into the vtable (VTABLE_DECL). It is the actual vtable pointer address that will be stored in our list of valid vtable pointers for BASE_CLASS. BASE_CLASS is the record_type node for the base class to whose hiearchy we want to add VPTR_ADDRESS. (VTABLE_DECL should be the vtable for BASE_CLASS or one of BASE_CLASS' descendents. */ static bool check_and_record_registered_pairs (tree vtable_decl, tree vptr_address, tree base_class) { unsigned offset; struct vtbl_map_node *base_vtable_map_node; bool inserted_something = false; if (TREE_CODE (vptr_address) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (vptr_address, 0)) == MEM_REF) vptr_address = TREE_OPERAND (vptr_address, 0); if (TREE_OPERAND_LENGTH (vptr_address) > 1) offset = TREE_INT_CST_LOW (TREE_OPERAND (vptr_address, 1)); else offset = 0; base_vtable_map_node = vtbl_map_get_node (TYPE_MAIN_VARIANT (base_class)); inserted_something = vtbl_map_node_registration_insert (base_vtable_map_node, vtable_decl, offset); return !inserted_something; } /* Given an IDENTIFIER_NODE, build and return a string literal based on it. */ static tree build_string_from_id (tree identifier) { int len; gcc_assert (TREE_CODE (identifier) == IDENTIFIER_NODE); len = IDENTIFIER_LENGTH (identifier); return build_string_literal (len + 1, IDENTIFIER_POINTER (identifier)); } /* A class may contain secondary vtables in it, for various reasons. This function goes through the decl chain of a class record looking for any fields that point to secondary vtables, and adding calls to __VLTRegisterPair for the secondary vtable pointers. BASE_CLASS_DECL_ARG is an expression for the address of the vtable map variable for the BASE_CLASS (whose hierarchy we are currently updating). BASE_CLASS is the record_type node for the base class. RECORD_TYPE is the record_type node for the descendant class that we are possibly adding to BASE_CLASS's hierarchy. BODY is the function body for the constructor init function to which we are adding our calls to __VLTRegisterPair. */ static void register_construction_vtables (tree base_class, tree record_type, vec *vtable_ptr_array) { tree vtbl_var_decl; if (TREE_CODE (record_type) != RECORD_TYPE) return; vtbl_var_decl = CLASSTYPE_VTABLES (record_type); if (CLASSTYPE_VBASECLASSES (record_type)) { tree vtt_decl; bool already_registered = false; tree val_vtbl_decl = NULL_TREE; vtt_decl = DECL_CHAIN (vtbl_var_decl); /* Check to see if we have found a VTT. Add its data if appropriate. */ if (vtt_decl) { tree values = DECL_INITIAL (vtt_decl); if (TREE_ASM_WRITTEN (vtt_decl) && values != NULL_TREE && TREE_CODE (values) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (values)) == ARRAY_TYPE) { unsigned HOST_WIDE_INT cnt; constructor_elt *ce; /* Loop through the initialization values for this vtable to get all the correct vtable pointer addresses that we need to add to our set of valid vtable pointers for the current base class. This may result in adding more than just the element assigned to the primary vptr of the class, so we may end up with more vtable pointers than are strictly necessary. */ for (cnt = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (values), cnt, &ce); cnt++) { tree value = ce->value; /* Search for the ADDR_EXPR operand within the value. */ while (value && TREE_OPERAND (value, 0) && TREE_CODE (TREE_OPERAND (value, 0)) == ADDR_EXPR) value = TREE_OPERAND (value, 0); /* The VAR_DECL for the vtable should be the first argument of the ADDR_EXPR, which is the first argument of value.*/ if (TREE_OPERAND (value, 0)) val_vtbl_decl = TREE_OPERAND (value, 0); while (!VAR_P (val_vtbl_decl) && TREE_OPERAND (val_vtbl_decl, 0)) val_vtbl_decl = TREE_OPERAND (val_vtbl_decl, 0); gcc_assert (VAR_P (val_vtbl_decl)); /* Check to see if we already have this vtable pointer in our valid set for this base class. */ already_registered = check_and_record_registered_pairs (val_vtbl_decl, value, base_class); if (already_registered) continue; /* Add this vtable pointer to our set of valid pointers for the base class. */ vtable_ptr_array->safe_push (value); current_set_size++; } } } } } /* This function iterates through all the vtables it can find from the BINFO of a class, to make sure we have found ALL of the vtables that an object of that class could point to. Generate calls to __VLTRegisterPair for those vtable pointers that we find. BINFO is the tree_binfo node for the BASE_CLASS. BODY is the function body for the constructor init function to which we are adding calls to __VLTRegisterPair. ARG1 is an expression for the address of the vtable map variable (for the BASE_CLASS), that will point to the updated data set. BASE_CLASS is the record_type node for the base class whose set of valid vtable pointers we are updating. STR1 and STR2 are all debugging information, to be passed as parameters to __VLTRegisterPairDebug. STR1 represents the name of the vtable map variable to be updated by the call. Similarly, STR2 represents the name of the class whose vtable pointer is being added to the hierarchy. */ static void register_other_binfo_vtables (tree binfo, tree base_class, vec *vtable_ptr_array) { unsigned ix; tree base_binfo; tree vtable_decl; bool already_registered; if (binfo == NULL_TREE) return; for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) { if ((!BINFO_PRIMARY_P (base_binfo) || BINFO_VIRTUAL_P (base_binfo)) && (vtable_decl = get_vtbl_decl_for_binfo (base_binfo))) { tree vtable_address = build_vtbl_address (base_binfo); already_registered = check_and_record_registered_pairs (vtable_decl, vtable_address, base_class); if (!already_registered) { vtable_ptr_array->safe_push (vtable_address); current_set_size++; } } register_other_binfo_vtables (base_binfo, base_class, vtable_ptr_array); } } /* The set of valid vtable pointers for any given class are stored in a hash table. For reasons of efficiency, that hash table size is always a power of two. In order to try to prevent re-sizing the hash tables very often, we pass __VLTRegisterPair an initial guess as to the number of entries the hashtable will eventually need (rounded up to the nearest power of two). This function takes the class information we have collected for a particular class, CLASS_NODE, and calculates the hash table size guess. */ static int guess_num_vtable_pointers (struct vtv_graph_node *class_node) { tree vtbl; int total_num_vtbls = 0; int num_vtbls_power_of_two = 1; unsigned i; for (i = 0; i < num_vtable_map_nodes; ++i) if (bitmap_bit_p (class_node->descendants, i)) { tree class_type = vtbl_map_nodes_vec[i]->class_info->class_type; for (vtbl = CLASSTYPE_VTABLES (class_type); vtbl; vtbl = DECL_CHAIN (vtbl)) { total_num_vtbls++; if (total_num_vtbls > num_vtbls_power_of_two) num_vtbls_power_of_two <<= 1; } } return num_vtbls_power_of_two; } /* A simple hash function on strings */ /* Be careful about changing this routine. The values generated will be stored in the calls to InitSet. So, changing this routine may cause a binary incompatibility. */ static uint32_t vtv_string_hash (const char *in) { const char *s = in; uint32_t h = 0; gcc_assert (in != NULL); for ( ; *s; ++s) h = 5 * h + *s; return h; } static char * get_log_file_name (const char *fname) { const char *tmp_dir = concat (dump_dir_name, NULL); char *full_name; int dir_len; int fname_len; dir_len = strlen (tmp_dir); fname_len = strlen (fname); full_name = XNEWVEC (char, dir_len + fname_len + 1); strcpy (full_name, tmp_dir); strcpy (full_name + dir_len, fname); return full_name; } static void write_out_current_set_data (tree base_class, int set_size) { static int class_data_log_fd = -1; char buffer[1024]; int bytes_written __attribute__ ((unused)); char *file_name = get_log_file_name ("vtv_class_set_sizes.log"); if (class_data_log_fd == -1) class_data_log_fd = open (file_name, O_WRONLY | O_APPEND | O_CREAT, S_IRWXU); if (class_data_log_fd == -1) { warning_at (UNKNOWN_LOCATION, 0, "unable to open log file %: %m"); return; } snprintf (buffer, sizeof (buffer), "%s %d\n", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (TYPE_NAME (base_class))), set_size); bytes_written = write (class_data_log_fd, buffer, strlen (buffer)); } static tree build_key_buffer_arg (tree base_ptr_var_decl) { const int key_type_fixed_size = 8; uint32_t len1 = IDENTIFIER_LENGTH (DECL_NAME (base_ptr_var_decl)); uint32_t hash_value = vtv_string_hash (IDENTIFIER_POINTER (DECL_NAME (base_ptr_var_decl))); void *key_buffer = xmalloc (len1 + key_type_fixed_size); uint32_t *value_ptr = (uint32_t *) key_buffer; tree ret_value; /* Set the len and hash for the string. */ *value_ptr = len1; value_ptr++; *value_ptr = hash_value; /* Now copy the string representation of the vtbl map name... */ memcpy ((char *) key_buffer + key_type_fixed_size, IDENTIFIER_POINTER (DECL_NAME (base_ptr_var_decl)), len1); /* ... and build a string literal from it. This will make a copy so the key_bufffer is not needed anymore after this. */ ret_value = build_string_literal (len1 + key_type_fixed_size, (char *) key_buffer); free (key_buffer); return ret_value; } static void insert_call_to_register_set (tree class_name, vec *vtbl_ptr_array, tree body, tree arg1, tree arg2, tree size_hint_arg) { tree call_expr; int num_args = vtbl_ptr_array->length(); char *array_arg_name = ACONCAT (("__vptr_array_", IDENTIFIER_POINTER (class_name), NULL)); tree array_arg_type = build_array_type_nelts (build_pointer_type (build_pointer_type (void_type_node)), num_args); tree array_arg = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (array_arg_name), array_arg_type); int k; vec *array_elements; vec_alloc (array_elements, num_args); tree initial = NULL_TREE; tree arg3 = NULL_TREE; TREE_PUBLIC (array_arg) = 0; DECL_EXTERNAL (array_arg) = 0; TREE_STATIC (array_arg) = 1; DECL_ARTIFICIAL (array_arg) = 0; TREE_READONLY (array_arg) = 1; DECL_IGNORED_P (array_arg) = 0; DECL_PRESERVE_P (array_arg) = 0; DECL_VISIBILITY (array_arg) = VISIBILITY_HIDDEN; for (k = 0; k < num_args; ++k) { CONSTRUCTOR_APPEND_ELT (array_elements, NULL_TREE, (*vtbl_ptr_array)[k]); } initial = build_constructor (TREE_TYPE (array_arg), array_elements); TREE_CONSTANT (initial) = 1; TREE_STATIC (initial) = 1; DECL_INITIAL (array_arg) = initial; relayout_decl (array_arg); varpool_node::finalize_decl (array_arg); arg3 = build1 (ADDR_EXPR, TYPE_POINTER_TO (TREE_TYPE (array_arg)), array_arg); TREE_TYPE (arg3) = build_pointer_type (TREE_TYPE (array_arg)); call_expr = build_call_expr (vlt_register_set_fndecl, 5, arg1, arg2, /* set_symbol_key */ size_hint_arg, build_int_cst (size_type_node, num_args), arg3); append_to_statement_list (call_expr, &body); num_calls_to_regset++; } static void insert_call_to_register_pair (vec *vtbl_ptr_array, tree arg1, tree arg2, tree size_hint_arg, tree str1, tree str2, tree body) { tree call_expr; int num_args = vtbl_ptr_array->length(); tree vtable_address = NULL_TREE; if (num_args == 0) vtable_address = build_int_cst (build_pointer_type (void_type_node), 0); else vtable_address = (*vtbl_ptr_array)[0]; if (flag_vtv_debug) call_expr = build_call_expr (vlt_register_pairs_fndecl, 6, arg1, arg2, size_hint_arg, vtable_address, str1, str2); else call_expr = build_call_expr (vlt_register_pairs_fndecl, 4, arg1, arg2, size_hint_arg, vtable_address); append_to_statement_list (call_expr, &body); num_calls_to_regpair++; } static void output_set_info (tree record_type, vec vtbl_ptr_array) { static int vtv_debug_log_fd = -1; char buffer[1024]; int bytes_written __attribute__ ((unused)); int array_len = vtbl_ptr_array.length(); const char *class_name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (TYPE_NAME (record_type))); char *file_name = get_log_file_name ("vtv_set_ptr_data.log"); if (vtv_debug_log_fd == -1) vtv_debug_log_fd = open (file_name, O_WRONLY | O_APPEND | O_CREAT, S_IRWXU); if (vtv_debug_log_fd == -1) { warning_at (UNKNOWN_LOCATION, 0, "unable to open log file %: %m"); return; } for (int i = 0; i < array_len; ++i) { const char *vptr_name = "unknown"; int vptr_offset = 0; if (TREE_CODE (vtbl_ptr_array[i]) == POINTER_PLUS_EXPR) { tree arg0 = TREE_OPERAND (vtbl_ptr_array[i], 0); tree arg1 = TREE_OPERAND (vtbl_ptr_array[i], 1); if (TREE_CODE (arg0) == ADDR_EXPR) arg0 = TREE_OPERAND (arg0, 0); if (VAR_P (arg0)) vptr_name = IDENTIFIER_POINTER (DECL_NAME (arg0)); if (TREE_CODE (arg1) == INTEGER_CST) vptr_offset = TREE_INT_CST_LOW (arg1); } snprintf (buffer, sizeof (buffer), "%s %s %s + %d\n", main_input_filename, class_name, vptr_name, vptr_offset); bytes_written = write (vtv_debug_log_fd, buffer, strlen(buffer)); } } /* This function goes through our internal class hierarchy & vtable pointer data structure and outputs calls to __VLTRegisterPair for every class-vptr pair (for those classes whose vtable would be output in the current compilation unit). These calls get put into our constructor initialization function. BODY is the function body, so far, of our constructor initialization function, to which we add the calls. */ static bool register_all_pairs (tree body) { bool registered_at_least_one = false; vec *vtbl_ptr_array = NULL; unsigned j; for (j = 0; j < num_vtable_map_nodes; ++j) { struct vtbl_map_node *current = vtbl_map_nodes_vec[j]; unsigned i = 0; tree base_class = current->class_info->class_type; tree base_ptr_var_decl = current->vtbl_map_decl; tree arg1; tree arg2; tree new_type; tree str1 = NULL_TREE; tree str2 = NULL_TREE; size_t size_hint; tree size_hint_arg; gcc_assert (current->class_info != NULL); if (flag_vtv_debug) str1 = build_string_from_id (DECL_NAME (base_ptr_var_decl)); new_type = build_pointer_type (TREE_TYPE (base_ptr_var_decl)); arg1 = build1 (ADDR_EXPR, new_type, base_ptr_var_decl); /* We need a fresh vector for each iteration. */ if (vtbl_ptr_array) vec_free (vtbl_ptr_array); vec_alloc (vtbl_ptr_array, 10); for (i = 0; i < num_vtable_map_nodes; ++i) if (bitmap_bit_p (current->class_info->descendants, i)) { struct vtbl_map_node *vtbl_class_node = vtbl_map_nodes_vec[i]; tree class_type = vtbl_class_node->class_info->class_type; if (class_type && (TREE_CODE (class_type) == RECORD_TYPE)) { bool already_registered; tree binfo = TYPE_BINFO (class_type); tree vtable_decl; bool vtable_should_be_output = false; vtable_decl = CLASSTYPE_VTABLES (class_type); /* Handle main vtable for this class. */ if (vtable_decl) { vtable_should_be_output = TREE_ASM_WRITTEN (vtable_decl); str2 = build_string_from_id (DECL_NAME (vtable_decl)); } if (vtable_decl && vtable_should_be_output) { tree vtable_address = build_vtbl_address (binfo); already_registered = check_and_record_registered_pairs (vtable_decl, vtable_address, base_class); if (!already_registered) { vtbl_ptr_array->safe_push (vtable_address); /* Find and handle any 'extra' vtables associated with this class, via virtual inheritance. */ register_construction_vtables (base_class, class_type, vtbl_ptr_array); /* Find and handle any 'extra' vtables associated with this class, via multiple inheritance. */ register_other_binfo_vtables (binfo, base_class, vtbl_ptr_array); } } } } current_set_size = vtbl_ptr_array->length(); /* Sometimes we need to initialize the set symbol even if we are not adding any vtable pointers to the set in the current compilation unit. In that case, we need to initialize the set to our best guess as to what the eventual size of the set hash table will be (to prevent having to re-size the hash table later). */ size_hint = guess_num_vtable_pointers (current->class_info); /* If we have added vtable pointers to the set in this compilation unit, adjust the size hint for the set's hash table appropriately. */ if (vtbl_ptr_array->length() > 0) { unsigned len = vtbl_ptr_array->length(); while ((size_t) len > size_hint) size_hint <<= 1; } size_hint_arg = build_int_cst (size_type_node, size_hint); /* Get the key-buffer argument. */ arg2 = build_key_buffer_arg (base_ptr_var_decl); if (str2 == NULL_TREE) str2 = build_string_literal (strlen ("unknown") + 1, "unknown"); if (flag_vtv_debug) output_set_info (current->class_info->class_type, *vtbl_ptr_array); if (vtbl_ptr_array->length() > 1) { insert_call_to_register_set (current->class_name, vtbl_ptr_array, body, arg1, arg2, size_hint_arg); registered_at_least_one = true; } else { if (vtbl_ptr_array->length() > 0 || (current->is_used || (current->registered->size() > 0))) { insert_call_to_register_pair (vtbl_ptr_array, arg1, arg2, size_hint_arg, str1, str2, body); registered_at_least_one = true; } } if (flag_vtv_counts && current_set_size > 0) write_out_current_set_data (base_class, current_set_size); } return registered_at_least_one; } /* Given a tree containing a class type (CLASS_TYPE), this function finds and returns the class hierarchy node for that class in our data structure. */ static struct vtv_graph_node * find_graph_node (tree class_type) { struct vtbl_map_node *vtbl_node; vtbl_node = vtbl_map_get_node (TYPE_MAIN_VARIANT (class_type)); if (vtbl_node) return vtbl_node->class_info; return NULL; } /* Add base class/derived class pair to our internal class hierarchy data structure. BASE_NODE is our vtv_graph_node that corresponds to a base class. DERIVED_NODE is our vtv_graph_node that corresponds to a class that is a descendant of the base class (possibly the base class itself). */ static void add_hierarchy_pair (struct vtv_graph_node *base_node, struct vtv_graph_node *derived_node) { (base_node->children).safe_push (derived_node); (derived_node->parents).safe_push (base_node); } /* This functions adds a new base class/derived class relationship to our class hierarchy data structure. Both parameters are trees representing the class types, i.e. RECORD_TYPE trees. DERIVED_CLASS can be the same as BASE_CLASS. */ static void update_class_hierarchy_information (tree base_class, tree derived_class) { struct vtv_graph_node *base_node = find_graph_node (base_class); struct vtv_graph_node *derived_node = find_graph_node (derived_class); add_hierarchy_pair (base_node, derived_node); } static void write_out_vtv_count_data (void) { static int vtv_count_log_fd = -1; char buffer[1024]; int unused_vtbl_map_vars = 0; int bytes_written __attribute__ ((unused)); char *file_name = get_log_file_name ("vtv_count_data.log"); if (vtv_count_log_fd == -1) vtv_count_log_fd = open (file_name, O_WRONLY | O_APPEND | O_CREAT, S_IRWXU); if (vtv_count_log_fd == -1) { warning_at (UNKNOWN_LOCATION, 0, "unable to open log file %: %m"); return; } for (unsigned i = 0; i < num_vtable_map_nodes; ++i) { struct vtbl_map_node *current = vtbl_map_nodes_vec[i]; if (!current->is_used && current->registered->size() == 0) unused_vtbl_map_vars++; } snprintf (buffer, sizeof (buffer), "%s %d %d %d %d %d\n", main_input_filename, total_num_virtual_calls, total_num_verified_vcalls, num_calls_to_regset, num_calls_to_regpair, unused_vtbl_map_vars); bytes_written = write (vtv_count_log_fd, buffer, strlen (buffer)); } /* This function calls register_all_pairs, which actually generates all the calls to __VLTRegisterPair (in the verification constructor init function). It also generates the calls to __VLTChangePermission, if the verification constructor init function is going into the preinit array. INIT_ROUTINE_BODY is the body of our constructior initialization function, to which we add our function calls.*/ bool vtv_register_class_hierarchy_information (tree init_routine_body) { bool registered_something = false; init_functions (); if (num_vtable_map_nodes == 0) return false; /* Add class hierarchy pairs to the vtable map data structure. */ registered_something = register_all_pairs (init_routine_body); if (flag_vtv_counts) write_out_vtv_count_data (); return registered_something; } /* Generate the special constructor function that calls __VLTChangePermission and __VLTRegisterPairs, and give it a very high initialization priority. */ void vtv_generate_init_routine (void) { tree init_routine_body; bool vtable_classes_found = false; push_lang_context (lang_name_c); /* The priority for this init function (constructor) is carefully chosen so that it will happen after the calls to unprotect the memory used for vtable verification and before the memory is protected again. */ init_routine_body = vtv_start_verification_constructor_init_function (); vtable_classes_found = vtv_register_class_hierarchy_information (init_routine_body); if (vtable_classes_found) { tree vtv_fndecl = vtv_finish_verification_constructor_init_function (init_routine_body); TREE_STATIC (vtv_fndecl) = 1; TREE_USED (vtv_fndecl) = 1; DECL_PRESERVE_P (vtv_fndecl) = 1; /* We are running too late to generate any meaningful debug information for this routine. */ DECL_IGNORED_P (vtv_fndecl) = 1; if (flag_vtable_verify == VTV_PREINIT_PRIORITY && !TARGET_PECOFF) DECL_STATIC_CONSTRUCTOR (vtv_fndecl) = 0; gimplify_function_tree (vtv_fndecl); cgraph_node::add_new_function (vtv_fndecl, false); symtab->process_new_functions (); if (flag_vtable_verify == VTV_PREINIT_PRIORITY && !TARGET_PECOFF) assemble_vtv_preinit_initializer (vtv_fndecl); } pop_lang_context (); } /* This funtion takes a tree containing a class type (BASE_TYPE), and it either finds the existing vtbl_map_node for that class in our data structure, or it creates a new node and adds it to the data structure if there is not one for the class already. As part of this process it also creates the global vtable map variable for the class. */ struct vtbl_map_node * vtable_find_or_create_map_decl (tree base_type) { char *var_name = NULL; struct vtbl_map_node *vtable_map_node = NULL; /* Verify the type has an associated vtable. */ if (!TYPE_BINFO (base_type) || !BINFO_VTABLE (TYPE_BINFO (base_type))) return NULL; /* Create map lookup symbol for base class */ var_name = get_mangled_vtable_map_var_name (base_type); /* We've already created the variable; just look it. */ vtable_map_node = vtbl_map_get_node (TYPE_MAIN_VARIANT (base_type)); if (!vtable_map_node || (vtable_map_node->vtbl_map_decl == NULL_TREE)) { /* If we haven't already created the *__vtable_map global variable for this class, do so now, and add it to the varpool, to make sure it gets saved and written out. */ tree var_decl = NULL; tree var_type = build_pointer_type (void_type_node); tree initial_value = integer_zero_node; var_decl = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (var_name), var_type); DECL_EXTERNAL (var_decl) = 0; TREE_STATIC (var_decl) = 1; DECL_VISIBILITY (var_decl) = VISIBILITY_HIDDEN; SET_DECL_ASSEMBLER_NAME (var_decl, get_identifier (var_name)); DECL_ARTIFICIAL (var_decl) = 1; /* We cannot mark this variable as read-only because we want to be able to write to it at runtime. */ TREE_READONLY (var_decl) = 0; DECL_IGNORED_P (var_decl) = 1; DECL_PRESERVE_P (var_decl) = 1; /* Put these mmap variables in thr .vtable_map_vars section, so we can find and protect them. */ set_decl_section_name (var_decl, ".vtable_map_vars"); symtab_node::get (var_decl)->implicit_section = true; DECL_INITIAL (var_decl) = initial_value; comdat_linkage (var_decl); varpool_node::finalize_decl (var_decl); if (!vtable_map_node) vtable_map_node = find_or_create_vtbl_map_node (TYPE_MAIN_VARIANT (base_type)); if (vtable_map_node->vtbl_map_decl == NULL_TREE) vtable_map_node->vtbl_map_decl = var_decl; } gcc_assert (vtable_map_node); return vtable_map_node; } /* This function is used to build up our class hierarchy data for a particular class. TYPE is the record_type tree node for the class. */ static void vtv_insert_single_class_info (tree type) { if (flag_vtable_verify) { tree binfo = TYPE_BINFO (type); tree base_binfo; struct vtbl_map_node *own_map; int i; /* First make sure to create the map for this record type. */ own_map = vtable_find_or_create_map_decl (type); if (own_map == NULL) return; /* Go through the list of all base classes for the current (derived) type, make sure the *__vtable_map global variable for the base class exists, and add the base class/derived class pair to the class hierarchy information we are accumulating (for vtable pointer verification). */ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) { tree tree_val = BINFO_TYPE (base_binfo); struct vtbl_map_node *vtable_map_node = NULL; vtable_map_node = vtable_find_or_create_map_decl (tree_val); if (vtable_map_node != NULL) update_class_hierarchy_information (tree_val, type); } } } /* This function adds classes we are interested in to a list of classes. RECORD is the record_type node for the class we are adding to the list. */ void vtv_save_class_info (tree record) { if (!flag_vtable_verify || TREE_CODE (record) == UNION_TYPE) return; if (!vlt_saved_class_info) vec_alloc (vlt_saved_class_info, 10); gcc_assert (TREE_CODE (record) == RECORD_TYPE); vec_safe_push (vlt_saved_class_info, record); } /* This function goes through the list of classes we saved and calls vtv_insert_single_class_info on each one, to build up our class hierarchy data structure. */ void vtv_recover_class_info (void) { tree current_class; unsigned i; if (vlt_saved_class_info) { for (i = 0; i < vlt_saved_class_info->length(); ++i) { current_class = (*vlt_saved_class_info)[i]; gcc_assert (TREE_CODE (current_class) == RECORD_TYPE); vtv_insert_single_class_info (current_class); } } } #include "gt-cp-vtable-class-hierarchy.h"